
Data Mining and Machine Learning in
Time Series Databases

Dr Eamonn Keogh Dr Eamonn Keogh
Computer Science & Engineering Department

University of California - Riverside
Riverside,CA 92521
eamonn@cs.ucr.edu

Fair Use Agreement
This agreement covers the use of all slides on this
CD-Rom, please read carefully.

•  You may freely use these slides for teaching, if

•  You send me an email telling me the class number/ university in advance.
•  My name and email address appears on the first slide (if you are using all or most of the slides), or on each
slide (if you are just taking a few slides).

•  You may freely use these slides for a conference presentation, if
•  You send me an email telling me the conference name in advance.
•  My name appears on each slide you use.

•  You may not use these slides for tutorials, or in a published work (tech report/
conference paper/ thesis/ journal etc). If you wish to do this, email me first, it is
highly likely I will grant you permission.

(c) Eamonn Keogh, eamonn@cs.ucr.edu

•  Introduction, Motivation
•  The Utility of Similarity Measurements

•  Properties of distance measures
•  The Euclidean distance
•  Preprocessing the data
•  Dynamic Time Warping
•  Uniform Scaling

•  Indexing Time Series
•  Spatial Access Methods and the curse of
dimensionality
•  The GEMINI Framework
•  Dimensionality reduction

•  Discrete Fourier Transform
•  Discrete Wavelet Transform
•  Singular Value Decomposition
•  Piecewise Linear Approximation
•  Symbolic Approximation
•  Piecewise Aggregate Approximation
•  Adaptive Piecewise Constant Approximation

•  Empirical Comparison

Outline of Tutorial

•  Data Mining
•  Anomaly/Interestingness detection
•  Motif (repeated pattern) discovery
•  Visualization/Summarization
•  What we should be working on!

 Summary, Conclusions

Disclaimers
This tutorial is presented “math lite”.

Instead we focus on communicating the
intuitions behind the problems/

representations/algorithms!

However we have included
pointers to 100’s of papers

and books!

Some of the ideas presented in
this tutorial are Dr. Keogh’s. He
will try to make his biases clear

where appropriate!

In order to better appreciate and evaluate time series similarity
measures, we will quickly review the dendrogram.
 Root

Internal Branch
Terminal Branch

Leaf
Internal Node

Root
Internal Branch

Terminal Branch

Leaf
Internal Node

The similarity between two objects in a
dendrogram is represented as the height of
the lowest internal node they share

A Useful Tool for Summarizing Similarity Measurements
A Quick Digression…

Marge Patty Selma

Why are Dendrograms Useful?
If someone tells us they

have a new similarity
measure for DNA, and it

produces an intuitive
dendrogram…

… but if their new
similarity measure

gives us a very
unintuitive

dendrogram, we
should view it with

suspicion…

What are Time Series?

0 50 100 150 200 250 300 350 400 450 500 23
24
25
26
27
28
29

 25.1750
 25.2250
 25.2500
 25.2500
 25.2750
 25.3250
 25.3500
 25.3500
 25.4000
 25.4000
 25.3250
 25.2250
 25.2000
 25.1750

 ..

 ..
 24.6250
 24.6750
 24.6750
 24.6250
 24.6250
 24.6250
 24.6750
 24.7500

A time series is a collection of observations made
sequentially in time.

Virtually all similarity measurements,
indexing and dimensionality reduction

techniques discussed in this tutorial can
be used with other data types

Time Series are Ubiquitous! I

•  Their blood pressure
•  George Bush's popularity rating
•  The annual rainfall in Seattle
•  The value of their Google stock

Thus time series occur in virtually every medical, scientific and businesses domain

People measure things…

…and things change over time…

Image data, may best be thought of as time series…

Text data, may best be thought of as time series…

0 1 2 3 4 5 6 7 8 x 10 5 0

Blue: “God” -English Bible
Red: “Dios” -Spanish Bible

Gray: “El Senor” -Spanish Bible

The local frequency
of words in the Bible

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving to
shoulder level

Steady
pointing

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving
above holster

Hand moving
down to grasp gun

Hand moving to
shoulder level

Steady
pointing

Video data, may best be thought of as time series…

Point

Gun-Draw

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving to
shoulder level

Steady
pointing

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving
above holster

Hand moving
down to grasp gun

Hand moving to
shoulder level

Steady
pointing

Video data, may best be thought of as time series…

Point

Gun

Handwriting data, may best be thought of as time series…

George Washington Manuscript

George Washington
1732-1799

0 50 100 150 200 250 300 350 400 450 0
0.5

1

Brain scans (3D voxels), may best be thought of as time series…

Wang, Kontos, Li and Megalooikonomou ICASSP 2004 Works with
3D glasses!

Brain scans (3D voxels), may best be thought of as time series…

Wang, Kontos, Li and Megalooikonomou ICASSP 2004

Why is Working With Time Series so
Difficult? Part I

◗  1 Hour of EKG data: 1 Gigabyte.

◗  Typical Weblog: 5 Gigabytes per week.

◗  Space Shuttle Database: 200 Gigabytes and growing.

◗  Macho Database: 3 Terabytes, updated with 3 gigabytes a day.

Answer: How do we work with very large databases?

Since most of the data lives on disk (or tape), we need a
representation of the data we can efficiently manipulate.

Why is Working With Time Series so
Difficult? Part II

The definition of similarity depends on the user, the domain and
the task at hand. We need to be able to handle this subjectivity.

Answer: We are dealing with subjectivity

Why is working with time series so
difficult? Part III

 Answer: Miscellaneous data handling problems.

•  Differing data formats.
•  Differing sampling rates.
•  Noise, missing values, etc.

We will not focus on these issues in this tutorial.

What do we want to do with the time series data?

 Clustering Classification

Query by
Content

Rule
Discovery

10

⇒
s = 0.5
c = 0.3

Motif Discovery

 Novelty Detection Visualization

All these problems require similarity matching

 Clustering Classification

Query by
Content

Rule
Discovery

10

⇒
s = 0.5
c = 0.3

Motif Discovery

 Novelty Detection Visualization

Here is a simple motivation for the first part of the tutorial

You go to the doctor
because of chest pains.
Your ECG looks
strange…

You doctor wants to
search a database to find
similar ECGs, in the
hope that they will offer
clues about your
condition...

Two questions:
•  How do we define similar?

•  How do we search quickly?

ECG tester

What is Similarity?
The quality or state of being similar; likeness;
resemblance; as, a similarity of features.

Similarity is hard to
define, but…
“We know it when we
see it”

The real meaning of
similarity is a
philosophical question.

We will take a more
pragmatic approach.

Webster's Dictionary

Two Kinds of Similarity

god

cod

pie

SLY I'll pheeze you, in faith. Hostess A pair of stocks, you ro

VALENTINE Cease to persuade, my loving Proteus:Home-k

In the beginning God created the heavens and the earth. The e

Similarity at
the level of
individual

characters

Similarity
at the

structural
level

text

Two Kinds of Similarity

Similarity at
the level of

shape
Next 40 minutes

Similarity at
the structural

level
Another 10 minutes

time series

Defining Distance Measures
Definition: Let O1 and O2 be two objects from
the universe of possible objects. The distance
(dissimilarity) is denoted by D(O1,O2)

•  D(A,B) = D(B,A) Symmetry
•  D(A,A) = 0 Constancy
•  D(A,B) = 0 IIf A= B Positivity
•  D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality

What properties are desirable in
a distance measure?

Intuitions behind desirable distance measure properties I

D(A,B) = D(B,A) Symmetry

D(,) = D(,)
 Otherwise you could claim:

Patty looks like
Selma, but Selma
does not look like

Patty!

Intuitions behind desirable distance measure properties II

D(A,A) = 0 Constancy of Self-Similarity

D(,) = 0
 Otherwise you could claim:

Marge looks more
like Patty than Patty

does!!

Intuitions behind desirable distance measure properties III

D(A,B) = 0, IIf A=B Positivity

D(,) = 0, IIF =
 Otherwise you could claim:

I know Patty and Marge
are somehow different,

but I can’t tell them
apart!

Intuitions behind desirable distance measure properties IIII

D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality

D(,) ≤ D(,) + D(,)
 Otherwise you could claim:

Patty looks like Marge,
Selma also looks like

Marge, But Patty looks
nothing like Selma!

Why is the Triangular Inequality so Important?
Virtually all techniques to index data require the triangular inequality to hold.

a

b
c

Q

Suppose I am looking for the
closest point to Q, in a database of
3 objects.

Further suppose that the triangular
inequality holds, and that we have
precompiled a table of distance
between all the items in the
database.

a b c
a 6.70 7.07
b 2.30
c

Why is the Triangular Inequality so Important?
Virtually all techniques to index data require the triangular inequality to hold.

a

b
c

Q

I find a and calculate that it is 2 units from Q,
it becomes my best-so-far. I find b and
calculate that it is 7.81 units away from Q.
I don’t have to calculate the distance from Q
to c!

 I know D(Q,b) ≤ D(Q,c) + D(b,c)

 D(Q,b) - D(b,c) ≤ D(Q,c)
 7.81 - 2.30 ≤ D(Q,c)
 5.51 ≤ D(Q,c)

So I know that c is at least 5.51 units away,
but my best-so-far is only 2 units away.

 a b c
a 6.70 7.07
b 2.30
c

A Final Thought on the Triangular Inequality I
Sometimes the triangular inequality requirement maps
nicely onto human intuitions.

Consider the similarity between a hippo, an elephant and a man.

The hippo and the elephant are very similar, and both are very
unlike the man.

A Final Thought on the Triangular Inequality II
Sometimes the triangular inequality requirement fails to
map onto human intuition.

Consider the similarity between the horse, a man and the centaur…

The horse and the man
are very different, but
both share many features
with the centaur.
This relationship does
not obey the triangular
inequality.

This example due to Remco C. Veltkamp

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
Q

C

D(Q,C)

Euclidean Distance Metric

About 80% of published
work in data mining uses

Euclidean distance

Given two time series:
 Q = q1…qn

 C = c1…cn

Optimizing the Euclidean
Distance Calculation

() ()∑ −≡

=

n

i
ii cqCQD

1

2,

() ()∑ −≡
=

n

i
iisquared cqCQD

1

2,

Euclidean distance and Squared
Euclidean distance are equivalent in the
sense that they return the same rankings,
clusterings and classifications

Instead of using the
Euclidean distance
 we can use the
Squared Euclidean distance

This optimization
helps with CPU time,

but most problems are
I/O bound.

In the next few slides we
will discuss the 4 most

common distortions, and
how to remove them

Preprocessing the data before distance calculations

•  Offset Translation
•  Amplitude Scaling
•  Linear Trend
•  Noise

This is because Euclidean distance is very
sensitive to some “distortions” in the
data. For most problems these distortions
are not meaningful, and thus we can and
should remove them

If we naively try to measure the distance
between two “raw” time series, we may get

very unintuitive results

Transformation I: Offset Translation

0 50 100 150 200 250 300 0
0.5

1
1.5

2
2.5

3

0 50 100 150 200 250 300 0
0.5

1
1.5

2
2.5

3

0 50 100 150 200 250 300
0 50 100 150 200 250 300

Q = Q - mean(Q)
C = C - mean(C)

D(Q,C)

D(Q,C)

Transformation II: Amplitude Scaling

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Q = (Q - mean(Q)) / std(Q)
C = (C - mean(C)) / std(C)
D(Q,C)

Transformation III: Linear Trend

0 20 40 60 80 100 120 140 160 180 200 -4
-2
0
2
4
6
8

10
12

0 20 40 60 80 100 120 140 160 180 200 -3
-2
-1
0
1
2
3
4
5

Removed offset translation
Removed amplitude scaling

Removed linear trend
The intuition behind removing
linear trend is…

Fit the best fitting straight line to the
time series, then subtract that line
from the time series.

Transformation IIII: Noise

0 20 40 60 80 100 120 140 -4
-2
0
2
4
6
8

0 20 40 60 80 100 120 140 -4
-2
0
2
4
6
8

Q = smooth(Q)
C = smooth(C)
D(Q,C)

The intuition behind
removing noise is...

Average each datapoints
value with its neighbors.

1
2
3
4
6
5
7
8
9

A Quick Experiment to Demonstrate the
Utility of Preprocessing the Data

1
4
7
5
8
6
9
2
3

Clustered using Euclidean
distance, after removing

noise, linear trend, offset
translation and amplitude

scaling

Clustered using
Euclidean

distance on the
raw data.

Summary of Preprocessing

We should keep in mind these problems as
we consider the high level representations
of time series which we will encounter
later (DFT, Wavelets etc). Since these
representations often allow us to handle
distortions in elegant ways

Of course, sometimes the distortions
are the most interesting thing about
the data, the above is only a general
rule

The “raw” time series may have
distortions which we should remove
before clustering, classification etc

Fixed Time Axis
Sequences are aligned “one to one”.

“Warped” Time Axis
Nonlinear alignments are possible.

Dynamic Time Warping

Note: We will first see the utility of DTW, then see how it is calculated.

Euclidean Dynamic Time Warping

The image cannot be displayed. Your computer may
not have enough memory to open the image, or the
image may have been corrupted. Restart your
computer, and then open the file again. If the red x
still appears, you may have to delete the image and
then insert it again.

The image cannot be displayed. Your
computer may not have enough
memory to open the image, or the
image may have been corrupted.
Restart your computer, and then open
the file again. If the red x still
appears, you may have to delete the
image and then insert it again.

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the file
again. If the red x still appears, you may have to delete the
image and then insert it again.

Nuclear
Power

Excellent!

Here is another example on
nuclear power plant trace data,
to help you develop an intuition

for DTW

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 -4 -3 -2 -1 0
1 2
3 4

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If
the red x still appears, you may have to delete the image and then insert it again.

Sign language

0 50 100 150 200 250 300 -3 -2
-1 0
1 2
3 4 Trace

Word Spotting

Gun

Let us compare Euclidean Distance and DTW on some problems

Faces

Leaves

Control

2-Patterns

Dataset Euclidean DTW
Word Spotting 4.78 1.10
Sign language 28.70 25.93
GUN 5.50 1.00
Nuclear Trace 11.00 0.00
Leaves# 33.26 4.07
(4) Faces 6.25 2.68
Control Chart* 7.5 0.33
2-Patterns 1.04 0.00

Results: Error Rate
Using 1-
nearest-
neighbor,
leaving-
one-out

evaluation!

Dataset Euclidean DTW
Word Spotting 40 8,600
Sign language 10 1,110
GUN 60 11,820
Nuclear Trace 210 144,470
Leaves 150 51,830
(4) Faces 50 45,080
Control Chart 110 21,900
2-Patterns 16,890 545,123

Results: Time (msec)

215

110

197

687

345

901

199

32

DTW is
two to
three

orders of
magnitude

slower
than

Euclidean
distance

C

Q

C

Q

How is DTW
Calculated? I

We create a matrix the size of |
Q| by |C|, then fill it in with the
distance between every pair of
point in our two time series.

C

Q

C

Q

How is DTW
Calculated? II

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted.
Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Warping path w

Every possible warping between two time
series, is a path though the matrix. We
want the best one…

γ(i,j) = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j), γ(i,j-1) }

This recursive function gives us the
minimum cost path

Let us visualize the cumulative matrix on a real world problem I

This example shows 2
one-week periods from
the power demand time
series.

Note that although they
both describe 4-day work
weeks, the blue sequence
had Monday as a holiday,
and the red sequence had
Wednesday as a holiday.

Let us visualize the cumulative matrix on a real world problem II

What we have seen so far…

•  Dynamic Time Warping gives
much better results than
Euclidean distance on virtually
all problems.

•  Dynamic Time Warping is very
very slow to calculate!

Is there anything we can do to speed up similarity search under DTW?

Fast Approximations to Dynamic Time Warp Distance I

C

Q
C

Q

Simple Idea: Approximate the time series with
some compressed or downsampled

representation, and do DTW on the new
representation. How well does this work...

Fast Approximations to Dynamic Time Warp Distance II

0.07 sec

1.03 sec

… there is strong visual evidence to suggests it
works well

 There is good experimental evidence for the
utility of the approach on clustering, classification,

etc

C

Q

C

Q

Sakoe-Chiba Band Itakura Parallelogram

Global Constraints

•  Slightly speed up the calculations
•  Prevent pathological warpings

65

70

75

80

85

90

95

100

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

10
0

FACE 2%
GUNX 3%
LEAF 8%

Control Chart 4%
TRACE 3%
2-Patterns 3%
WordSpotting 3%

Warping width that achieves
 max Accuracy

A
cc

ur
ac

y

W: Warping Width

W

Accuracy vs. Width of Warping Window

A global constraint constrains the indices of the
warping path wk = (i,j)k such that j-r ≤ i ≤ j+r

Where r is a term defining allowed range of
warping for a given point in a sequence.

ri

Sakoe-Chiba Band Itakura Parallelogram

In general, it’s hard to speed up a single DTW calculation

However, if we have to make many DTW
calculations (which is almost always the
case), we can potentiality speed up the

whole process by lowerbounding.

Keep in mind that the lowerbounding trick works
for any situation were you have an expensive

calculation that can be lowerbounded (string edit
distance, graph edit distance etc)

I will explain how lowerbounding works in a generic
fashion in the next two slides, then show

concretely how lowerbounding makes dealing with
massive time series under DTW possible…

Lower Bounding I

Assume that we have two functions:

•  DTW(A,B)
•  lower_bound_distance(A,B)

The true DTW
function is very
slow…

The lower
bound function
is very fast…

By definition, for all A, B, we have

 lower_bound_distance(A,B) ≤ DTW(A,B)

Lower Bounding II

1. best_so_far = infinity;
2. for all sequences in database
3. LB_dist = lower_bound_distance(
4. if LB_dist < best_so_far
5. true_dist = DTW(
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11. endfor

Algorithm Lower_Bounding_Sequential_Scan(Q)
1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5. C i , Q); C i , Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11. endfor

Algorithm Lower_Bounding_Sequential_Scan(Q)

We can speed up similarity search under DTW
by using a lower bounding function

C i , Q); C i , Q);

Only do the
expensive, full
calculations when
it is absolutely
necessary

Try to use a cheap
lower bounding
calculation as
often as possible.

Lower Bound of Yi

The sum of the squared length of gray
lines represent the minimum the
corresponding points contribution to the
overall DTW distance, and thus can be
returned as the lower bounding measure

Yi, B, Jagadish, H & Faloutsos,
C. Efficient retrieval of similar
time sequences under time
warping. ICDE 98, pp 23-27.

max(Q)

min(Q)
LB_Yi

A

B

C

D

The squared difference between the two
sequence’s first (A), last (D), minimum
(B) and maximum points (C) is returned
as the lower bound

Kim, S, Park, S, & Chu, W. An
index-based approach for
similarity search supporting time
warping in large sequence
databases. ICDE 01, pp 607-614

LB_Kim

Lower Bound of Kim

L

U

Q

C

 Q

Sakoe-Chiba Band

Ui = max(qi-r : qi+r)
Li = min(qi-r : qi+r)

Lower Bound of Keogh

C
U

L Q

LB_Keogh

Envelope-Based
Lower Bound

∑
= ⎪
⎩

⎪
⎨

⎧

<−

>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

CQKeoghLB
1

2

2

0
)(
)(

),(_

LB_Keogh
Sakoe-Chiba

LB_Keogh
Itakura

LB_Yi

LB_Kim

The tightness of the lower bound for each technique is proportional
to the length of gray lines used in the illustrations

W

How Useful are Lower Bounds?

Lets do some experiments!

We will measure the average fraction
of the n2 matrix that we must
calculate, for a one nearest neighbor
search.
We will do this for every possible
value of W, the warping window width.
By testing this way, we are
deliberately ignoring implementation
details, like index structure, buffer
size etc…

0 10 20 30 40 50 60 70 80 90 100 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Warping Window Size (%)

Fr
ac

tio
n

of
 w

ar
pi

ng
 m

at
rix

 a
cc

es
se

d

Nuclear Trace
Dataset

No Lower Bound
LB-Keogh

0 1 2 3 4 0
0.01
0.02
0.03
0.04
0.05
0.06

Zoom-In

Maximum
Accuracy

This plot tells us that although DTW is O(n2), after we
set the warping window for maximum accuracy for this
problem, we only have to do 6% of the work, and if we

use the LB_Keogh lower bound, we only have to do
0.3% of the work!

0 10 20 30 40 50 60 70 80 90 100 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Warping Window Size (%)

Fr
ac

tio
n

of
 w

ar
pi

ng
 m

at
rix

 a
cc

es
se

d

Gun Dataset
No Lower Bound
LB-Keogh

0 1 2 3 4 0
0.01
0.02
0.03
0.04
0.05
0.06

Zoom-In

Maximum
Accuracy

This plot tells us that although DTW is O(n2), after
we set the warping window for maximum accuracy for
this problem, we only have to do 6% of the work, and
if we use the LB_Keogh lower bound, we only have to

do 0.21% of the work!

The results in the previous slides are
pessimistic! As the size of the dataset
gets larger, the lower bounds become
more important and can prune a larger
fraction of the data. From a similarity

search/classification point of view, DTW
is linear!

0 10 20 30 40 50 60 70 80 90 100 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Warping Window Size (%)

Fr
ac

tio
n

of
 w

ar
pi

ng
 m

at
rix

 a
cc

es
se

d

Gun Dataset
2 instances
6 instances
12 instances
24 instances
50 instances
100 instances
200 instances

0 1 2 3 4 0
0.01
0.02
0.03
0.04
0.05
0.06

Zoom-In

Maximum
Accuracy*

…DTW is linear for data
mining problems!

Papers published in the last year suggest…

• “DTW incurs a heavy CPU cost”1

• “DTW is limited to only small time series datasets”2

• “(DTW) quadratic cost makes its application on
databases of long time series very expensive”3

•  “(DTW suffers from) serious performance
degradation in large databases”4

This is simply not true!

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

LB_Kim
LB_Yi
LB_Keogh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
0.2
0.4
0.6
0.8
1.0

nceDistaWarpTimeDynamicTrue
nceDistaWarpTimeDynamicofEstimateBoundLowerT =

The tightness of lower
bounds on 32 different datasets

Why did the previous slides
consider only one type of lower
bound?

These experiments suggest we can
use the new envelope based lower

bounding technique to greatly speed
up sequential search.

That’s super!

Excellent!
But what we really need
is a technique to index

the time series

* Agrawal, R., Lin, K. I., Sawhney, H.
S., & Shim, K. (1995). Fast similarity
search in the presence of noise, scaling,
and translation in times-series
databases. VLDB pp. 490-501.

According to the most referenced paper
on time series similarity searching

“dynamic time warping cannot be speeded
up by indexing *”,

As we noted in an earlier slide, virtually
all indexing techniques require the

triangular inequality to hold.
DTW does NOT obey the

triangular inequality!

In fact, it has been was shown that
DTW can be indexed! (VLDB02)

We won’t give details here, other than
to note that the technique is based on
the envelope lower bounding technique

we have just seen

Let us quickly see some success
stories, problems that we now solve,

given that we can index DTW

R. Manmatha, T. M. Rath: Indexing of Handwritten Historical Documents - Recent Progress. In:
Proc. of the 2003 Symposium on Document Image Understanding Technology (SDIUT), Greenbelt, MD, April 9-11, 2003, pp. 77-85.

T. M. Rath and R. Manmatha (2002): Lower-Bounding of Dynamic Time Warping Distances for
Multivariate Time Series. Technical Report MM-40, Center for Intelligent Information Retrieval, University of Massachusetts Amherst.

Success Story I
The lower bounding
technique has been used
to support indexing of
massive archives of
handwritten text.

Surprisingly, DTW works
better on this problem that
more sophisticated approaches
like Markov models

Ning Hu, Roger B. Dannenberg (2003). Polyphonic Audio Matching and Alignment for Music Retrieval

Yunyue Zhu, Dennis Shasha (2003). Query by Humming: a Time Series Database Approach, SIGMOD

Success Story II
The lower bounding
technique has been used
to support “query by
humming”, by several
groups of researchers

Best 3 Matches
1)  Bee Gees: Grease
2)  Robbie Williams: Grease
3)  Sarah Black: Heatwave

Grease is
the word…

Success
Story III
The lower
bounding
technique is
being used
for indexing
motion
capture data.

Thanks to Marc
Cardle for this
example

Success Story IIII
The lower bounding
technique is being used
by ChevronTexaco for
comparing seismic data

Uniform Scaling I

sf = 1.00

sf = 1.41

CDC28

CDC15

Two genes that are known
to be functionally related… Sometimes

global or
uniform scaling
is as important

as DTW

1 2 3

0 200 400 600 800 1000

2
1 3

sf = 1.12
sf = 1.14 sf = 1.00

Euclidean Distance

Uniform Scaling
Euclidean Distance

Uniform Scaling II

8 hours of STS-57 Space Shuttle Inertial Sensor Data

… …

We need
to test all
scalings!

Without scaling, matches 2
and 3 seem unintuitive

Algorithm: Test_All_Scalings(Q,C)
 best_match_val = inf;
 best_scaling_factor = null;
 for p = n to m

 QP = rescale(Q,p);
 distance = squared_Euclidean_distance(QP, C[1..p]);
 if distance < best_match_val
 best_match_val = distance;
 best_scaling_factor = p/n;
 end;

 end;
 return(best_match_val, best_scaling_factor)

Here is the code
to

Test_All_Scalings,
the time

complexly is only
O((m-n) * n), but
we may have to

do this many
times…

Here is some notation, the
shortest scaling we

consider is length n, and
the largest is length m.

The scaling factor (sf) is
the ratio i/n , n <= i <= m

n i m

Lower Bounding Revisited!
We can speed up similarity search under uniform
scaling by using a lower bounding function, just
like we did for DTW.

Algorithm: Lower_Bounding_Sequential_Scan(Q,C)
overall_best_time_series = null;
overall_best_match_val = inf;
for i = 1 to number_of_time_series_in_(C)
 if lower_bound_distance(Q,Ci) < overall_best_match_val
 [dist, scale] = Test_All_Scalings(Q,Ci)
 if dist < overall_best_match_val

 overall_best_time_series = i;
 overall_best_match_val = dist;

 end;
 end;
end;

But is there
a lower bound
for uniform
scaling?

You have
already seen
this idea for
DTW!

0 10 20 30 40 50 60 70 80 90 100

C

0 10 20 30 40 50 60 70 80 90 100

U

L n = 80

m = 100

Ui = max(c ⎣(i-1)*m/n⎦ +1,…, c ⎣i*m/n⎦)

Li = min(c ⎣(i-1)*m/n⎦ +1,…, c ⎣i*m/n⎦)

Assume that you have a database of time
series Ci, all of length 100.
You have a query Q, of length 80, and
you want to find the best match in the
database under any scaling of Q, from 80
to 100.

We can build envelopes
around all candidates time
series Ci, in our database,
just like we did for DTW,
except the definition of the
envelopes is different.

0 10 20 30 40 50 60 70 80 90 100

C

Once the envelopes have been
built, we can lower bound
Test_All_Scalings.
What's more, the lower bound is
one we have already seen!

Q

0 10 20 30 40 50 60 70 80 90 100

LB_Keogh

Envelope-Based
Lower Bound

∑
= ⎪
⎩

⎪
⎨

⎧

<−

>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

CQKeoghLB
1

2

2

0
)(
)(

),(_

256 128 64 256 128 64
1.20

1.10
1.05 0

0.05
0.1
0.15
0.2
0.25

LB_Keogh
CD- criterion

This is the time taken
by brute force search

CD-criterion is the only
other lower bound for
uniform scaling

An experiment to test the
utility of lower bounding
uniform scaling, over different
scaling factors (Y-axis) and
scaling lengths (X-axis). The
dataset was a “mixed bag” of
10,000 assorted time series.

Query Lengths

Apart from making DTW tractable for data
mining for the first time, envelope based

techniques also allow…

1.  More accurate classification (SDM04)

2.  Indexing with uniform scaling (VLDB04)

3.  Faster Euclidean indexing (TKDE04)

4.  Subsequence matching (IDEAS03)

5.  Multivariate time series indexing (SIGKDD03)

6.  Rotation invariant indexing (SIGKDD04)

7.  DTW on Streaming time series (to appear)

8.  Indexing of Images (TPAMI-04, VIS-05)

We strongly feel that envelope based techniques
are the best solutions for time series similarity

Stop!
What about the dozens of

other techniques for
measuring time series shape

similarity?

Unfortunately, none
of them appear to

be useful!

Only Euclidean and DTW Distance are Useful

Approach Cylinder-Bell-F’ Control-Chart
Euclidean Distance 0.003 0.013
Aligned Subsequence 0.451 0.623
Piecewise Normalization 0.130 0.321
Autocorrelation Functions 0.380 0.116
Cepstrum 0.570 0.458
String (Suffix Tree) 0.206 0.578
Important Points 0.387 0.478
Edit Distance 0.603 0.622
String Signature 0.444 0.695
Cosine Wavelets 0.130 0.371
Hölder 0.331 0.593
Piecewise Probabilistic 0.202 0.321

Classification Error Rates on
two publicly available datasets

We stand by our claim. At this point there is
no evidence that there any shape based
distance measures better than DTW1

Dr. Keogh is offering a prize of $300 for
the first similarity measure that can beat
DTW on any 2 real shape based datasets2

Euclidean
Distance

Dynamic
Time

Warping

RK-Band
Dynamic

Time
Warping

≤ ≤

Accuracy

Two Kinds of Similarity We are
done with

shape
similarity

Let us consider
similarity at

the structural
level for the

next 10 minutes

Euclidean
Distance

For long time
series, shape

based similarity
will give very

poor results. We
need to measure
similarly based
on high level

structure

Structure or Model Based Similarity

A
B
C

A B C
Max Value 11 12 19
Autocorrelation 0.2 0.3 0.5
Zero Crossings 98 82 13
ARIMA 0.3 0.4 0.1
… … … …

Feature
Time
 Series

The basic idea is to
extract global features
from the time series,

create a feature
vector, and use these

feature vectors to
measure similarity and/

or classify

But which
•  features?
•  distance measure/
learning algorithm?

Feature-based Classification of Time-series Data
Nanopoulos, Alcock, and Manolopoulos

Features
mean

variance
skewness

kurtosis
mean (1st derivative)

variance (1st derivative)

skewness (1st derivative)

kurtosis (1st derivative)

Learning Algorithm
multi-layer perceptron neural network

•  features?
•  distance measure/
learning algorithm?

Makes sense, but when
we looked at the same
dataset, we found we

could be better
classification accuracy

with Euclidean
distance!

Learning to Recognize Time Series: Combining ARMA Models with
Memory-Based Learning

Deng, Moore and Nechyba

Features
The parameters of the
Box Jenkins model.

More concretely, the

coefficients of the
ARMA model.

Distance Measure
Euclidean distance (between coefficients)

“Time series must
be invertible and
stationary”

•  features?
•  distance measure/
learning algorithm?

•  Use to detect drunk drivers!
•  Independently rediscovered and
generalized by Kalpakis et. al. and
expanded by Xiong and Yeung

Deformable Markov Model Templates for Time Series Pattern Matching
Ge and Smyth

Features
The parameters of a

Markov Model

The time series is first
converted to a piecewise

linear model

Distance Measure
“Viterbi-Like” Algorithm

•  features?
•  distance measure/
learning algorithm?

0 20 40 60 80 100 120 140

X

X'

A B C

A B C

A 0.1 0.4 0.5

B 0.4 0.2 0.2

C 0.5 0.2 0.3

Variations independently
developed by Li and Biswas,

Ge and Smyth, Lin, Orgun and
Williams etc

There tends to be
lots of

parameters to
tune…

Part 1

Deformable Markov Model Templates for Time Series Pattern Matching
Ge and Smyth

Features
The parameters of a

Markov Model

The time series is first
converted to a piecewise

linear model

On this problem
the approach

gets 98%
classification
accuracy*…

Part 2

0 50 100 150 200 250 -2
-1
0
1
2
3
4
5
6

But Euclidean distance
gets 100%! And has no

parameters to tune, and
is tens of thousands

times faster...

Compression Based Dissimilarity
(In general) Li, Chen, Li, Ma, and Vitányi: (For time series) Keogh, Lonardi and Ratanamahatana

Features
Whatever structure

the compression
algorithm finds...

The time series is first converted

to the SAX symbolic
representation*

Distance Measure
Co-Compressibility

•  features?
•  distance measure/
learning algorithm?

Euclidean CDM

The image cannot be displayed. Your computer may not have enough memory to open the
image, or the image may have been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete the image and then insert it
again.

Compression Based Dissimilarity

Power : Jan-March (Italian) Power : April-June (Italian) Power : Jan-March (Dutch) Power : April-June (Dutch) Balloon1 Balloon2 (lagged) Foetal ECG abdominal Foetal ECG thoracic Exchange Rate: Swiss Franc Exchange Rate: German Mark Sunspots: 1749 to 1869 Sunspots: 1869 to 1990 Buoy Sensor: North Salinity Buoy Sensor: East Salinity Great Lakes (Erie) Great Lakes (Ontario) Furnace: heating input Furnace: cooling input Evaporator: feed flow Evaporator: vapor flow Ocean 1 Ocean 2 Dryer fuel flow rate Dryer hot gas exhaust Koski ECG: Slow 1 Koski ECG: Slow 2 Koski ECG: Fast 1 Koski ECG: Fast 2 Reel 2: Angular speed Reel 2: Tension

Summary of Time Series Similarity
•  If you have short time series, use DTW after
searching over the warping window size1 (and
shape2)
•  Then use envelope based lower bounds to speed
things up3.

•  If you have long time series, and you know
nothing about your data, try compression based
dissimilarity.
•  If you do know something about your data, try to
leverage of this knowledge to extract features.

Motivating example revisited…

You go to the doctor
because of chest pains.
Your ECG looks
strange…

Your doctor wants to
search a database to find
similar ECGs, in the
hope that they will offer
clues about your
condition...

Two questions:
• How do we define similar?

• How do we search quickly?

ECG

•  Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest

•  Approximately solve the problem at hand in main memory

•  Make (hopefully very few) accesses to the original data on disk
to confirm the solution obtained in Step 2, or to modify the
solution so it agrees with the solution we would have obtained on
the original data

The Generic Data Mining Algorithm

But which approximation
should we use?

Time Series Representations

Data Adaptive Non Data Adaptive

Spectral Wavelets Piecewise
Aggregate

Approximation

Piecewise
Polynomial

Symbolic Singular
Value

 Approximation

Random
Mappings

Piecewise
Linear

Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform

Haar Daubechies
dbn n > 1 Coiflets Symlets

Sorted
Coefficients

Orthonormal Bi-Orthonormal
Interpolation Regression

Trees

Natural
Language

Strings
Symbolic
Aggregate

Approximation Non
Lower

Bounding

Chebyshev
Polynomials

Data Dictated Model Based
Hidden
Markov
Models

Statistical
Models

Value
Based

Slope Based

Grid Clipped
Data

•  Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest

•  Approximately solve the problem at hand in main memory

•  Make (hopefully very few) accesses to the original data on disk
to confirm the solution obtained in Step 2, or to modify the
solution so it agrees with the solution we would have obtained on
the original data

The Generic Data Mining Algorithm (revisited)

This only works if the
approximation allows

lower bounding

•  Recall that we have seen lower bounding for distance measures (DTW and
uniform scaling) Lower bounding for representations is a similar idea…

What is Lower Bounding?

S
Q

()∑ −≡
=

n

i
ii sq

1

2
D(Q,S) ∑ = − −−≡

M

i iiii svqvsrsr
1

2
1))((DLB(Q’,S’)

DLB(Q’,S
’)

Q’

S’

Lower bounding means that for all Q and
S, we have: DLB(Q’,S’) ≤ D(Q,S)

Raw Data

Approximation
or

“Representation”

In a seminal* paper in SIGMOD 93,
I showed that lower bounding of a
representation is a necessary and
sufficient condition to allow time

series indexing, with the guarantee
of no false dismissals

Christos work was originally with
indexing time series with the Fourier

representation. Since then, there
have been hundreds of follow up

papers on other data types, tasks and
representations

0 20 40 60 80 100 120 140

C

An Example of a
Dimensionality Reduction

Technique I
 0.4995

 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387

 …
 …

Raw
Data

The graphic shows a
time series with 128
points.

The raw data used to
produce the graphic is
also reproduced as a
column of numbers (just
the first 30 or so points are
shown).

n = 128

0 20 40 60 80 100 120 140

C

.

An Example of a
Dimensionality Reduction

Technique II
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928
 0.1635
 0.1602
 0.0992
 0.1282
 0.1438
 0.1416
 0.1400
 0.1412
 0.1530
 0.0795
 0.1013
 0.1150
 0.1801
 0.1082
 0.0812
 0.0347
 0.0052
 0.0017
 0.0002
 …
 …

Fourier
Coefficients

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …
 …

Raw
Data

We can decompose the
data into 64 pure sine
waves using the Discrete
Fourier Transform (just the
first few sine waves are
shown).

The Fourier Coefficients
are reproduced as a
column of numbers (just
the first 30 or so
coefficients are shown).

Note that at this stage we
have not done
dimensionality reduction,
we have merely changed
the representation...

0 20 40 60 80 100 120 140

C

An Example of a
Dimensionality Reduction

Technique III
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients

C’

We have
discarded
of the data.

16
15

 1.5698
 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928
 0.1635
 0.1602
 0.0992
 0.1282
 0.1438
 0.1416
 0.1400
 0.1412
 0.1530
 0.0795
 0.1013
 0.1150
 0.1801
 0.1082
 0.0812
 0.0347
 0.0052
 0.0017
 0.0002
 …
 …

Fourier
Coefficients

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …
 …

Raw
Data

… however, note that the first
few sine waves tend to be the
largest (equivalently, the
magnitude of the Fourier
coefficients tend to decrease
as you move down the
column).

We can therefore truncate
most of the small coefficients
with little effect.

n = 128
N = 8
Cratio = 1/16

An Example of a
Dimensionality Reduction

Technique IIII
 1.5698

 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients 1
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 …
 …

Raw
Data 1

 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240

 …
 …

Raw
Data 2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

 1.1198
 1.4322
 1.0100
 0.4326
 0.5609
 0.8770
 0.1557
 0.4528

Truncated
Fourier

Coefficients 2

-
-
-
-
-
-
-
-

The Euclidean distance between
the two truncated Fourier
coefficient vectors is always less
than or equal to the Euclidean
distance between the two raw data
vectors*.

So DFT allows lower bounding!

*Parseval's Theorem

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
≥

 1.5698
 1.0485
 0.7160
 0.8406
 0.3709
 0.4670
 0.2667
 0.1928

Truncated
Fourier

Coefficients 1

 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515
 0.6596
 0.6672
 0.6751
 0.6843
 0.6954
 0.7086
 0.7240
 0.7412
 0.7595
 0.7780
 0.7956

Raw
Data 1

 0.7412
 0.7595
 0.7780
 0.7956
 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515

Raw
Data 2

 1.1198
 1.4322
 1.0100
 0.4326
 0.5609
 0.8770
 0.1557
 0.4528

Truncated
Fourier

Coefficients 2

Mini Review for the Generic Data Mining Algorithm

 0.8115
 0.8247
 0.8345
 0.8407
 0.8431
 0.8423
 0.8387
 0.4995
 0.7412
 0.7595
 0.7780
 0.7956
 0.5264
 0.5523
 0.5761
 0.5973
 0.6153
 0.6301
 0.6420
 0.6515

Raw
Data n

 1.3434
 1.4343
 1.4643
 0.7635
 0.5448
 0.4464
 0.7932
 0.2126

Truncated
Fourier

Coefficients n

We cannot fit all that raw data in main memory.
We can fit the dimensionally reduced data in main memory.

So we will solve the problem at hand on the
dimensionally reduced data, making a few
accesses to the raw data were necessary,
and, if we are careful, the lower bounding
property will insure that we get the right
answer!

Disk

Main
Memory

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

DFT DWT SVD APCA PAA PLA

0 20 40 60 80 100 120
aabbbccb

a
a
b
b
b
c
c
b

SAX

Jean Fourier
1768-1830

0 20 40 60 80 100 120 140

 0

 1

 2

 3

X

X'

 4

 5

 6

 7

 8

 9

Discrete Fourier
Transform I

Excellent free Fourier Primer

Hagit Shatkay, The Fourier Transform - a Primer'', Technical Report
CS-95-37, Department of Computer Science, Brown University, 1995.

http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/

Basic Idea: Represent the time
series as a linear combination of
sines and cosines, but keep only the
first n/2 coefficients.

Why n/2 coefficients? Because each
sine wave requires 2 numbers, for the
phase (w) and amplitude (A,B).

∑
=

+=
n

k
kkkk twBtwAtC

1

))2sin()2cos(()(ππ

Discrete Fourier
Transform II Pros and Cons of DFT as a time series

representation.

•  Good ability to compress most natural signals.
•  Fast, off the shelf DFT algorithms exist. O(nlog(n)).
•  (Weakly) able to support time warped queries.

•  Difficult to deal with sequences of different lengths.
•  Cannot support weighted distance measures.

0 20 40 60 80 100 120 140

 0

 1

 2

 3

X

X'

 4

 5

 6

 7

 8

 9

Note: The related transform DCT, uses only cosine
basis functions. It does not seem to offer any
particular advantages over DFT.

0 20 40 60 80 100 120 140

Haar 0

Haar 1

Haar 2

Haar 3

Haar 4

Haar 5

Haar 6

Haar 7

X

X'

DWT

Discrete Wavelet
Transform I

Alfred Haar
1885-1933

Excellent free Wavelets Primer

Stollnitz, E., DeRose, T., & Salesin, D. (1995). Wavelets for
computer graphics A primer: IEEE Computer Graphics and
Applications.

Basic Idea: Represent the time
series as a linear combination of
Wavelet basis functions, but keep
only the first N coefficients.

Although there are many different
types of wavelets, researchers in
time series mining/indexing
generally use Haar wavelets.

Haar wavelets seem to be as
powerful as the other wavelets for
most problems and are very easy to
code.

0 20 40 60 80 100 120 140

Haar 0

Haar 1

X

X'

DWT

Discrete Wavelet
Transform II

We have only considered one type of wavelet, there
are many others.
Are the other wavelets better for indexing?

YES: I. Popivanov, R. Miller. Similarity Search Over Time
Series Data Using Wavelets. ICDE 2002.

NO: K. Chan and A. Fu. Efficient Time Series Matching by
Wavelets. ICDE 1999

Later in this tutorial I will answer

this question.

Ingrid Daubechies

1954 -

0 20 40 60 80 100 120 140

Haar 0

Haar 1

Haar 2

Haar 3

Haar 4

Haar 5

Haar 6

Haar 7

X

X'

DWT

Discrete Wavelet
Transform III

Pros and Cons of Wavelets as a time series
representation.

•  Good ability to compress stationary signals.
•  Fast linear time algorithms for DWT exist.
•  Able to support some interesting non-Euclidean
similarity measures.

•  Signals must have a length n = 2some_integer
•  Works best if N is = 2some_integer. Otherwise wavelets
approximate the left side of signal at the expense of the right side.
•  Cannot support weighted distance measures.

0 20 40 60 80 100 120 140

X

X'

eigenwave 0

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

eigenwave 7

SVD

Singular Value
Decomposition I

Eugenio Beltrami
1835-1899

Camille Jordan
 (1838--1921)

James Joseph Sylvester
1814-1897

Basic Idea: Represent the time
series as a linear combination of
eigenwaves but keep only the first
N coefficients.

SVD is similar to Fourier and
Wavelet approaches is that we
represent the data in terms of a
linear combination of shapes (in
this case eigenwaves).

SVD differs in that the eigenwaves
are data dependent.

SVD has been successfully used in the text
processing community (where it is known as
Latent Symantec Indexing) for many years.

Good free SVD Primer

Singular Value Decomposition - A Primer.
Sonia Leach

0 20 40 60 80 100 120 140

X

X'

eigenwave 0

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

eigenwave 7

SVD

Singular Value
Decomposition II

How do we create the eigenwaves?

 We have previously seen that

we can regard time series as
points in high dimensional
space.

We can rotate the axes such
that axis 1 is aligned with the
direction of maximum
variance, axis 2 is aligned with
the direction of maximum
variance orthogonal to axis 1
etc.

Since the first few eigenwaves
contain most of the variance of
the signal, the rest can be
truncated with little loss.

TVUA Σ=
This process can be achieved by factoring a M
by n matrix of time series into 3 other matrices,
and truncating the new matrices at size N.

0 20 40 60 80 100 120 140

X

X'

eigenwave 0

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

eigenwave 7

SVD

Singular Value
Decomposition III

Pros and Cons of SVD as a time series
representation.

•  Optimal linear dimensionality reduction technique .
•  The eigenvalues tell us something about the
underlying structure of the data.

•  Computationally very expensive.
•  Time: O(Mn2)
•  Space: O(Mn)

•  An insertion into the database requires recomputing
the SVD.
•  Cannot support weighted distance measures or non
Euclidean measures.

Note: There has been some promising research into
mitigating SVDs time and space complexity.

0 20 40 60 80 100 120 140

X

X'

Cheb

Chebyshev
Polynomials

Pros and Cons of Chebyshev
Polynomials as a time series
representation.

•  Time series can be of arbitrary length
•  Only O(n) time complexity
•  Is able to support multi-dimensional
time series*.

Ti(x) =
1

x

2x2−1

4x3−3x

8x4−8x2+1

16x5−20x3+5x

32x6−48x4+18x2−1

64x7−112x5+56x3−7x

128x8−256x6+160x4−32x2+1

Basic Idea: Represent the time series
as a linear combination of
Chebyshev Polynomials

Pafnuty Chebyshev
1821-1946

•  Time series must be renormalized to
have length between –1 and 1

0 20 40 60 80 100 120 140

X

X'

Piecewise Linear
Approximation I

Basic Idea: Represent the time
series as a sequence of straight
lines.

Lines could be connected, in
which case we are allowed
N/2 lines

If lines are disconnected, we
are allowed only N/3 lines

Personal experience on dozens of datasets
suggest disconnected is better. Also only
disconnected allows a lower bounding
Euclidean approximation

Each line segment has
•  length
•  left_height
(right_height can
be inferred by looking at
the next segment)

Each line segment has
•  length
•  left_height
•  right_height

Karl Friedrich Gauss
1777 - 1855

0 20 40 60 80 100 120 140

X

X'

Piecewise Linear
Approximation II

How do we obtain the Piecewise Linear
Approximation?

Optimal Solution is O(n2N), which is too
slow for data mining.

A vast body on work on faster heuristic
solutions to the problem can be classified
into the following classes:
•  Top-Down
•  Bottom-Up
•  Sliding Window
•  Other (genetic algorithms, randomized algorithms,
Bspline wavelets, MDL etc)

Extensive empirical evaluation* of all approaches
suggest that Bottom-Up is the best approach
overall.

0 20 40 60 80 100 120 140

X

X'

Piecewise Linear
Approximation III

Pros and Cons of PLA as a time series
representation.

•  Good ability to compress natural signals.
•  Fast linear time algorithms for PLA exist.
•  Able to support some interesting non-Euclidean
similarity measures. Including weighted measures,
relevance feedback, fuzzy queries…
• Already widely accepted in some communities (ie,
biomedical)

•  Not (currently) indexable by any data structure (but
does allows fast sequential scanning).

Piecewise Aggregate
Approximation I

0 20 40 60 80 100 120 140

X
X'

x1
x2
x3
x4
x5
x6
x7
x8

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

xx
1)1(

()∑ =
−≡

N

i iiN
n yxYXDR

1
2),(

Given the reduced dimensionality representation
we can calculate the approximate Euclidean
distance as...

This measure is provably lower bounding.

Basic Idea: Represent the time series as a
sequence of box basis functions.

Note that each box is the same length.

Independently introduced by two authors
•  Keogh, Chakrabarti, Pazzani & Mehrotra, KAIS (2000) / Keogh &
Pazzani PAKDD April 2000

•  Byoung-Kee Yi, Christos Faloutsos, VLDB September 2000

Piecewise Aggregate
Approximation II

0 20 40 60 80 100 120 140

X
X'

X1
X2
X3
X4
X5
X6
X7
X8

•  Extremely fast to calculate
•  As efficient as other approaches (empirically)
•  Support queries of arbitrary lengths
•  Can support any Minkowski metric@

•  Supports non Euclidean measures
•  Supports weighted Euclidean distance
•  Can be used to allow indexing of DTW and uniform
scaling*
•  Simple! Intuitive!

•  If visualized directly, looks ascetically unpleasing.

Pros and Cons of PAA as a time series
representation.

Piecewise Aggregate
Approximation

0 20 40 60 80 100 120 140

X
X'

A piecewise constant
approximate of a time series,

and a piecewise constant
approximation of me!

A Completely Pointless Slide

Adaptive Piecewise
Constant

Approximation I

0 20 40 60 80 100 120 140

X
X

<cv1,cr1>

<cv2,cr2>

<cv3,cr3>

<cv4,cr4>

Basic Idea: Generalize PAA to allow the
piecewise constant segments to have arbitrary
lengths.
Note that we now need 2 coefficients to represent
each segment, its value and its length.

50 100 150 200 250 0

Raw Data (Electrocardiogram)

Adaptive Representation (APCA)
 Reconstruction Error 2.61

Haar Wavelet or PAA
 Reconstruction Error 3.27

DFT
 Reconstruction Error 3.11

The intuition is this, many signals have little detail in some
places, and high detail in other places. APCA can adaptively fit
itself to the data achieving better approximation.

Adaptive Piecewise
Constant

Approximation II

0 20 40 60 80 100 120 140

X
X

<cv1,cr1>

<cv2,cr2>

<cv3,cr3>

<cv4,cr4>

The high quality of the APCA had been noted by
many researchers.
However it was believed that the representation
could not be indexed because some coefficients
represent values, and some represent lengths.

However an indexing method was discovered!

(SIGMOD 2001 best paper award)

Unfortunately, it is non-trivial to understand and
implement and thus has only been
reimplemented once or twice (In contrast, more
than 50 people have reimplemented PAA).

Adaptive Piecewise
Constant

Approximation III

0 20 40 60 80 100 120 140

X
X

<cv1,cr1>

<cv2,cr2>

<cv3,cr3>

<cv4,cr4>

•  Pros and Cons of APCA as a time
series representation.

•  Fast to calculate O(n).
•  More efficient as other approaches (on some
datasets).
•  Support queries of arbitrary lengths.
•  Supports non Euclidean measures.
•  Supports weighted Euclidean distance.
•  Support fast exact queries , and even faster
approximate queries on the same data structure.

•  Somewhat complex implementation.
•  If visualized directly, looks ascetically
unpleasing.

0 20 40 60 80 100 120 140

X

X'

0011111111111111111111111000011000000111

…110000110000001111….

44 Zeros
 23 Ones
 4 Zeros
 2 Ones
 6 Zeros
 49 Ones

44 Zeros|23|4|2|6|49

Clipped Data

No details available, this
paper is in this conference

Bagnall, A.J. and Janacek, G.A., "Clustering time series from ARMA models
with clipped data", In International Conference on Knowledge Discovery in
Data and Data Mining (ACM SIGKDD 2004) Accepted, Seattle, USA, 2004

Natural Language

0 20 40 60 80 100 120 140

X

•  Pros and Cons of natural language as
a time series representation.

•  The most intuitive representation!
•  Potentially a good representation for low
bandwidth devices like text-messengers

•  Difficult to evaluate.

rise, plateau, followed by a rounded peak

rise,

 plateau,

 followed by a rounded peak

To the best of my knowledge only one group is
working seriously on this representation. They
are the University of Aberdeen SUMTIME
group, headed by Prof. Jim Hunter.

0 20 40 60 80 100 120 140

X

X'

 0

 1

 2

 3

 4

 5

 6

 7

a a b b b c c b

a

 b
 b
 b
 c
 c
 b

 a

Symbolic
Approximation I

Basic Idea: Convert the time series into an alphabet
of discrete symbols. Use string indexing techniques
to manage the data.

Potentially an interesting idea, but all work thus far
are very ad hoc.

Pros and Cons of Symbolic Approximation
as a time series representation.

•  Potentially, we could take advantage of a wealth of
techniques from the very mature field of string
processing and bioinformatics.

•  It is not clear how we should discretize the times
series (discretize the values, the slope, shapes? How
big of an alphabet? etc).

•  There are more than 210 different variants of this,
at least 35 in data mining conferences.

0 20 40 60 80 100 120 140

X

X'

aaaaaabbbbbccccccbbccccdddddddd

d
c
b
a

SAX: Symbolic Aggregate
approXimation

SAX allows (for the first time) a symbolic
representation that allows

•  Lower bounding of Euclidean distance

•  Dimensionality Reduction

•  Numerosity Reduction

0

-

-

0 20 40 60 80 100 120

b b
 b

 a

c
 c

c

 a

baabccbc

Jessica Lin
1976-

Comparison of all Dimensionality
Reduction Techniques

•  We have already compared features (Does
representation X allow weighted queries, queries of
arbitrary lengths, is it simple to implement…

•  We can compare the indexing efficiency. How
long does it take to find the best answer to out query.

•  It turns out that the fairest way to measure this is
to measure the number of times we have to
retrieve an item from disk.

Data Bias

Definition: Data bias is the conscious or
unconscious use of a particular set of testing
data to confirm a desired finding.

Example: Suppose you are comparing Wavelets to Fourier methods,
the following datasets will produce drastically different results…

0 200 400 600 0 200 400 600

Good for
wavelets
bad for
Fourier

Good for
Fourier
bad for
wavelets

•  “Several wavelets outperform the DFT”.

•  “DFT-based and DWT-based techniques yield
comparable results”.

•  “Haar wavelets perform slightly better that DFT”

•  “DFT filtering performance is superior to DWT”

Example of Data Bias: Whom to Believe?
For the task of indexing time series for similarity search, which
representation is best, the Discrete Fourier Transform (DFT), or
the Discrete Wavelet Transform (Haar)?

To find out who to believe (if anyone) we
performed an extraordinarily careful and
comprehensive set of experiments. For example…

•  We used a quantum mechanical device generate
random numbers.
•  We averaged results over 100,000 experiments!
•  For fairness, we use the same (randomly chosen)
subsequences for both approaches.

Example of Data Bias: Whom to Believe II?

Powerplant Infrasound Attas (Aerospace)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DFT
HAAR

I tested on the Powerplant,
Infrasound and Attas datasets,
and I know DFT outperforms
the Haar wavelet

Pr
un

in
g

Po
w

er

Network EPRdata Fetal EEG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

DFT
HAAR

Stupid Flanders! I tested on the
Network, ERPdata and Fetal EEG
datasets and I know that there
is no real difference between
DFT and Haar

Pr
un

in
g

Po
w

er

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Chaotic Earthquake Wind (3)

DFT
HAAR

Those two clowns are both wrong!
I tested on the Chaotic,
Earthquake and Wind datasets, and
I am sure that the Haar wavelet
outperforms the DFT

Pr
un

in
g

Po
w

er

The Bottom Line
Any claims about the relative performance
of a time series indexing scheme that is
empirically demonstrated on only 2 or 3
datasets are worthless.

Powerplant Infrasound Attas (Aerospace)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DFT
HAAR

Network EPRdata Fetal EEG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

DFT
HAAR

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Chaotic Earthquake Wind (3)

DFT
HAAR

So which is really the best technique?
I experimented with all the techniques (DFT, DCT,
Chebyshev, PAA, PLA, PQA, APCA, DWT (most wavelet

types), SVD) on 65 datasets, and as a sanity check, Michail
Vlachos independently implemented and tested on the
same 65 datasets.

On average, they are all about the same. In particular,
on 80% of the datasets they are all within 10% of each
other.

If you want to pick a representation, don’t do so based on
the reconstruction error, do so based on the features the
representation has. On bursty datasets* APCA can be significantly better

Lets take a tour of other time series problems

•  Before we do, let us briefly
revisit SAX, since it has some
implications for the other
problems…

•  One central theme of this tutorial is that lowerbounding is
a very useful property. (recall the lower bounds of DTW /uniform scaling, also
recall the importance of lower bounding dimensionality reduction techniques).
• Another central theme is that dimensionality reduction is
very important. That’s why we spend so long discussing
DFT, DWT, SVD, PAA etc.

•  Until last year there was no lowerbounding,
dimensionality reducing representation of time series. In
the next slide, let us think about what it means to have
such a representation…

Exploiting Symbolic Representations of Time Series

•  If we had a lowerbounding, dimensionality
reducing representation of time series, we could…

•  Use data structures that are only defined for discrete data,
such as suffix trees.
•  Use algorithms that are only defined for discrete data,
such as hashing, association rules etc
•  Use definitions that are only defined for discrete data,
such as Markov models, probability theory
•  More generally, we could utilize the vast body of
research in text processing and bioinformatics

Exploiting Symbolic Representations of Time Series

Exploiting Symbolic Representations of Time Series

-3
-2
-1
0
1
2
3

DFT

PLA

Haar

APCA

a b
c
d e
f

SAX

SAX

There is now a lower bounding dimensionality
reducing time series representation! It is called
SAX (Symbolic Aggregate ApproXimation)
I expect SAX to have a major impact on time
series data mining in the coming years…

ffffffeeeddcbaabceedcbaaaaacddee

Anomaly (interestingness) detection

We would like to be able to discover surprising (unusual, interesting,
anomalous) patterns in time series.

Note that we don’t know in advance in what way the time series
might be surprising

Also note that “surprising” is very context dependent, application
dependent, subjective etc.

0 100 200 300 400 500 600 700 800 900 1000 -10
-5
0
5

10
15
20
25
30
35 Limit Checking

Simple Approaches I

0 100 200 300 400 500 600 700 800 900 1000 -10
-5
0
5

10
15
20
25
30
35 Discrepancy Checking

Simple Approaches II

Early statistical
detection of anthrax
outbreaks by tracking
over-the-counter
medication sales

Goldenberg, Shmueli,
Caruana, and Fienberg

Discrepancy Checking: Example

normalized sales
de-noised
threshold

 Actual value

 Predicted value

The actual value is
greater than the predicted
value, but still less than
the threshold, so no alarm
is sounded.

•  Note that this problem has been solved for text strings

•  You take a set of text which has been labeled
“normal”, you learn a Markov model for it.

•  Then, any future data that is not modeled well by the
Markov model you annotate as surprising.

•  Since we have just seen that we can convert time
series to text (i.e SAX). Lets us quickly see if we can
use Markov models to find surprises in time series…

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000

Training data

Test data
(subset)

Markov model
surprise

These were
converted to the
symbolic
representation.
I am showing the
original data for
simplicity

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000

Training data

Test data
(subset)

Markov model
surprise

In the next slide we will zoom in on
this subsection, to try to understand
why it is surprising

0 100 200 300 400 500 600 700

Normal
sequence

Normal
sequence

Actor
misses
holster

Briefly swings gun at
target, but does not aim

Laughing and
flailing hand

Normal Time
Series

Surprising
Time Series

Anomaly (interestingness) detection
In spite of the nice example in the previous slide, the
anomaly detection problem is wide open.

How can we find interesting patterns…

•  Without (or with very few) false positives…
•  In truly massive datasets...
•  In the face of concept drift…
•  With human input/feedback…
•  With annotated data…

Time Series Motif Discovery
(finding repeated patterns)

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500

Are there any repeated
patterns, of about this
length in the above
time series?

Winding Dataset

(The angular speed of reel 2)
0 50 0 1000 150 0 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

A B C

A B C

Time Series Motif Discovery
(finding repeated patterns)

· Mining association rules in time series requires the discovery of motifs.
These are referred to as primitive shapes and frequent patterns.

· Several time series classification algorithms work by constructing typical
prototypes of each class. These prototypes may be considered motifs.

· Many time series anomaly/interestingness detection algorithms essentially
consist of modeling normal behavior with a set of typical shapes (which we see
as motifs), and detecting future patterns that are dissimilar to all typical shapes.

· In robotics, Oates et al., have introduced a method to allow an autonomous
agent to generalize from a set of qualitatively different experiences gleaned
from sensors. We see these “experiences” as motifs.

· In medical data mining, Caraca-Valente and Lopez-Chavarrias have
introduced a method for characterizing a physiotherapy patient’s recovery
based of the discovery of similar patterns. Once again, we see these “similar
patterns” as motifs.

•  Animation and video capture… (Tanaka and Uehara, Zordan and Celly)

Why Find Motifs?

Radio Jingle

•  Single channel (mono) 225000 samples at sample rate of 6000
samples/sec, 32bits per sample.

•  Pre-processing: Absolute-valued and down-sampled to total of
600 samples and new sample rate of 16 samples/sec.

•  400 projections with instance length equal to 2 seconds of
sample. w=16, a=8.

Motifs in Music

Winding Dataset
(The angular speed of reel 2)

0 50 0 1000 150 0 2000 2500
A B C

Finding these 3 motifs requires about 6,250,000 calls to the Euclidean distance function

Motifs Discovery Challenges
How can we find motifs…

•  Without having to specify the length/other parameters
•  In massive datasets
•  While ignoring “background” motifs (ECG example)
•  Under time warping, or uniform scaling
•  While assessing their significance

Time Series Prediction

There are two kinds of time series prediction

•  Black Box: Predict tomorrows electricity
demand, given only the last ten years
electricity demand.
•  White Box (side information): Predict
tomorrows electricity demand, given the last
ten years electricity demand and the weather
report, and the fact that fact that the world
cup final is on and…

Prediction is hard, especially
about the future

Yogi Berra
 1925 -

Black Box Time Series Prediction
•  A paper in SIGMOD 04 claims to be able to get better
than 60% accuracy on black box prediction of financial
data (random guessing should give about 50%). The
authors agreed to test blind on a dataset which I gave
them, they again got more than 60%. But I gave them
quantum-mechanical random walk data!

•  A paper in SIGKDD in 1998 did black box prediction
using association rules, more than twelve papers
extended the work… but then it was proved that the
approach could not work*!

Nothing I have seen suggests to me that any non-trivial contributions
have been made to this problem. (To be fair, it is a very hard problem)

White Box Time Series Prediction

Time Series Visualization

Warning! I am not an expert of visualization

See tutorials by Ben Shneiderman, Daniel A. Keim,
Marti Hearst etc

However, we will spend 10 minutes looking at some of
the major time series visualization tools

Time Series Spirals
•  Spiral Axis = serial attributes

are encoded as line thickness
•  Radii = periodic attributes

Carlis & Konstan. UIST-98
Independently rediscovered by

Weber, Alexa & Müller InfoVis-01
But dates back to 1888!

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

0

100

200

300

400

Jan 1

Dec 23
Monday 00:01

Friday 23:59

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

0

100

200

300

400

Jan 1

Dec 23
Monday 00:01

Friday 23:59

Jan 1

Dec 23
Monday 00:01

Friday 23:59

One year
of power
demand

data

Time Series Spirals

Chimpanzees Monthly Food Intake
1980-1988

The spokes are months, and
spiral guide lines are years

•  “chimpanzees eat new leaves of this plant, which
are produced at the beginning and the end of the
rainy season which is approximately October –
April, and, more particularly, late rainy season
consumption was steadier than that in early season”

•  “in 1984 (red boxes), which was a drought year,
consumption was considerably lower in the early
rainy season, and high consumption in August 1983
occurred when the rainy season came early”

January

April

July

October

Time Series Spirals
Comments
•  Simple and intuitive
•  Many extensions possible
•  Scalability is still an issue
•  Only useful on periodic data, and
only then if you know the period

112 types of food
Effect of changing the period

ThemeRiver

•  Current width = strength of theme
•  River width = global strength
•  Color mapping (similar themes/same

color family)
•  Time axis
•  External events can be linked

A company’s patent activity
1988 to 1998 Havre, Hetzler, Whitney & Nowell

InfoVis 2000

ThemeRiver

oil

Comments
•  Simple and intuitive
•  Many extensions possible
•  Scalability is still an issue

Castro confiscates American oil refineries

Fidel Castro’s speeches 1960-1961

dot.com stocks 1999-2002

TimeSearcher

Comments
•  Simple and intuitive
•  Highly dynamic
exploration

•  Query power may be
limited and simplistic
•  Limited scalability

Hochheiser, and Shneiderman

VizTree
10001000101001000101010100001
010100010101110111101011010010
111010010101001110101010100101
00101010111010101001010101011
010101001011001011101111010001
110000101000010011101010001110
0001010101100101110101

010110010111100110100100001000
101001101101011100001010101110
1111100011011011011111101001100
100100011010001111001101101000
101111000101101001101100110100
000010011000100111000001110100
1100101100001010010

Here are two sets of bit
strings. Which set is
generated by a human and
which one is generated by
a computer?

VizTree
10001000101001000101010100001010
100010101110111101011010010111010
010101001110101010100101001010101
110101010010101010110101010010110
010111011110100011100001010000100
111010100011100001010101100101110
101

010110010111100110100100001000101
001101101011100001010101110111110
001101101101111110100110010010001
101000111100110110100010111100010
110100110110011010000001001100010
011100000111010011001011000010100
10

 “humans usually try to fake randomness by alternating patterns”

Lets put the sequences into a depth limited suffix
tree, such that the frequencies of all triplets are
encoded in the thickness of branches…

VizTree

Zoom in

The “trick” on the previous slide
only works for discrete data, but
time series are real valued.

But we can
SAX up a time
series to make
it discrete!

VisTree
•  Convert the time series to SAX
•  Push the data in a depth-limited
suffix tree
•  Encode the frequencies as the
line thickness

Overview Details 1

Details 2

Ben Shneiderman

Overview, zoom
& filter, details
on demand

VizTree/ DiffTree

DiffTree
•  Convert the two time
series to SAX
•  Push the data in a depth-
limited suffix tree
•  Encode the frequencies as
the line thickness

•  Encode the difference
of frequencies as the line
color

Blue lines - pattern is more common in A
Green lines - pattern is more common in B
Red lines - pattern is equi-frequent in A and B

The Last Word
The sun is setting on all other
symbolic representations of
time series, SAX is the only
way to go

What should we be working on?
The Top Ten Time Series Problems

•  I strongly believe that time series similarly
search is dead (or at least dying)

•  The good news is that there is a lot interesting
unsolved problems out there

•  What follows is my subjective list of the most
interesting problems in time series data mining (In
random order)

Problem 1

Discovering Time Series Motifs without all
those hard-to-set parameters

Unlike similarity search, motif discovery really
appears to have lots of applications!

However, we currently have to set 3 to 5 critical
parameters. Can we find the naturally repeated
patterns without specifying all these parameters?

Clustering streaming time series

Given an single infinite stream, can you find, then
incrementally maintain, K clusters of subsequences,
under Euclidean distance or DTW? (perhaps with a forgetting factor)

Note that was apparently solved before*!

The problem is NOT to do this fast, the problem is to
do this in a meaningful way.

Problem 2

Time Series Joins

Given two time series, find all the subsections where
they are similar.

Without normalizing the subsections, this is easy but
meaningless.

The problem is NOT to do this fast, the problem is to
do this in a meaningful way.

Problem 3

Understanding the “why” in time series
classification and clustering

Problem 4

Image data, may best be thought of as time series…

Given that two time series are clustered/classified together,
automatically construct an explanation of why.

Building tools to visualize massive time series
Problem 5

The best data mining/pattern recognition tool is the human eye, can
we exploit this fact?

How can we visually summarize massive time series, such that regularities,
outliers, anomalies etc, become visible?

Image by Martin Wattenberg*

Classifying time series with a eager learner

Problem 6

While there has been work on classifying (shape-bases) time series
with decision trees, neural networks, bayesian classifiers etc. None
of these approaches is competitive with 1-nearest neighbor with
DTW.

As we have seen, DTW is essentially linear, nevertheless, 1-nearest
neighbor needs to visit every instance, can we do better?

Weighted time series representations

Problem 7

It is well known in the machine learning community that weighting
features can greatly improve accuracy in classification and
clustering tasks.

Are weighted time series representations useful?

Query by Burst
Problem 8

It makes sense that the
bursts for “LeTour”,
“Tour de France” and
“Lance Armstrong” are
all related.

But what caused the
extra interest in Lance
Armstrong in August/
September 2000?

2000 2001 2002 0
50

100 LeTour

2000 2001 2002 0
5000

10000 Tour De France

2000 2001 2002 0
200
400 Lance

Armstrong Example by
M. Vlachos

Search Engine Query Log

?

Applications, Applications, Applications
Problem 9

For every one paper that shows a real
application of time series data mining,
there are dozens that introduce an idea
of dubious real world utility.

We need to give more attention to problems
with real, demonstrated applications (and

give them weight when reviewing?).

Best Bets: Music, Motion
Capture, Video, Web Logs…

You Tell Me!
Problem 10

Any ideas?

We can discuss them in 3 minutes.

Conclusions
•  Time series are everywhere!
•  While (I believe) similarly search in time series is
dead or dying, there are lots of great problems to be
solved.
•  The right representation for the problem at hand is
the key to an efficient and effective solution.
•  For some reason, time series research seems
vulnerable to sloppy evaluation. If we all shared
our data, this would be a huge step in the right
direction…

Thanks to the people with whom I have co-authored
Time Series Papers

•  Michael Pazzani
•  Sharad Mehrotra
•  Kaushik Chakrabarti
•  Selina Chu
•  David Hart
•  Padhraic Smyth
•  Jessica Lin
•  Bill 'Yuan-chi' Chiu
•  Stefano Lonardi
•  Shruti Kasetty
•  Chotirat (Ann) Ratanamahatana
•  Pranav Patel
•  Harry Hochheiser
•  Ben Shneiderman
•  Marios Hadjieleftheriou
•  Victor Zordan
•  Your name here! (I welcome collaborators)

Thanks!

•  Dimitrios Gunopulos
•  Michail Vlachos
•  Marc Cardle
•  Stephen Brooks
•  Bhrigu Celly
•  Themis Palpanas
•  Jiyuan An, H. Chen, K. Furuse and N. Ohbo

Questions?

All datasets and code used in this tutorial can be found at

www.cs.ucr.edu/~eamonn/TSDMA/index.html

