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•  Introduction, Motivation 
•  The Utility of Similarity Measurements 

•  Properties of distance measures 
•  The Euclidean distance 
•  Preprocessing the data 
•  Dynamic Time Warping 
•  Uniform Scaling 

•  Indexing Time Series 
•  Spatial Access Methods and the curse of 
dimensionality 
•  The GEMINI Framework 
•  Dimensionality reduction  

•  Discrete Fourier Transform 
•  Discrete Wavelet Transform 
•  Singular Value Decomposition 
•  Piecewise Linear Approximation 
•  Symbolic Approximation   
•  Piecewise Aggregate Approximation  
•  Adaptive Piecewise Constant Approximation  

•  Empirical Comparison  
 

Outline of Tutorial 

•  Data Mining 
•  Anomaly/Interestingness detection  
•  Motif  (repeated pattern) discovery 
•  Visualization/Summarization 
•  What we should be working on!   

 Summary, Conclusions 



Disclaimers 
This tutorial is presented “math lite”. 

Instead we focus on communicating the 
intuitions behind the problems/ 

representations/algorithms! 

However we have included 
pointers to 100’s of papers 

and books!  

Some of the ideas presented in 
this tutorial are Dr. Keogh’s. He 
will try to make his biases clear 

where appropriate! 



In order to better appreciate and evaluate time series similarity 
measures, we will quickly review the dendrogram. 
 Root

Internal Branch
Terminal Branch

Leaf
Internal Node

Root
Internal Branch

Terminal Branch

Leaf
Internal Node

The similarity between two objects in a 
dendrogram is represented as the height of 
the lowest internal node they share 

A Useful Tool for Summarizing Similarity Measurements  
A Quick Digression…  

Marge Patty Selma 



Why are Dendrograms Useful?  
If someone tells us they 

have a new similarity 
measure for DNA, and it 

produces an intuitive 
dendrogram… 

… but if their new 
similarity measure 

gives us a very 
unintuitive 

dendrogram, we 
should view it with 

suspicion… 



What are Time Series? 
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A time series is a collection of observations made 
sequentially in time.  

Virtually all similarity measurements, 
indexing and dimensionality reduction 

techniques discussed in this tutorial can 
be used with other data types 



Time Series are Ubiquitous! I 

•  Their blood pressure 
•  George Bush's popularity rating 
•  The annual rainfall in Seattle 
•  The value of their Google stock             

Thus time series occur in virtually every medical, scientific and businesses domain 

People measure things… 

…and things change over time… 



Image data, may best be thought of as time series… 



Text data, may best be thought of as time series… 

0 1 2 3 4 5 6 7 8 x 10 5 0 

Blue: “God” -English Bible 
Red: “Dios” -Spanish Bible

Gray: “El Senor” -Spanish Bible

The local frequency 
of words in the Bible 
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Video data, may best be thought of as time series… 

Point 

Gun-Draw 
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Handwriting data, may best be thought of as time series… 

George Washington Manuscript 

George Washington 
1732-1799 
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Brain scans (3D voxels), may best be thought of as time series… 

Wang, Kontos, Li and Megalooikonomou ICASSP 2004 Works with 
3D glasses! 



Brain scans (3D voxels), may best be thought of as time series… 

Wang, Kontos, Li and Megalooikonomou ICASSP 2004 



Why is Working With Time Series so 
Difficult?  Part I  

 

◗  1 Hour of EKG data: 1 Gigabyte. 

◗  Typical Weblog: 5 Gigabytes per week.

◗  Space Shuttle Database: 200 Gigabytes and growing.

◗  Macho Database: 3 Terabytes, updated with 3 gigabytes a day.

Answer: How do we work with very large databases?  

Since most of the data lives on disk (or tape), we need a 
representation of the data we can efficiently manipulate. 



Why is Working With Time Series so 
Difficult? Part II  

 

The definition of  similarity depends on the user, the domain and 
the task at hand. We need to be able to handle this subjectivity.

Answer: We are dealing with subjectivity 



Why is working with time series so 
difficult?  Part III  

 Answer: Miscellaneous data handling problems. 
 

•  Differing data formats. 
•  Differing sampling rates. 
•  Noise, missing values, etc. 

We will not focus on these issues in this tutorial. 



What do we want to do with the time series data? 

 Clustering  Classification 

Query by 
Content 

Rule 
Discovery 

10 

⇒ 
s = 0.5 
c = 0.3 

Motif Discovery 

  Novelty Detection Visualization 



All these problems require similarity matching 

 Clustering  Classification 

Query by 
Content 

Rule 
Discovery 

10 

⇒ 
s = 0.5 
c = 0.3 

Motif Discovery 

  Novelty Detection Visualization 



 
Here is a simple motivation for the first part of the tutorial 

You go to the doctor 
because of chest pains. 
Your ECG looks 
strange… 
 
You doctor wants to 
search a database to find 
similar ECGs, in the 
hope that they will offer 
clues about your 
condition... 

Two questions:  
•  How do we define similar? 

•  How do we search quickly? 

ECG tester 



What is Similarity? 
The quality or state of being similar; likeness; 
resemblance; as, a similarity of features.  

Similarity is hard to 
define, but…  
“We know it when we 
see it” 
 
The real meaning of 
similarity is a 
philosophical question.  
 
We will take a more 
pragmatic approach.   

Webster's Dictionary 



Two Kinds of Similarity  

god 

cod 

pie 

SLY I'll pheeze you, in faith. Hostess A pair of stocks, you ro 

VALENTINE Cease to persuade, my loving Proteus:Home-k 

In the beginning God created the heavens and the earth. The e 
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text 



Two Kinds of Similarity  

 
 
 

Similarity at 
the level of 

shape 
Next 40 minutes 

Similarity at 
the structural 

level 
Another 10 minutes 

time series 



Defining Distance Measures 
Definition: Let O1 and O2 be two objects from 
the universe of possible objects. The distance 
(dissimilarity) is denoted by D(O1,O2) 
 
 
 
 
•  D(A,B) = D(B,A)   Symmetry  
•  D(A,A) = 0    Constancy 
•  D(A,B) = 0 IIf A= B   Positivity 
•  D(A,B) ≤ D(A,C) + D(B,C)  Triangular Inequality  

 

What properties are desirable in 
a distance measure? 

 



Intuitions behind desirable distance measure properties I 

D(A,B) = D(B,A)    Symmetry  
 

D(  ,  ) = D(  ,  ) 
        Otherwise you could claim: 

Patty looks like 
Selma, but Selma 
does not look like 

Patty! 



Intuitions behind desirable distance measure properties II 

D(A,A) = 0  Constancy of Self-Similarity 
 

D(  ,  ) = 0 
        Otherwise you could claim: 

Marge looks more 
like Patty than Patty 

does!! 



Intuitions behind desirable distance measure properties III 

D(A,B) = 0, IIf A=B   Positivity 
 

D(  ,  ) = 0, IIF    = 
        Otherwise you could claim: 

I know Patty and Marge 
are somehow different, 

but I can’t tell them 
apart! 



Intuitions behind desirable distance measure properties IIII 

D(A,B) ≤ D(A,C) + D(B,C)    Triangular Inequality  
 

D(  ,  ) ≤ D(  ,  ) + D(  ,  ) 
          Otherwise you could claim: 

Patty looks like Marge, 
Selma also looks like 

Marge, But Patty looks 
nothing like Selma! 



Why is the Triangular Inequality so Important? 
Virtually all techniques to index data require the triangular inequality to hold.   

a 

b 
c 

Q 

Suppose I am looking for the 
closest point to Q, in a database of 
3 objects. 
 
Further suppose that the triangular 
inequality holds, and that we have 
precompiled a table of distance 
between all the items in the 
database. 
 
 

a b c
a 6.70 7.07
b 2.30
c



Why is the Triangular Inequality so Important? 
Virtually all techniques to index data require the triangular inequality to hold.   

a 

b 
c 

Q 

I find a and calculate that it is 2 units from Q, 
it becomes my best-so-far. I find b and 
calculate that it is 7.81 units away from Q. 
I don’t have to calculate the distance from Q 
to c! 
 
   I know           D(Q,b) ≤ D(Q,c) + D(b,c) 

 D(Q,b) - D(b,c) ≤ D(Q,c) 
         7.81 - 2.30 ≤ D(Q,c) 
                   5.51 ≤ D(Q,c) 

So I know that c is at least 5.51 units away, 
but my best-so-far is only 2 units away. 

 a b c 
a 6.70 7.07 
b 2.30 
c 



A Final Thought on the Triangular Inequality I 
Sometimes the triangular inequality requirement maps 
nicely onto human intuitions. 
 
Consider the similarity between a hippo, an elephant and a man.    

The hippo and the elephant are very similar, and both are very 
unlike the man.    



A Final Thought on the Triangular Inequality II 
Sometimes the triangular inequality requirement fails to 
map onto human intuition. 
 
Consider the similarity between the horse, a man and the centaur…    

The horse and the man 
are very different, but 
both share many features 
with the centaur.  
This relationship does 
not obey the triangular 
inequality.  
 

This example due to Remco C. Veltkamp
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Euclidean Distance Metric 

About 80% of published 
work in data mining uses 

Euclidean distance 

Given two time series: 
  Q = q1…qn  

 C = c1…cn  
 
 



Optimizing the Euclidean 
Distance Calculation 
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Euclidean distance and Squared 
Euclidean distance are equivalent in the 
sense that they return the same rankings, 
clusterings and classifications 

Instead of using the 
Euclidean distance 
       we can use the 
Squared Euclidean distance 

This optimization 
helps with CPU time, 

but most problems are 
I/O bound. 

 



In the next few slides we 
will discuss the 4 most 

common distortions, and 
how to remove them 

Preprocessing the data before distance calculations 
 

•  Offset Translation 
•  Amplitude Scaling 
•  Linear Trend 
•  Noise 

This is because Euclidean distance is very 
sensitive to some “distortions” in the 
data. For most problems these distortions 
are not meaningful, and thus we can and 
should remove them 

If we naively try to measure the distance 
between two “raw” time series, we may get 

very unintuitive results 



Transformation I: Offset Translation  
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Q = Q - mean(Q) 
C = C - mean(C) 

D(Q,C) 

D(Q,C) 



Transformation II: Amplitude Scaling  

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 

Q = (Q - mean(Q)) / std(Q) 
C = (C - mean(C)) / std(C) 
D(Q,C) 



Transformation III: Linear Trend  

0 20 40 60 80 100 120 140 160 180 200 -4 
-2 
0 
2 
4 
6 
8 

10 
12 

0 20 40 60 80 100 120 140 160 180 200 -3 
-2 
-1 
0 
1 
2 
3 
4 
5 

Removed offset translation   
Removed amplitude scaling   

Removed linear trend   
The intuition behind removing 
linear trend is… 
 
Fit the best fitting straight line to the 
time series, then subtract that line 
from the time series. 



Transformation IIII: Noise  
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Q = smooth(Q) 
C = smooth(C) 
D(Q,C) 

The intuition behind 
removing noise is... 
 
Average each datapoints 
value with its neighbors.  
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A Quick Experiment to Demonstrate the 
Utility of Preprocessing the Data  
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3 

Clustered using Euclidean 
distance, after removing 

noise, linear trend, offset 
translation  and amplitude 

scaling 

Clustered using 
Euclidean 

distance on the 
raw data. 



Summary of Preprocessing 

We should keep in mind these problems as 
we consider the high level representations 
of time series which we will encounter 
later (DFT, Wavelets etc). Since these 
representations often allow us to handle 
distortions in elegant ways 

Of course, sometimes the distortions 
are the most interesting thing about 
the data, the above is only a general 
rule 

 

The “raw” time series may have 
distortions which we should  remove 
before clustering, classification etc 



Fixed Time Axis 
Sequences are aligned “one to one”. 

“Warped” Time Axis 
Nonlinear alignments are possible. 

Dynamic Time Warping 
 

Note: We will first see the utility of DTW, then see how it is calculated. 



Euclidean Dynamic Time Warping 

The image cannot be displayed. Your computer may 
not have enough memory to open the image, or the 
image may have been corrupted. Restart your 
computer, and then open the file again. If the red x 
still appears, you may have to delete the image and 
then insert it again.

The image cannot be displayed. Your 
computer may not have enough 
memory to open the image, or the 
image may have been corrupted. 
Restart your computer, and then open 
the file again. If the red x still 
appears, you may have to delete the 
image and then insert it again.

The image cannot be displayed. Your computer may not have 
enough memory to open the image, or the image may have 
been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the 
image and then insert it again.

Nuclear  
Power 

Excellent!   
  

Here is another example on 
nuclear power plant trace data, 
to help you develop an intuition 

for DTW 
  



0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 -4 -3 -2 -1 0 
1 2 
3 4 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If 
the red x still appears, you may have to delete the image and then insert it again.

Sign language 

0 50 100 150 200 250 300 -3 -2 
-1 0 
1 2 
3 4 Trace 

Word Spotting 

Gun 

Let us compare Euclidean Distance and DTW on some problems 

Faces 

Leaves 

Control 

2-Patterns 



Dataset Euclidean DTW 
Word Spotting 4.78 1.10 
Sign language  28.70 25.93 
GUN  5.50 1.00 
Nuclear Trace 11.00 0.00 
Leaves# 33.26 4.07 
(4) Faces 6.25 2.68 
Control Chart* 7.5 0.33 
2-Patterns 1.04 0.00 

Results: Error Rate 
Using 1-
nearest-
neighbor, 
leaving-
one-out 

evaluation!   
  



Dataset Euclidean DTW 
Word Spotting 40  8,600  
Sign language  10 1,110 
GUN  60 11,820  
Nuclear Trace 210 144,470  
Leaves 150 51,830  
(4) Faces 50 45,080 
Control Chart 110 21,900 
2-Patterns 16,890 545,123 

Results: Time  (msec ) 
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DTW is 
two to 
three 

orders of 
magnitude 

slower 
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Euclidean 
distance 
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How is DTW 
Calculated? I 

We create a matrix the size of |
Q| by |C|, then fill it in with the 
distance between every pair of 
point in our two time series. 
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How is DTW 
Calculated? II 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. 
Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Warping path w 

Every possible warping between two time 
series, is a path though the matrix. We 
want the best one… 

γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1), γ(i-1,j ), γ(i,j-1) } 

This recursive function gives us the 
minimum cost path 



Let us visualize the cumulative matrix on a real world problem I 

This example shows 2 
one-week periods from 
the power demand time 
series. 
 
Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday. 



Let us visualize the cumulative matrix on a real world problem II 



What we have seen so far…  

•  Dynamic Time Warping gives 
much better results than 
Euclidean distance on virtually 
all problems. 

•  Dynamic Time Warping is very 
very slow to calculate! 
 

Is there anything we can do to speed up similarity search under DTW?  



Fast Approximations to Dynamic Time Warp Distance I 

 
 

C 

Q 
C 

Q 

Simple Idea: Approximate the time series with 
some compressed or downsampled 

representation, and do DTW on the new 
representation.  How well does this work... 

  



Fast Approximations to Dynamic Time Warp Distance II 

0.07 sec 

1.03 sec 

… there is strong visual evidence to suggests it 
works well 

 There is good experimental evidence for the 
utility of the approach on clustering, classification, 

etc 



C 

Q 

C 

Q 

Sakoe-Chiba Band Itakura Parallelogram 

Global Constraints  

•  Slightly speed up the calculations 
•  Prevent pathological warpings 
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W:  Warping Width 

W 

Accuracy vs. Width of Warping Window 



A global constraint constrains the indices of the 
warping path wk = (i,j)k such that j-r ≤ i ≤ j+r 
 
Where r is a term defining allowed range of  
warping for a given point in a sequence.  

ri 

Sakoe-Chiba Band Itakura Parallelogram 



In general, it’s hard to speed up a single DTW calculation 

However, if we have to make many DTW 
calculations (which is almost always the 
case), we can potentiality speed up the 

whole process by lowerbounding.  

Keep in mind that the lowerbounding trick works 
for any situation were you have an expensive 

calculation that can be lowerbounded (string edit 
distance, graph edit distance etc) 

 

I will explain how lowerbounding works in a generic 
fashion in the next two slides, then show 

concretely how lowerbounding makes dealing with 
massive time series under DTW possible… 

 



Lower Bounding I 

Assume that we have two functions: 

•  DTW(A,B) 
•  lower_bound_distance(A,B) 
 

The true DTW 
function is very 
slow… 

The lower 
bound function 
is very fast… 

By definition, for all A, B, we have 
 
 lower_bound_distance(A,B) ≤ DTW(A,B) 



Lower Bounding II 

1. best_so_far = infinity; 
2. for all sequences in database 
3. LB_dist = lower_bound_distance( 
4. if LB_dist <  best_so_far 
5. true_dist = DTW( 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  
1. best_so_far = infinity; 
2. for all sequences in database 
3. 
4. if LB_dist <  best_so_far 
5. C i , Q); C i , Q); 
6. if true_dist < best_so_far 
7. best_so_far = true_dist; 
8. index_of_best_match = i; 
9. endif 
10. endif 
11.   endfor 

Algorithm Lower_Bounding_Sequential_Scan(Q)  

We can speed up similarity search under DTW 
by using a lower bounding function 

C i , Q); C i , Q); 

Only do the 
expensive, full 
calculations when 
it is absolutely 
necessary 

 
 

Try to use a cheap 
lower bounding 
calculation as 
often as possible. 
 



Lower Bound of Yi 

The sum of the squared length of gray 
lines represent the minimum the 
corresponding points contribution to the 
overall DTW distance, and thus can be 
returned as the lower bounding measure  

Yi, B, Jagadish, H & Faloutsos, 
C. Efficient retrieval of similar 
time sequences under time 
warping. ICDE 98, pp 23-27.  

max(Q) 

min(Q) 
LB_Yi 



A 

B 

C 

D 

The squared difference between the two 
sequence’s first (A), last (D), minimum 
(B) and maximum points (C) is returned 
as the lower bound  

Kim, S, Park, S, & Chu, W.  An 
index-based approach for 
similarity search supporting time 
warping in large sequence 
databases. ICDE 01, pp 607-614  

LB_Kim 

Lower Bound of Kim 
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Sakoe-Chiba Band 

Ui = max(qi-r : qi+r) 
Li  = min(qi-r : qi+r) 

Lower Bound of Keogh 
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LB_Keogh 
Sakoe-Chiba 

LB_Keogh 
Itakura 

LB_Yi 

LB_Kim 

The tightness of the lower bound for each technique is proportional 
to the length of gray lines used in the illustrations  



W 

How Useful are Lower Bounds? 

Lets do some experiments! 
 
We will measure the average fraction 
of the n2 matrix that we must 
calculate, for a one nearest neighbor 
search. 
We will do this for every possible 
value of W, the warping window width.  
By testing this way, we are 
deliberately ignoring implementation 
details, like index structure, buffer 
size etc… 
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Nuclear Trace 
Dataset 

No Lower Bound 
LB-Keogh 
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This plot tells us that although DTW is O(n2), after we 
set the warping window for maximum accuracy for this 
problem, we only have to do 6% of the work, and if we 

use the LB_Keogh lower bound, we only have to do 
0.3% of the work! 
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Gun Dataset 
No Lower Bound 
LB-Keogh 
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This plot tells us that although DTW is O(n2), after 
we set the warping window for maximum accuracy for 
this problem, we only have to do 6% of the work, and 
if we use the LB_Keogh lower bound, we only have to 

do 0.21% of the work! 
 



The results in the previous slides are 
pessimistic! As the size of the dataset 
gets larger, the lower bounds become 
more important and can prune a larger 
fraction of the data.  From a similarity 

search/classification point of view, DTW 
is linear! 
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…DTW is linear for data 
mining problems! 

Papers published in the last year suggest… 
  
• “DTW incurs a heavy CPU cost”1 

• “DTW is limited to only small time series datasets”2 

• “(DTW) quadratic cost makes its application on 
databases of long time series very expensive”3 

•  “(DTW suffers from ) serious performance 
degradation in large databases”4 

 
This is simply not true! 
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The tightness of lower  
bounds on 32 different datasets 

Why did the previous slides 
consider only one type of lower 
bound? 



These experiments suggest we can 
use the new envelope based lower 

bounding technique to greatly speed 
up sequential search. 

That’s super!  

Excellent!  
But what we really need 
is a technique to index 

the time series 



* Agrawal, R., Lin, K. I., Sawhney, H. 
S., & Shim, K. (1995). Fast similarity 
search in the presence of noise, scaling, 
and translation in times-series 
databases. VLDB pp. 490-501. 

According to the most referenced paper 
on time series similarity searching 

“dynamic time warping cannot be speeded 
up by indexing *”,  

As we noted in an earlier slide, virtually 
all indexing techniques  require the 

triangular inequality to hold. 
DTW does NOT obey the 

triangular inequality!  



In fact, it has been was shown that 
DTW can be indexed! (VLDB02) 

We won’t give details here, other than 
to note that the technique is based on 
the envelope lower bounding technique 

we have just seen 

Let us quickly see some success 
stories, problems that we now solve, 

given that we can index DTW 



R. Manmatha, T. M. Rath: Indexing of Handwritten Historical Documents - Recent Progress. In: 
Proc. of the 2003 Symposium on Document Image Understanding Technology (SDIUT), Greenbelt, MD, April 9-11, 2003, pp. 77-85. 

T. M. Rath and R. Manmatha (2002): Lower-Bounding of Dynamic Time Warping Distances for 
Multivariate Time Series. Technical Report MM-40, Center for Intelligent Information Retrieval, University of Massachusetts Amherst.  

 

Success Story I 
The lower bounding 
technique has been used 
to support indexing of 
massive archives of 
handwritten text. 
 
Surprisingly, DTW works 
better on this problem that 
more sophisticated approaches 
like Markov models   



Ning Hu, Roger B. Dannenberg (2003). Polyphonic Audio Matching and Alignment for Music Retrieval  
 
Yunyue Zhu, Dennis Shasha (2003). Query by Humming: a Time Series Database Approach, SIGMOD 
  
 

Success Story II 
The lower bounding 
technique has been used 
to support “query by 
humming”, by several 
groups of researchers  
 

Best 3 Matches 
1)  Bee Gees: Grease 
2)  Robbie Williams: Grease 
3)  Sarah Black: Heatwave 

Grease is 
the word… 



Success 
Story III 
The lower 
bounding 
technique is 
being used 
for indexing 
motion 
capture data. 
 
 
Thanks to Marc 
Cardle for this 
example 
  



Success Story IIII 
The lower bounding 
technique is being used 
by ChevronTexaco for 
comparing seismic data  
 



Uniform Scaling I 

sf = 1.00   

sf = 1.41 

CDC28 

CDC15 

Two genes that are known 
to be functionally related…  Sometimes 

global or 
uniform scaling 
is as important 

as DTW 



1 2 3 

0 200 400 600 800 1000 

2 
1 3 

sf = 1.12   
sf = 1.14   sf = 1.00   

Euclidean Distance 

Uniform Scaling 
Euclidean Distance 

Uniform Scaling II 

8 hours of STS-57 Space Shuttle Inertial Sensor Data 

… … 

We need 
to test all 
scalings! 

Without scaling, matches 2 
and 3 seem unintuitive 



Algorithm: Test_All_Scalings(Q,C)
        best_match_val   = inf;
        best_scaling_factor = null;
         for p = n to m

  QP = rescale(Q,p);
   distance = squared_Euclidean_distance(QP, C[1..p]);
   if distance <  best_match_val
      best_match_val = distance;
      best_scaling_factor = p/n;
  end;

         end;
     return(best_match_val, best_scaling_factor)  

Here is the code 
to 

Test_All_Scalings, 
the time 

complexly is only 
O((m-n) * n), but 
we may have to 

do this many 
times…  

Here is some notation, the 
shortest scaling we 

consider is length n, and 
the largest is length m. 

The scaling factor (sf) is 
the ratio i/n , n <= i <= m 

 

n i m 



Lower Bounding Revisited! 
We can speed up similarity search under uniform 
scaling by using a lower bounding function, just 
like we did for DTW. 

Algorithm: Lower_Bounding_Sequential_Scan(Q,C) 
overall_best_time_series = null; 
overall_best_match_val   = inf; 
for i = 1 to number_of_time_series_in_(C)  
    if  lower_bound_distance(Q,Ci) < overall_best_match_val    
      [dist, scale] = Test_All_Scalings(Q,Ci)  
        if dist <  overall_best_match_val    

 overall_best_time_series =  i; 
 overall_best_match_val   = dist; 

       end; 
    end; 
end; 

But is there 
a lower bound 
for uniform 
scaling? 

 
 

You have 
already seen 
this idea for 
DTW! 
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U

L n = 80 

m = 100 

Ui = max( c ⎣(i-1)*m/n⎦ +1,…, c ⎣i*m/n⎦  )

Li = min( c ⎣(i-1)*m/n⎦ +1,…, c ⎣i*m/n⎦  )

Assume that you have a database of time 
series Ci, all of length 100. 
You have a query Q,  of length 80, and 
you want to find the best match in the 
database under any scaling of Q, from 80 
to 100. 

We can build envelopes 
around all candidates time 
series Ci, in our database, 
just like we did for DTW, 
except the definition of the 
envelopes is different. 
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Once the envelopes have been 
built, we can lower bound 
Test_All_Scalings. 
What's more, the lower bound is 
one we have already seen! 

Q  
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This is the time taken 
by brute force search  

CD-criterion is the only 
other lower bound for 
uniform scaling 

An experiment to test the 
utility of lower bounding 
uniform scaling, over different 
scaling factors (Y-axis) and 
scaling lengths (X-axis). The 
dataset was a “mixed bag” of 
10,000 assorted time series. 

Query Lengths  



Apart from making DTW tractable for data 
mining for the first time, envelope based 

techniques also allow… 

1.   More accurate classification (SDM04) 

2.   Indexing with uniform scaling (VLDB04) 

3.   Faster Euclidean indexing (TKDE04) 

4.   Subsequence matching (IDEAS03) 

5.   Multivariate time series indexing (SIGKDD03) 

6.   Rotation invariant indexing (SIGKDD04) 

7.   DTW on Streaming time series (to appear) 

8.   Indexing of Images (TPAMI-04, VIS-05) 

We strongly feel that envelope based techniques 
are the best solutions for time series similarity 



Stop! 
What about the dozens of 

other techniques for 
measuring time series shape 

similarity? 
 

Unfortunately, none 
of them appear to 

be useful!  
 

Only Euclidean and DTW Distance are Useful 



Approach Cylinder-Bell-F’ Control-Chart
Euclidean Distance 0.003 0.013
Aligned Subsequence 0.451 0.623
Piecewise Normalization 0.130 0.321
Autocorrelation Functions 0.380 0.116
Cepstrum 0.570 0.458
String (Suffix Tree) 0.206 0.578
Important Points 0.387 0.478
Edit Distance 0.603 0.622
String Signature 0.444 0.695
Cosine Wavelets 0.130 0.371
Hölder 0.331 0.593
Piecewise Probabilistic 0.202 0.321

Classification Error Rates on 
two publicly available datasets 

  



We stand by our claim. At this point there is 
no evidence that there any shape based 
distance measures better than DTW1  

Dr. Keogh is offering a prize of $300 for 
the first similarity measure that can beat 
DTW on any 2 real shape based datasets2  

 

Euclidean 
Distance 

Dynamic 
Time 

Warping 

RK-Band 
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Warping 

≤ ≤

Accuracy 



Two Kinds of Similarity  We are 
done with 

shape 
similarity 

Let us consider 
similarity at 

the structural 
level for the 

next 10 minutes 



Euclidean 
Distance 

For long time 
series, shape 

based similarity 
will give very 

poor results. We 
need to measure 
similarly based 
on high level 

structure 



Structure or Model Based Similarity  

A 
B 
C 

A B C 
Max Value 11 12 19 
Autocorrelation 0.2 0.3 0.5 
Zero Crossings 98 82 13 
ARIMA 0.3 0.4 0.1 
… … … … 

Feature 
Time    
       Series 

The basic idea is to 
extract global features 
from the time series, 

create a feature 
vector, and use these 

feature vectors to 
measure similarity and/

or classify  

But which 
•  features? 
•  distance measure/ 
learning algorithm? 



Feature-based Classification of Time-series Data 
Nanopoulos, Alcock, and Manolopoulos 

 

Features  
mean 

variance 
skewness 

kurtosis 
mean (1st derivative) 

variance (1st derivative) 

skewness (1st derivative) 

kurtosis (1st derivative) 

Learning Algorithm 
multi-layer perceptron neural network 

•  features? 
•  distance measure/ 
learning algorithm? 

Makes sense, but when 
we looked at the same 
dataset, we found we 

could be better 
classification accuracy 

with Euclidean 
distance! 

   
 



Learning to Recognize Time Series: Combining ARMA Models with 
Memory-Based Learning 

Deng,  Moore and Nechyba 
 

Features  
The parameters of the 
Box Jenkins model. 

 
More concretely, the 

coefficients of the 
ARMA model. 

Distance Measure 
Euclidean distance (between coefficients) 

“Time series must 
be invertible and 
stationary” 

•  features? 
•  distance measure/ 
learning algorithm? 

•  Use to detect drunk drivers! 
•  Independently rediscovered and 
generalized by Kalpakis et. al. and 
expanded by Xiong and Yeung 



Deformable Markov Model Templates for Time Series Pattern Matching 
Ge and Smyth 

Features  
The parameters of a 

Markov Model 
 

The time series is first 
converted to a piecewise 

linear model  

Distance Measure 
“Viterbi-Like” Algorithm 

•  features? 
•  distance measure/ 
learning algorithm? 

0 20 40 60 80 100 120 140 

X 

X' 

A B C 

A B C 

A 0.1 0.4 0.5 

B 0.4 0.2 0.2 

C 0.5 0.2 0.3 

Variations independently 
developed by Li and Biswas, 

Ge and Smyth, Lin, Orgun and 
Williams etc  

 

There tends to be 
lots of 

parameters to 
tune…  

 

Part 1 



Deformable Markov Model Templates for Time Series Pattern Matching 
Ge and Smyth 

Features  
The parameters of a 

Markov Model 
 

The time series is first 
converted to a piecewise 

linear model  

On this problem 
the approach 

gets 98% 
classification 
accuracy*… 

 

Part 2 
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But Euclidean distance 
gets 100%! And has no 

parameters to tune, and 
is tens of thousands 

times faster...  
 



Compression Based Dissimilarity 
(In general) Li, Chen, Li, Ma, and Vitányi: (For time series) Keogh, Lonardi and Ratanamahatana

Features  
Whatever structure 

the compression 
algorithm finds... 

 
The time series is first converted 

to the SAX symbolic 
representation* 

Distance Measure 
Co-Compressibility  

•  features? 
•  distance measure/ 
learning algorithm? 

Euclidean CDM 

The image cannot be displayed. Your computer may not have enough memory to open the 
image, or the image may have been corrupted. Restart your computer, and then open the 
file again. If the red x still appears, you may have to delete the image and then insert it 
again.



Compression Based Dissimilarity 

Power : Jan-March (Italian)       Power : April-June (Italian)      Power : Jan-March (Dutch)         Power : April-June (Dutch)        Balloon1                                Balloon2 (lagged)                       Foetal ECG abdominal                    Foetal ECG thoracic                     Exchange Rate: Swiss Franc              Exchange Rate: German Mark              Sunspots: 1749 to 1869                  Sunspots: 1869 to 1990                  Buoy Sensor:  North Salinity            Buoy Sensor:   East Salinity             Great Lakes (Erie)                      Great Lakes (Ontario)                   Furnace: heating input                  Furnace: cooling input                  Evaporator: feed flow                   Evaporator: vapor flow                  Ocean 1                                 Ocean 2                                 Dryer fuel flow rate                    Dryer hot gas exhaust                   Koski ECG: Slow 1                       Koski ECG: Slow 2                       Koski ECG: Fast 1                       Koski ECG: Fast 2                       Reel 2: Angular speed                   Reel 2: Tension                         



Summary of Time Series Similarity 
•  If you have short time series, use DTW after 
searching over the warping window size1 (and 
shape2) 
•  Then use envelope based lower bounds to speed 
things up3. 

•  If you have long time series, and you know 
nothing about your data, try compression based 
dissimilarity. 
•  If you do know something about your data, try to 
leverage of this knowledge to extract features.   



 
Motivating example revisited… 

You go to the doctor 
because of chest pains. 
Your ECG looks 
strange… 
 
Your doctor wants to 
search a database to find 
similar ECGs, in the 
hope that they will offer 
clues about your 
condition... 

Two questions:  
• How do we define similar? 

• How do we search quickly? 

ECG 



•  Create an approximation of the data, which will fit in main 
memory, yet retains the essential features of interest 

•  Approximately solve the problem at hand in main memory 

•  Make (hopefully very few) accesses to the original data on disk 
to confirm the solution obtained in Step 2, or to modify the 
solution so it agrees with the solution we would have obtained on 
the original data 

 

The Generic Data Mining Algorithm  

But which approximation 
should we use? 



Time Series Representations 

Data Adaptive Non Data Adaptive 

Spectral Wavelets Piecewise 
Aggregate  

Approximation 

Piecewise  
Polynomial 

Symbolic Singular 
Value 

 Approximation 

Random  
Mappings 

Piecewise 
Linear 

Approximation 

Adaptive 
Piecewise 
Constant 

Approximation 
 

Discrete  
Fourier  

Transform 

Discrete 
Cosine 

Transform 

Haar Daubechies  
dbn   n > 1 Coiflets Symlets 

Sorted 
Coefficients  

Orthonormal Bi-Orthonormal 
Interpolation Regression 

Trees 

Natural 
Language  

Strings 
Symbolic 
Aggregate 

Approximation   Non 
Lower 

Bounding   

Chebyshev 
Polynomials  

Data Dictated Model Based 
Hidden 
Markov 
Models 

Statistical 
Models 

Value 
Based 

Slope Based 

Grid Clipped 
Data 



•  Create an approximation of the data, which will fit in main 
memory, yet retains the essential features of interest 

•  Approximately solve the problem at hand in main memory 

•  Make (hopefully very few) accesses to the original data on disk 
to confirm the solution obtained in Step 2, or to modify the 
solution so it agrees with the solution we would have obtained on 
the original data 

 

The Generic Data Mining Algorithm (revisited)  

This only works if the 
approximation allows 

lower bounding 
 



•  Recall that we have seen lower bounding for distance measures (DTW and 
uniform scaling) Lower bounding for representations is a similar idea… 

What is Lower Bounding?   
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Lower bounding means that for all Q and 
S, we have:  DLB(Q’,S’) ≤ D(Q,S) 

Raw Data 
 
 
 
 
 

Approximation  
or  

“Representation” 



 
 

In a seminal* paper in SIGMOD 93, 
I showed that lower bounding of a 
representation is a necessary and 
sufficient condition to allow time 

series indexing, with the guarantee 
of no false dismissals   

Christos work was originally with 
indexing time series with the Fourier 

representation. Since then, there 
have been hundreds of follow up 

papers on other data types, tasks and 
representations 
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An Example of a 
Dimensionality Reduction 

Technique I 
     0.4995 

    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
    0.6515 
    0.6596 
    0.6672 
    0.6751 
    0.6843 
    0.6954 
    0.7086 
    0.7240 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 

    … 
    … 
 

 

Raw 
Data 

The graphic shows a 
time series with 128 
points. 
 
The raw data used to 
produce the graphic is 
also reproduced as a 
column of numbers (just 
the first 30 or so points are 
shown). 

n = 128 
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An Example of a 
Dimensionality Reduction 

Technique II 
       1.5698 

    1.0485 
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    0.3709 
    0.4670 
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    0.1928 
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    0.1416 
    0.1400 
    0.1412 
    0.1530 
    0.0795 
    0.1013 
    0.1150 
    0.1801 
    0.1082 
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    0.0002 
    … 
    … 

Fourier 
Coefficients 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
    0.6420 
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    0.6843 
    0.6954 
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    0.7780 
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   … 
    … 
 

Raw 
Data 

We can decompose the 
data into 64 pure sine 
waves using the Discrete 
Fourier Transform (just the 
first few sine waves are 
shown). 
 
The Fourier Coefficients 
are reproduced as a 
column of numbers (just 
the first 30 or so 
coefficients are shown). 
 
Note that at this stage we 
have not done 
dimensionality reduction, 
we have merely changed 
the representation... 
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An Example of a 
Dimensionality Reduction 

Technique III 
     1.5698 

    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 

Coefficients 

C’ 

We have 
discarded  
of the data. 

16
15

      1.5698 
    1.0485 
    0.7160 
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Fourier 
Coefficients 

    0.4995 
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    0.5523 
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    0.6301 
    0.6420 
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    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
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    0.8423 
    0.8387 
    … 
    … 
 

Raw 
Data 

 
… however, note that the first 
few sine waves tend to be the 
largest (equivalently, the 
magnitude of the Fourier 
coefficients tend to decrease 
as you move down the 
column). 
 
We can therefore truncate 
most of the small coefficients 
with little effect.  

n = 128 
N = 8 
Cratio = 1/16 



An Example of a 
Dimensionality Reduction 

Technique IIII 
     1.5698 
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Raw 
Data 1 
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    … 
    … 
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    1.1198 
    1.4322 
    1.0100 
    0.4326 
    0.5609 
    0.8770 
    0.1557 
    0.4528 
     

Truncated 
Fourier 

Coefficients 2 

- 
- 
- 
- 
- 
- 
- 
- 

 
The Euclidean distance between 
the two truncated Fourier 
coefficient vectors is always less 
than or equal to the Euclidean 
distance between the two raw data 
vectors*.  
 
So DFT allows lower bounding! 
 
*Parseval's Theorem  
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    1.5698 
    1.0485 
    0.7160 
    0.8406 
    0.3709 
    0.4670 
    0.2667 
    0.1928 
     

Truncated 
Fourier 

Coefficients 1 

    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
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    0.7412 
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    0.7780 
    0.7956 
     

Raw 
Data 1 

    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
    0.6153 
    0.6301 
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Raw 
Data 2 

    1.1198 
    1.4322 
    1.0100 
    0.4326 
    0.5609 
    0.8770 
    0.1557 
    0.4528 
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Fourier 

Coefficients 2 

Mini Review for the Generic Data Mining Algorithm 

    0.8115 
    0.8247 
    0.8345 
    0.8407 
    0.8431 
    0.8423 
    0.8387 
    0.4995 
    0.7412 
    0.7595 
    0.7780 
    0.7956 
    0.5264 
    0.5523 
    0.5761 
    0.5973 
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Raw 
Data n 

    1.3434 
    1.4343 
    1.4643 
    0.7635 
    0.5448 
    0.4464 
    0.7932 
    0.2126 
     

Truncated 
Fourier 

Coefficients n 

We cannot fit all that raw data in main memory.  
We can fit the dimensionally reduced data in main memory. 
 

So we will solve the problem at hand on the 
dimensionally reduced data, making a few 
accesses to the raw data were necessary, 
and, if we are careful, the lower bounding 
property will insure that we get the right 
answer! 

Disk 

Main 
Memory 
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Discrete Fourier 
Transform I 

Excellent free Fourier Primer 

Hagit Shatkay, The Fourier Transform - a Primer'', Technical Report 
CS-95-37, Department of Computer Science, Brown University, 1995.  

http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/ 

Basic Idea: Represent the time 
series as a linear combination of 
sines and cosines, but keep only the 
first n/2 coefficients. 
 
Why n/2 coefficients? Because each 
sine wave requires 2 numbers, for the 
phase (w) and amplitude (A,B).  
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Discrete Fourier 
Transform II Pros and Cons of DFT as a time series 

representation. 
 
•  Good ability to compress most natural signals. 
•  Fast, off the shelf DFT algorithms exist. O(nlog(n)). 
•  (Weakly) able to support time warped queries.  

•  Difficult to deal with sequences of different lengths. 
•  Cannot support weighted distance measures. 
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Note: The related transform DCT, uses only cosine 
basis functions. It does not seem to offer any 
particular advantages over DFT. 
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Discrete Wavelet 
Transform I 

Alfred Haar 
1885-1933 

 

Excellent free Wavelets Primer 

Stollnitz, E., DeRose, T., & Salesin, D. (1995). Wavelets for 
computer graphics A primer: IEEE Computer Graphics and 
Applications. 

Basic Idea: Represent the time 
series as a linear combination of 
Wavelet basis functions, but keep 
only the first N coefficients. 

 
Although there are many different 
types of wavelets, researchers in 
time series mining/indexing 
generally use Haar wavelets.   
 
Haar wavelets seem to be as 
powerful as the other wavelets for 
most problems and are very easy to 
code. 
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Discrete Wavelet 
Transform II 

We have only considered one type of wavelet, there 
are many others. 
Are the other wavelets better for indexing? 
 
YES: I. Popivanov, R. Miller. Similarity Search Over Time 
Series Data Using Wavelets. ICDE 2002. 
 
NO: K. Chan and A. Fu. Efficient Time Series Matching by 
Wavelets. ICDE 1999 
 
Later in this tutorial I will answer 

this question. 

Ingrid Daubechies 

1954 - 
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Discrete Wavelet 
Transform III 

Pros and Cons of Wavelets as a time series 
representation. 
 
•  Good ability to compress stationary signals. 
•  Fast linear time algorithms for DWT exist. 
•  Able to support some interesting non-Euclidean 
similarity measures.  

•  Signals must have a length n = 2some_integer  
•  Works best if N is = 2some_integer. Otherwise wavelets 
approximate the left side of signal at the expense of the right side. 
•  Cannot support weighted distance measures. 



0 20 40 60 80 100 120 140 

X 

X' 

eigenwave 0 

eigenwave 1 

eigenwave 2 

eigenwave 3 

eigenwave 4 

eigenwave 5 

eigenwave 6 

eigenwave 7 

SVD 

Singular Value 
Decomposition I 

Eugenio Beltrami  
1835-1899 

 

Camille Jordan 
 (1838--1921) 

 

 

James Joseph Sylvester  
1814-1897 

 

Basic Idea: Represent the time 
series as a linear combination of 
eigenwaves but keep only the first 
N coefficients. 
 
SVD is similar to Fourier and 
Wavelet approaches is that we 
represent the data in terms of a 
linear combination of shapes (in 
this case eigenwaves). 
 
SVD differs in that the eigenwaves 
are data dependent.   
 
SVD has been successfully used in the text 
processing community (where it is known as 
Latent Symantec Indexing ) for many years. 
 
Good free SVD Primer  

Singular Value Decomposition - A Primer. 
Sonia Leach 
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Singular Value 
Decomposition II 

How do we create the eigenwaves? 
 
   We have previously seen that 

we can regard time series as 
points in high dimensional 
space. 
 
We can rotate the axes such 
that axis 1 is aligned with the 
direction of maximum 
variance, axis 2 is aligned with 
the direction of maximum 
variance orthogonal to axis 1 
etc. 
 
Since the first few eigenwaves 
contain most of the variance of 
the signal, the rest can be 
truncated with little loss. 

TVUA Σ=
This  process can be achieved by factoring a M 
by n matrix of time series into 3 other matrices, 
and truncating the new matrices at size N.     



0 20 40 60 80 100 120 140 

X 

X' 

eigenwave 0 

eigenwave 1 

eigenwave 2 

eigenwave 3 

eigenwave 4 

eigenwave 5 

eigenwave 6 

eigenwave 7 

SVD 

Singular Value 
Decomposition III 

Pros and Cons of SVD as a time series 
representation. 
 
•  Optimal linear dimensionality reduction technique . 
•  The eigenvalues tell us something about the 
underlying structure of the data. 

•  Computationally very expensive. 
•  Time: O(Mn2) 
•  Space: O(Mn) 

•  An insertion into the database requires recomputing 
the SVD. 
•  Cannot support weighted distance measures or non 
Euclidean measures. 

Note: There has been some promising research into 
mitigating SVDs time and space complexity.  
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Cheb 

Chebyshev  
Polynomials 

Pros and Cons of Chebyshev 
Polynomials as a time series 
representation. 
 
•  Time series can be of arbitrary length 
•  Only O(n) time complexity 
•  Is able to support multi-dimensional 
time series*. 

 

Ti(x) = 
1  

x  

2x2−1  

4x3−3x  

8x4−8x2+1  

16x5−20x3+5x  

32x6−48x4+18x2−1  

64x7−112x5+56x3−7x  

128x8−256x6+160x4−32x2+1 

  

Basic Idea: Represent the time series 
as a linear combination of 
Chebyshev Polynomials 

Pafnuty Chebyshev 
1821-1946  

 
•  Time series must be renormalized to 
have length between –1 and 1 
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Piecewise Linear 
Approximation I 

Basic Idea: Represent the time 
series as a sequence of straight 
lines. 
 
 
 
 
 
Lines could be connected, in 
which case we are allowed 
N/2 lines 
 
 
 
If lines are disconnected, we 
are allowed only N/3 lines  
 
Personal experience on dozens of datasets 
suggest disconnected is better. Also only 
disconnected allows a lower bounding 
Euclidean approximation 

Each line segment has  
•  length  
•  left_height  
(right_height can 
be inferred by looking at 
the next segment) 

Each line segment has  
•  length  
•  left_height  
•  right_height 

Karl Friedrich Gauss 
1777 - 1855 
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Piecewise Linear 
Approximation II 

How do we obtain the Piecewise Linear 
Approximation?  

 
Optimal Solution is O(n2N), which is too 
slow for data mining. 
 
A vast body on work on faster heuristic 
solutions to the problem can be classified 
into the following classes: 
•  Top-Down    
•  Bottom-Up     
•  Sliding Window   
•  Other (genetic algorithms, randomized algorithms, 
Bspline wavelets, MDL etc) 

Extensive empirical evaluation* of all approaches 
suggest that Bottom-Up is the best approach 
overall.  
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Piecewise Linear 
Approximation III 

 
Pros and Cons of PLA as a time series 
representation. 
 
•  Good ability to compress natural signals. 
•  Fast linear time algorithms for PLA exist. 
•  Able to support some interesting non-Euclidean 
similarity measures. Including weighted measures,  
relevance feedback, fuzzy queries…  
• Already widely accepted in some communities (ie, 
biomedical)  

•  Not (currently) indexable by any data structure (but 
does allows fast sequential scanning). 



Piecewise Aggregate 
Approximation I 
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Given the reduced dimensionality representation 
we can calculate the approximate Euclidean 
distance as... 

This measure is provably lower bounding. 

Basic Idea: Represent the time series as a 
sequence of box basis functions.  
 
Note that each box is the same length.  
 

Independently introduced by two authors 
•  Keogh, Chakrabarti, Pazzani & Mehrotra, KAIS (2000) / Keogh & 
Pazzani PAKDD April 2000 

•  Byoung-Kee Yi, Christos Faloutsos, VLDB September 2000 



Piecewise Aggregate 
Approximation II 
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•  Extremely fast to calculate 
•  As efficient as other approaches (empirically) 
•  Support queries of arbitrary lengths 
•  Can support any Minkowski metric@ 

•  Supports non Euclidean measures 
•  Supports weighted Euclidean distance 
•  Can be used to allow indexing of DTW and uniform 
scaling* 
•  Simple! Intuitive! 

•  If visualized directly, looks ascetically unpleasing.  

Pros and Cons of PAA as a time series 
representation. 
 



Piecewise Aggregate 
Approximation 
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A piecewise constant 
approximate of a time series, 

and a piecewise constant 
approximation of me! 

A Completely Pointless Slide 
 



Adaptive Piecewise 
Constant 

Approximation I 
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Basic Idea: Generalize PAA to allow the 
piecewise constant segments to have arbitrary 
lengths.  
Note that we now need 2 coefficients to represent 
each segment, its value and its length. 

50 100 150 200 250 0 

Raw Data (Electrocardiogram)  

Adaptive Representation (APCA) 
 Reconstruction Error 2.61  

Haar Wavelet or PAA  
 Reconstruction Error 3.27  

DFT 
 Reconstruction Error 3.11  

The intuition is this, many signals have little detail in some 
places, and high detail in other places. APCA can adaptively fit 
itself to the data achieving better approximation.  



Adaptive Piecewise 
Constant 

Approximation II 
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<cv4,cr4> 

The high quality of the APCA had been noted by 
many researchers.   
However it was believed that the representation 
could not be indexed because some coefficients 
represent values, and some represent lengths. 
 
However an indexing method was discovered!  
 
(SIGMOD 2001 best paper award)  
 
Unfortunately, it is non-trivial to understand and 
implement and thus has only been 
reimplemented once or twice (In contrast, more 
than 50 people have reimplemented PAA).    



Adaptive Piecewise 
Constant 

Approximation III 
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•  Pros and Cons of APCA as a time 
series representation. 

•  Fast to calculate O(n).  
•  More efficient as other approaches (on some 
datasets). 
•  Support queries of arbitrary lengths. 
•  Supports non Euclidean measures. 
•  Supports weighted Euclidean distance. 
•  Support fast exact queries , and even faster 
approximate queries on the same data structure.  

•  Somewhat complex implementation. 
•  If visualized directly, looks ascetically 
unpleasing.  
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44 Zeros 
          23 Ones 
                   4 Zeros 
                          2 Ones 
                                6 Zeros 
                                        49 Ones                                                  
                                                                                          

44 Zeros|23|4|2|6|49 
                                                                                          

Clipped Data 

 

No details available, this 
paper is in this conference  

 
Bagnall, A.J. and Janacek, G.A., "Clustering time series from ARMA models 
with clipped data", In International Conference on Knowledge Discovery in 
Data and Data Mining (ACM SIGKDD 2004) Accepted, Seattle, USA, 2004  

 



Natural Language 
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X 

•  Pros and Cons of natural language as 
a time series representation. 

•  The most intuitive representation! 
•  Potentially a good representation for low 
bandwidth devices like text-messengers  

•  Difficult to evaluate. 
 

rise, plateau, followed by a rounded peak  

rise, 

       plateau, 

                 followed by a rounded peak  

To the best of my knowledge only one group is 
working seriously on this representation. They 
are the University of Aberdeen SUMTIME 
group, headed by  Prof. Jim Hunter. 
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Symbolic 
Approximation I 

Basic Idea: Convert the time series into an alphabet 
of discrete symbols. Use string indexing techniques 
to manage the data. 
 
Potentially an interesting idea, but all work thus far 
are very ad hoc. 

Pros and Cons of Symbolic Approximation 
as a time series representation. 
 
•  Potentially, we could take advantage of a wealth of 
techniques from the very mature field of string 
processing and bioinformatics. 

•  It is not clear how we should discretize the times 
series (discretize the values, the slope, shapes? How 
big of an alphabet? etc). 

•  There are more than 210 different variants of this, 
at least 35 in data mining conferences. 
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SAX:  Symbolic Aggregate 
approXimation  

SAX allows (for the first time) a symbolic 
representation that allows 

•  Lower bounding of Euclidean distance 

•  Dimensionality Reduction 

•  Numerosity Reduction 
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Jessica Lin 
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Comparison of all Dimensionality 
Reduction Techniques  

•  We have already compared features (Does 
representation X allow weighted queries, queries of 
arbitrary lengths, is it simple to implement… 
 
•  We can compare the indexing efficiency. How 
long does it take to find the best answer to out query. 

•  It turns out that the fairest way to measure this is 
to measure the number of times we have to 
retrieve an item from disk. 
 



Data Bias 

Definition:  Data bias is the conscious or 
unconscious use of a particular set of testing 
data to confirm a desired finding.  

Example: Suppose you are comparing Wavelets to Fourier methods, 
the following datasets will produce drastically different results…    

0 200 400 600 0 200 400 600 

Good for 
wavelets 
bad for 
Fourier  
 

Good for 
Fourier 
bad for 
wavelets 



•  “Several wavelets outperform the DFT”.  

•  “DFT-based and DWT-based techniques yield 
comparable results”.  

•  “Haar wavelets perform slightly better that DFT”  

•  “DFT filtering performance is superior to DWT” 

Example of Data Bias: Whom to Believe?  
For the task of indexing time series for similarity search, which 
representation is best, the Discrete Fourier Transform (DFT), or 
the Discrete Wavelet Transform (Haar)?  



To find out who to believe (if anyone) we 
performed an extraordinarily careful and 
comprehensive set of experiments. For example… 
 
•  We used a quantum mechanical device generate 
random numbers. 
•  We averaged results over 100,000 experiments! 
•  For fairness, we use the same (randomly chosen) 
subsequences for both approaches. 

Example of Data Bias: Whom to Believe II?  
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I tested on the Powerplant, 
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and I know DFT outperforms 
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Network EPRdata Fetal EEG 
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Stupid Flanders! I tested on the 
Network, ERPdata and Fetal EEG 
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Those two clowns are both wrong! 
I tested on the Chaotic, 
Earthquake and Wind datasets, and 
I am sure that the Haar wavelet 
outperforms the DFT  
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The Bottom Line  
Any claims about the relative performance 
of a time series indexing scheme that is 
empirically demonstrated on only 2 or 3 
datasets are worthless. 
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So which is really the best technique? 
I experimented with all the techniques (DFT, DCT, 
Chebyshev, PAA, PLA, PQA, APCA, DWT (most wavelet 

types), SVD) on 65 datasets, and as a sanity check, Michail 
Vlachos independently implemented and tested on the 
same 65 datasets. 
 
On average, they are all about the same. In particular, 
on 80% of the datasets they are all within 10% of each 
other. 
  
If you want to pick a representation, don’t do so based on 
the reconstruction error, do so based on the features the 
representation has.    On bursty datasets* APCA can be significantly better  



Lets take a tour of other time series problems  

•  Before we do, let us briefly 
revisit SAX, since it has some 
implications for the other 
problems… 



•  One central theme of this tutorial is that lowerbounding is 
a very useful property. (recall the lower bounds of DTW /uniform scaling, also 
recall the importance of lower bounding dimensionality reduction techniques).  
• Another central theme is that dimensionality reduction is 
very important. That’s why we spend so long discussing 
DFT, DWT, SVD, PAA etc. 

•  Until last year there was no lowerbounding, 
dimensionality reducing representation of time series. In 
the next slide, let us think about what it means to have 
such a representation… 

Exploiting Symbolic Representations of Time Series 



•  If we had a lowerbounding, dimensionality 
reducing representation of time series, we could… 

•  Use data structures that are only defined for discrete data, 
such as suffix trees. 
•  Use algorithms that are only defined for discrete data, 
such as hashing, association rules etc 
•  Use definitions that are only defined for discrete data, 
such as Markov models, probability theory  
•  More generally, we could utilize the vast body of 
research in text processing and bioinformatics  
 

Exploiting Symbolic Representations of Time Series 



Exploiting Symbolic Representations of Time Series 
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SAX 

There is now a lower bounding dimensionality 
reducing time series representation! It is called 
SAX (Symbolic Aggregate ApproXimation) 
I expect SAX to have a major impact on time 
series data mining in the coming years… 
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Anomaly (interestingness) detection 

  

We would like to be able to discover surprising (unusual, interesting, 
anomalous) patterns in time series. 
 
Note that we don’t know in advance in what way the time series 
might be surprising 
 
Also note that “surprising” is very context dependent, application 
dependent, subjective etc. 
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Early statistical 
detection of anthrax 
outbreaks by tracking 
over-the-counter 
medication sales 
 

Goldenberg, Shmueli,   
Caruana, and Fienberg 

  
  

Discrepancy Checking: Example 

normalized sales 
de-noised 
threshold 

  

  Actual value 
 
  Predicted value 
 
The actual value is 
greater than the predicted 
value, but still less than 
the threshold, so no alarm 
is sounded.  



•  Note that this problem has been solved for text strings 

•  You take a set of text which has been labeled 
“normal”, you learn a Markov model for it.   

•  Then, any future data that is not modeled well by the 
Markov model you annotate as surprising. 

•  Since we have just seen that we can convert time 
series to text (i.e SAX). Lets us quickly see if we can 
use Markov models to find surprises in time series… 
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0 2000 4000 6000 8000 10000 12000 

Training data

Test data
(subset)

Markov model 
surprise

These were 
converted to the 
symbolic 
representation.  
I am showing the 
original data for 
simplicity 
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In the next slide we will zoom in on 
this subsection, to try to understand 
why it is surprising  
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Anomaly (interestingness) detection 
In spite of the nice example in the previous slide, the 
anomaly detection problem is wide open. 
 
How can we find interesting patterns… 
 

•  Without (or with very few) false positives…  
•  In truly massive datasets... 
•  In the face of concept drift… 
•  With human input/feedback… 
•  With annotated data… 



Time Series Motif Discovery  
(finding repeated patterns) 

 

  

Winding  Dataset     
( The angular speed of reel 2 )   

0   50 0   1000   150 0   2000   2500   
      

Are there any repeated 
patterns, of about this 
length        in the above 
time series? 



  
Winding  Dataset     

( The angular speed of reel 2 )   
0   50 0   1000   150 0   2000   2500   
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Time Series Motif Discovery  
(finding repeated patterns) 

 



· Mining association rules in time series requires the discovery of motifs. 
These are referred to as primitive shapes and frequent patterns.  

· Several time series classification algorithms work by constructing typical 
prototypes of each class. These prototypes may be considered motifs.  

· Many time series anomaly/interestingness detection algorithms essentially 
consist of modeling normal behavior with a set of typical shapes (which we see 
as motifs), and detecting future patterns that are dissimilar to all typical shapes. 

· In robotics, Oates et al., have introduced a method to allow an autonomous 
agent to generalize from a set of qualitatively different experiences gleaned 
from sensors. We see these “experiences” as motifs. 

· In medical data mining, Caraca-Valente and Lopez-Chavarrias have 
introduced a method for characterizing a physiotherapy patient’s recovery 
based of the discovery of similar patterns. Once again, we see these “similar 
patterns” as motifs. 

•  Animation and video capture… (Tanaka and Uehara, Zordan and Celly) 

Why Find Motifs? 



Radio Jingle 

•  Single channel (mono) 225000 samples at sample rate of 6000 
samples/sec, 32bits per sample. 

•  Pre-processing: Absolute-valued and down-sampled to total of 
600 samples and new sample rate of 16 samples/sec. 

•  400 projections with instance length equal to 2 seconds of 
sample.  w=16, a=8. 

 

Motifs in Music 



  

Winding  Dataset     
( The angular speed of reel 2 )   

0   50 0   1000   150 0   2000   2500   
A   B   C   

Finding these 3 motifs requires about 6,250,000 calls to the Euclidean distance function 

Motifs Discovery Challenges  
How can we find motifs… 
 

•  Without having to specify the length/other parameters  
•  In massive datasets 
•  While ignoring “background” motifs (ECG example) 
•  Under time warping, or uniform scaling  
•  While assessing their significance  



Time Series Prediction  

There are two kinds of time series prediction 

•   Black Box: Predict tomorrows electricity 
demand, given only the last ten years 
electricity demand. 
•   White Box (side information ): Predict 
tomorrows electricity demand, given the last 
ten years electricity demand and the weather 
report, and the fact that fact that the world 
cup final is on and…  

Prediction is hard, especially 
about the future 

Yogi Berra 
    1925 -  



Black Box Time Series Prediction  
•  A paper in SIGMOD 04 claims to be able to get better 
than 60% accuracy on black box prediction of financial 
data (random guessing should give about 50%). The 
authors agreed to test blind on a dataset which I gave 
them, they again got more than 60%. But I gave them 
quantum-mechanical random walk data! 

•  A paper in SIGKDD in 1998 did black box prediction 
using association rules, more than twelve papers 
extended the work… but then it was proved that the 
approach could not work*! 

Nothing I have seen suggests to me that any non-trivial contributions 
have been made to this problem. (To be fair, it is a very hard problem)   



White Box Time Series Prediction  



Time Series Visualization 

Warning! I am not an expert of visualization 
 
See tutorials by Ben Shneiderman, Daniel A. Keim, 
Marti Hearst etc 
 
However, we will spend 10 minutes looking at some of 
the major time series visualization tools   



Time Series Spirals 
•  Spiral Axis = serial attributes 

are encoded as line thickness 
•  Radii = periodic attributes 

Carlis & Konstan. UIST-98 
Independently rediscovered by 

Weber, Alexa & Müller InfoVis-01 
But dates back to 1888! 
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Time Series Spirals 

Chimpanzees Monthly Food Intake 
1980-1988 

The spokes are months, and 
spiral guide lines are years 
 

•  “chimpanzees eat new leaves of this plant, which 
are produced at the beginning and the end of the 
rainy season which is approximately October – 
April, and, more particularly, late rainy season 
consumption was steadier than that in early season” 

•  “in 1984 (red boxes), which was a drought year, 
consumption was considerably lower in the early 
rainy season, and high consumption in August 1983 
occurred when the rainy season came early” 

January 

April 

July 

October 



Time Series Spirals 
Comments 
•  Simple and intuitive 
•  Many extensions possible  
•  Scalability is still an issue 
•  Only useful on periodic data, and 
only then if you know the period 

112 types of food 
Effect of changing the period 



ThemeRiver 

•  Current width = strength of theme 
•  River width = global strength 
•  Color mapping (similar themes/same 

color family) 
•  Time axis 
•  External events can be linked 

A company’s patent activity 
1988 to 1998 Havre, Hetzler, Whitney & Nowell 

InfoVis 2000 



ThemeRiver 

oil 

Comments 
•  Simple and intuitive 
•  Many extensions possible 
•  Scalability is still an issue 
  

Castro confiscates American oil refineries  

Fidel Castro’s speeches 1960-1961 

dot.com stocks 1999-2002 



TimeSearcher 

Comments 
•  Simple and intuitive 
•  Highly dynamic 
exploration 

•  Query power may be 
limited and simplistic 
•  Limited scalability  

Hochheiser, and Shneiderman 



VizTree  
10001000101001000101010100001
010100010101110111101011010010
111010010101001110101010100101
00101010111010101001010101011
010101001011001011101111010001
110000101000010011101010001110
0001010101100101110101 

010110010111100110100100001000
101001101101011100001010101110
1111100011011011011111101001100
100100011010001111001101101000
101111000101101001101100110100
000010011000100111000001110100
1100101100001010010 

Here are two sets of bit 
strings. Which set is 
generated by a human and 
which one is generated by 
a computer? 
 



 
 

VizTree  
10001000101001000101010100001010
100010101110111101011010010111010
010101001110101010100101001010101
110101010010101010110101010010110
010111011110100011100001010000100
111010100011100001010101100101110
101 

010110010111100110100100001000101
001101101011100001010101110111110
001101101101111110100110010010001
101000111100110110100010111100010
110100110110011010000001001100010
011100000111010011001011000010100
10 

 “humans usually try to fake randomness by alternating patterns” 

Lets put the sequences into a depth limited suffix 
tree, such that the frequencies of all triplets are 
encoded in the thickness of branches…  



VizTree  

Zoom in 

The “trick” on the previous slide 
only works for discrete data, but 
time series are real valued. 

But we can 
SAX up a time 
series to make 
it discrete! 
 

VisTree 
•  Convert the time series to SAX 
•  Push the data in a depth-limited 
suffix tree 
•  Encode the frequencies as the 
line thickness 

 
 

 

Overview Details 1 

Details 2 

Ben Shneiderman 

Overview, zoom 
& filter, details 
on demand  



VizTree/ DiffTree  

DiffTree 
•  Convert the two time 
series to SAX 
•  Push the data in a depth-
limited suffix tree 
•  Encode the frequencies as 
the line thickness 

•  Encode the difference 
of frequencies as the line 
color 

 
 

 
Blue lines  -  pattern is more common in A 
Green lines -  pattern is more common in B 
Red lines - pattern is equi-frequent in A and B 



The Last Word 
The sun is setting on all other 
symbolic representations of 
time series, SAX is the only 
way to go  



What should we be working on? 
The Top Ten Time Series Problems  

 

•  I strongly believe that time series similarly 
search is dead (or at least dying)  

•  The good news is that there is a lot interesting 
unsolved problems out there 

•  What follows is my subjective list of the most 
interesting problems in time series data mining (In 
random order)  



Problem 1 

Discovering Time Series Motifs without all 
those hard-to-set parameters 

 
Unlike similarity search, motif discovery really 
appears to have lots of applications! 
 
However, we currently have to set 3 to 5 critical 
parameters. Can we find the naturally repeated 
patterns without specifying all these parameters? 



Clustering streaming time series 
 
Given an single infinite stream, can you find, then 
incrementally maintain, K clusters of subsequences, 
under Euclidean distance or DTW? (perhaps with a forgetting factor) 

 
Note that was apparently solved before*! 
 
The problem is NOT to do this fast, the problem is to 
do this in a meaningful way. 

Problem 2 



Time Series Joins 
 
Given two time series, find all the subsections where 
they are similar. 
 
Without normalizing the subsections, this is easy but 
meaningless.  
 
The problem is NOT to do this fast, the problem is to 
do this in a meaningful way. 

Problem 3 



Understanding the “why” in time series 
classification and clustering 

Problem 4 

Image data, may best be thought of as time series… 

Given that two time series are clustered/classified together, 
automatically construct an explanation of why. 
 



Building tools to visualize massive time series 
Problem 5 

The best data mining/pattern recognition tool is the human eye, can 
we exploit this fact? 

How can we visually summarize massive time series, such that regularities, 
outliers, anomalies etc, become visible?  

Image by Martin Wattenberg*   



Classifying time series with a eager learner 

Problem 6 

While there has been work on classifying (shape-bases) time series 
with decision trees, neural networks, bayesian classifiers etc. None 
of these approaches is competitive with 1-nearest neighbor with 
DTW.  

As we have seen, DTW is essentially linear, nevertheless, 1-nearest 
neighbor needs to visit every instance, can we do better? 

 
 

  



Weighted time series representations  

Problem 7 

It is well known in the machine learning community that weighting 
features can greatly improve accuracy in classification and 
clustering tasks.  

Are weighted time series representations useful? 

 

 
 

  



Query by Burst 
Problem 8 

It makes sense that the 
bursts for “LeTour”, 
“Tour de France” and 
“Lance Armstrong” are 
all related. 

But what caused the 
extra interest in Lance 
Armstrong in August/
September 2000? 

2000 2001 2002 0 
50 

100 LeTour 

2000 2001 2002 0 
5000 

10000 Tour De France 

2000 2001 2002 0 
200 
400 Lance 

Armstrong Example by 
M. Vlachos

Search Engine Query Log

?



Applications, Applications, Applications 
Problem 9 

For every one paper that shows a real 
application of time series data mining, 
there are dozens that introduce an idea 
of dubious real world utility. 

We need to give more attention to problems 
with real, demonstrated applications (and 

give them weight when reviewing?). 

Best Bets: Music, Motion 
Capture, Video, Web Logs…  



You Tell Me! 
Problem 10 

Any ideas? 

 

We can discuss them in 3 minutes. 
 

 

 



Conclusions  
•  Time series are everywhere! 
•  While (I believe) similarly search in time series is 
dead or dying, there are lots of great problems to be 
solved. 
•  The right representation for the problem at hand is 
the key to an efficient and effective solution. 
•  For some reason, time series research seems 
vulnerable to sloppy evaluation. If we all shared 
our data, this would be a huge step in the right 
direction…  



Thanks to the people with whom I have co-authored 
Time Series Papers 

•  Michael Pazzani  
•  Sharad Mehrotra 
•  Kaushik Chakrabarti 
•  Selina Chu 
•  David Hart 
•  Padhraic Smyth 
•  Jessica Lin  
•  Bill 'Yuan-chi' Chiu 
•  Stefano Lonardi   
•  Shruti Kasetty 
•  Chotirat (Ann) Ratanamahatana  
•  Pranav Patel 
•  Harry Hochheiser
•  Ben Shneiderman
•  Marios Hadjieleftheriou
•  Victor Zordan 
•  Your name here! (I welcome collaborators)

   

Thanks!  

•  Dimitrios Gunopulos
•  Michail Vlachos
•  Marc Cardle
•  Stephen Brooks
•  Bhrigu Celly
•  Themis Palpanas
•  Jiyuan An, H. Chen, K. Furuse and N. Ohbo  

   



Questions? 

All datasets and code used in this tutorial can be found at 
 
www.cs.ucr.edu/~eamonn/TSDMA/index.html 


