Recommender Systems: Content-based Systems & Collaborative Filtering

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

High Dimensional Data

1/26/2015

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Example: Recommender Systems

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

Sidenote: The Long Tail

Source: Chris Anderson (2004)

Physical vs. Online

Read <u>http://www.wired.com/wired/archive/12.10/tail.html</u> to learn more!

1/26/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

Key Problems

- (1) Gathering "known" ratings for matrix > Amazon
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like

(3) Evaluating extrapolation methods

 How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items
- Implicit dicks, usability, review (text) recommendation, soual medie
- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

ORDER(EXPLICIT) instead of houris

movie A > movie B

User u

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history

Content-based Recommender Systems

Content-based Recommendations

Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

Movie recommendations

 Recommend movies with same actor(s), director, genre, ...

Websites, blogs, news

Recommend other sites with "similar" content

Plan of Action

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

 $f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$ Note: we normalize TF to discount for "longer" documents

- **n**_i = number of docs that mention term **i**
- **N** = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

User Profiles and Prediction

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- •
- Prediction heuristic:
 - Given user profile **x** and item profile **i**, estimate $u(\mathbf{x}, \mathbf{i}) = \arccos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

Finding the appropriate features is hard

- E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

Jure Leskovec, Stanford C246: Mining Massive Datasets

Finding "Similar" Users $r_x = [*, _, _, *, **]$ $r_y = [*, _, *, **, **]$

 r_x , r_v as sets: $r_{x} = \{1, 4, 5\}$

 $r_v = \{1, 3, 4\}$

r_x, r_v as points: $r_{x} = \{1, 0, 0, 1, 3\}$

 $r_v = \{1, 0, 2, 2, 0\}$

- Let r, be the vector of user x's ratings Jaccard similarity measure
- Problem: Ignores the value of the rating Cosine similarity measure

• sim(
$$\boldsymbol{x}, \boldsymbol{y}$$
) = arccos($\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}$) = $\frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$

Problem: Treats missing ratings as "negative" Pearson correlation coefficient

•
$$S_{xy}$$
 = items rated by both users **x** and **y**
 $sim(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \overline{r_x, \overline{r_y} \dots avg}$
rating of **x**,

Jure Leskovec, Stanford C246: Mining Massive Datasets

Similarity Metric

sim(x, y) =

Cosine sim:

	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3
Α	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"

Solution: subtract the (row) mean							
	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3
Α	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C: 0.092 > -0.559

 $\sum_{i} r_{xi} \cdot r_{yi}$

Notice cosine sim. is correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

• $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$

Shorthand: $s_{xy} = sim(x, y)$

- Other options?
- Many other tricks possible...

Item-Item Collaborative Filtering

So far: User-user collaborative filtering

Another view: Item-item

- For item *i*, find other similar items
- Estimate rating for item *i* based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

 $\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}$ $\sum_{j \in N(i;x)} S_{ij}$ $\sum_{j \in N(i;x)} S_{ij}$ $\sum_{ij \in N(i;x)} S_{ij}$ $\sum_{j \in N(i;x)} S_{$

xi

users

- rating between 1 to 5

movies

- unknown rating

users

- estimate rating of movie 1 by user 5

movies

users

Neighbor selection: Identify movies similar to movie 1, rated by user 5 Here we use Pearson correlation as similarity:

1) Subtract mean rating m_i from each movie i

 $m_1 = (1+3+5+5+4)/5 = 3.6$

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

movies

Jure Leskovec, Stanford C246: Mining Massive Datasets

users

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59

Predict by taking weighted average:

$$r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating r_{xi} as the weighted average: usnualization $\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})$ $_{j\in N(i:x)}S_{ij}$ baseline estimate for r_{xi} = overall mean movie rating b_x = rating deviation of user x $b_{\chi i} = \mu + b_{\chi} + b_{i}$ = (avg. rating of user \mathbf{x}) – $\boldsymbol{\mu}$

 \boldsymbol{b}_i = rating deviation of movie \boldsymbol{i}

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

 $Y_{y_i} = bias + \frac{\sum (Y_i - biasy)}{\sum Sim(x_iy)}$ Users like

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed

Evaluation

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - **Root-mean-square error** (RMSE)
 - 2 where $m{r}_{xm{i}}$ is predicted, $m{r}^*_{xm{i}}$ is the true rating of $m{x}$ on $m{i}$ $\sum_{xi} (r_{xi} - r_{xi}^*)$
 - Precision at top 10:
 % of those in top 10
 - **Rank Correlation:**
 - Spearman's correlation between system's and user's complete rankings

Another approach: 0/1 model

Coverage:

- Number of items/users for which system can make predictions
- **Precision:**
 - Accuracy of predictions
- **Receiver operating characteristic** (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · |X|)

• X ... set of customers

We already know how to do this!

- Near-neighbor search in high dimensions (LSH)
- Clustering
- Dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

e.g., add IMDB data on genres

More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

On Thursday: The Netflix prize and the Latent Factor Models

On Thursday: The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: root mean squared error (RMSE)
- Netflix Cinematch RMSE: 0.9514

Competition

2700+ teams

\$1 million prize for 10% improvement on Cinematch

On Thursday: Latent Factor Models

Next topic: Recommendations via Latent Factor models

Popular Roasts and Blends

Overview of Coffee Varieties

Complexity of Flavor

The bubbles above represent products sized by sales volume. Products close to each other are recommended to each other.

[Bellkor Team] Latent Factor Models (i.e., SVD++)

Jure Leskovec, Stanford C246: Mining Massive Datasets

Announcement:

Class on Tuesday and Jure's OH on Wed are cancelled. We will post a link to the video on Piazza. We will also show the video in class and TAs will answer questions.

Recommender Systems: Latent Factor Models

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)

$$=\frac{1}{|R|}\sqrt{\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
 Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

Competition Structure

The Netflix Utility Matrix R

480,000 users Matrix R 17,700 movies

Utility Matrix R: Evaluation

BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Global effects

Factorization

Collaborative

filtering

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- *The Sixth Sense* is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.

 ⇒ Baseline estimation:
 Joe will rate The Sixth Sense 4 stars

 Local neighborhood (CF/NN):
 Joe didn't like related movie Signs
 - ⇒ Final estimate: Joe will rate The Sixth Sense 3.8 stars

Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
- Derive unknown ratings from those of "similar" movies (item-item variant)
- Define similarity measure s_{ij} of items i and j
- Select k-nearest neighbors, compute the rating
 - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user x on item j
N(i;x)... set of items similar to
item i that were rated by x

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

- μ = overall mean rating
- b_x = rating deviation of user **x**
 - = (avg. rating of user \mathbf{x}) $\boldsymbol{\mu}$
- $b_i = (avg. rating of movie i) \mu$

 $\frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij} \rightarrow \text{fundanty}(i,j)}$ Problems/Issues 1) Similarity measures are "arbitrary" 2) Pairwise similarities neglect interdependencies among users 3) Taking a weighted average can be restricting **Solution:** Instead of *s_{ij}* use *w_{ij}* that we estimate directly from data

Idea: Interpolation Weights w_{ii}

Use a weighted sum rather than weighted avg.:

A few notes:

- $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$ A few notes: N(i;x) weights optimized N(i;x) ... set of movies rated by user x that are similar to movie *i* fouring OB)
- w_{ij} is the interpolation weight (some real number)
 - We allow: $\sum_{i \in N(i,x)} w_{ij} \neq 1$
- w_{ii} models interaction between pairs of movies (it does not depend on user x)

Idea: Interpolation Weights w_{ij}

•
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

How to set w_{ij}?

• Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$ or equivalently SSE: $\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$

- Find w_{ij} that minimize SSE on training data!
 - Models relationships between item *i* and its neighbors *j*
- w_{ij} can be learned/estimated based on x and all other users that rated i

Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations
 - Want to make good recommendations on items that user has not yet seen. Can't really do this!
 - Let's set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings SSE ZRMSE
- How to find such values w?
- as obj Idea: Define an objective function and solve the optimization problem

Find w_{ii} that minimize SSE on training data!

$$J(w) = \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^2$$

Predicted rating
Think of **w** as a vector of numbers

Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the take a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

 $f(y) + \nabla f(y)$

Interpolation Weights

We have the optimization problem, now what?
Gradient decent:

$$J(w) = \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^2$$

- Iterate until convergence: $w \leftarrow w \eta \nabla_w J$ $\eta \dots$ learning rate
- where $\nabla_w J$ is the gradient (derivative evaluated on data): $\nabla_w J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2 \sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})$ for $j \in \{N(i; x), \forall i, \forall x\}$ else $\frac{\partial J(w)}{\partial w_{ij}} = 0$
- Note: We fix movie *i*, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial J(w)}{\partial w_{ij}}$ while $|w_{new} w_{old}| > \varepsilon$:

$$w_{old} = w_{new}$$
$$w_{new} = w_{old} - \eta \cdot \nabla w_{old}$$

Jure Leskovec, Stanford C246: Mining Massive Datasets

Interpolation Weights

• So far:
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Weights *w_{ij}* derived based on their role; no use of an arbitrary similarity measure (*w_{ij}* ≠ *s_{ij}*)
- Explicitly account for interrelationships among the neighboring movies

Next: Latent factor model

Extract "regional" correlations

Performance of Various Methods

Basic Collaborative filtering: 0.94 CF+Biases+learned weights: 0.91 Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

Latent Factor Models (e.g., SVD)

SVD: $A = U \Sigma V^{T}$

"SVD" on Netflix data: R ≈ Q · P^T

- For now let's assume we can approximate the rating matrix *R* as a product of "thin" *Q* · *P*^T
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

Ratings as Products of Factors

Ratings as Products of Factors

Latent Factor Models

Latent Factor Models

Recap: SVD

n Remember SVD: A: Input data matrix Α m m U: Left singular vecs V: Right singular vecs So in our case: "SVD" on Netflix data: $R \approx Q \cdot P^T$ $A = P \quad O = U^{-T}$ Σ: Singular values So in our case: $A = R, Q = U, P^{T} = \Sigma V^{T}$

 $\hat{r}_{xi} = q_i \cdot p_x$

Σ

n

 Λ_1

SVD: More good stuff

We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij \in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^2$$

Note two things:

SSE and **RMSE** are monotonically related:

- $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
- Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our *R* has missing entries!

Latent Factor Models

SVD isn't defined when entries are missing!
Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x)^2 \qquad \hat{r}_{xi} = q_i \cdot p_x$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Finding the Latent Factors

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q}\sum_{(i,x)\in R}(r_{xi}-q_i\cdot p_x)^2$$

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on <u>training</u> data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on <u>test</u> data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

 $\lambda_1, \lambda_2 \ldots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

Stochastic Gradient Descent

Want to find matrices <u>P</u> and Q:

$$\min_{\substack{P,Q \\ training}} \sum_{\substack{training \\ training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

Gradient decent: serve methicient

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Do gradient descent:

•
$$P \leftarrow P - \eta \cdot \nabla P$$

•
$$Q \leftarrow Q - \eta \cdot \nabla Q$$

How to compute gradient of a matrix? Compute gradient of every element independently!

- where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$
 - Here q_{if} is entry f of row q_i of matrix Q
- Observation: Computing gradients is slow!

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD
 - **Observation**: $\nabla Q = [\nabla q_{if}]$ where $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$

Here q_{if} is entry f of row q_i of matrix Q

• Q = Q -

SGD vs. GD

Iteration/step

GD improves the value of the objective function at every step. **SGD** improves the value but in a "noisy" way. **GD** takes fewer steps to converge but each step takes much longer to compute. In practice, **SGD** is much faster!

Stochastic Gradient Descent

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:
 - For each *r_{xi}*:

$$\bullet \varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$$

- $q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} p_x \lambda_2 q_i \right)$
- $p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i \lambda_1 p_x)$ • 2 for loops:
 - For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

1/28/2015

(derivative of the "error")

(update equation)

(update equation) μ ... learning rate

Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

movie bias

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

user-movie interaction

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie *i*
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$ of the commute of the second seco
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$ @ Latent factor ization
- Predicted rating for you on Star Wars:
 = 3.7 1 + 0.5 = 3.2

Fitting the New Model

• Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2 \\
goodness of fit \\
+ \left(\lambda_1 \sum_i ||q_i||^2 + \lambda_2 \sum_x ||p_x||^2 + \lambda_3 \sum_x ||b_x||^2 + \lambda_4 \sum_i ||b_i||^2 \right) \\
\xrightarrow{\lambda \text{ is selected via grid-search on a validation set}}$$

Stochastic gradient decent to find parameters

Note: Both biases b_x, b_i as well as interactions q_i, p_x are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

The Netflix Challenge: 2006-09

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed

Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 (2) Each bin corresponds to 10 consecutive weeks
 $b_i(t) = b_i + b_{i,\text{Bin}(t)}$

Add temporal dependence to factors

p_x(t)... user preference vector on day t

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09 Jure Leskovec, Stanford C246: Mining Massive Datasets

Adding Temporal Effects

Performance of Various Methods

Basic Collaborative filtering: 0.94 Collaborative filtering++: 0.91 Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Global average: 1.1296

<u>User</u> average: 1.0651 Movie average: 1.0533

Netflix: 0.9514

Still no prize! ③ Getting desperate. Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture Solution of BellKor's Pragmatic Chaos

Michael Jahrer /sAndreas Transperastive Deams BigChaos - September 21, 2009

Standing on June 26th 2009

FU	X					
Je	tflix Priz	ze /		X		
Rule	s Leaderboard Register	Update Su	bmit Download			
Lea	Display top 20 leaders.					
Rank	Team Name	Best Score	% Improvement	Last Submit Time		
1	BellKor's Pragmatic Chaos	0.8558	10.05	2009-06-26 18:42:37		
Grand	Prize - RMSE <= 0.8563					
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51		
	BellKor in BigChaos	0.8590	9.71	2009-05-13 08:14:09		
	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24		
5	Dace	0.8604	9.56	2009-04-22 05:57:03		
	BigChaos	0.8613	9.47	2009-06-23 23:06:52		
Progre	<u>:ss Prize 2008</u> - RMSE = 0.8	616 - Winning Ti	eam: BellKor in BigC	haos		
8	BellKor	0.8620	9.40	2009-06-24 07:16:02		
	Gravity	0.8634	9.25	2009-04-22 18:31:32		
	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13		
0	BruceDengDaoCiYiYou	0.8638	9.21	2009-06-27 00:55:55		
1	pengpengzhou	0.8638	9.21	2009-06-27 01:06:43		
2	xivector	0.8639	9.20	2009-06-26 13:49:04		
2	viangliang	0.8639	9.20	2009-06-26 07:47:34		

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize they are in direct competition with team Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

NETFLIX

Rules

Netflix Prize

Home

Leaderboard

Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

COMPLETED

Display top 20 \$ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time				
Gran	nd Prize - RMSE = 0.8567 - Winning Te	am: BollKor's Brogn	natic Chaos					
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28				
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22				
3	Grand Prize Team	0.8002	3.90	200-01-10-21.24:40				
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31				
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20				
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56				
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09				
8	Dace	0.8612	9.59	2009-07-24 17:18:43				
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51				
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59				
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07				
12	BellKor	0.8624	9.46	2009-07-26 17:19:11				
Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos								
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22				
14	Gravity	0.8643	9.26	2009-04-22 18:31:32				
15	Ces	0.8651	9.18	2009-06-21 19:24:53				
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04				
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54				
18	<u>J Dennis Su</u>	0.8666	9.02	2009-03-07 17:16:17				
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54				
20	acmehill	0.8668	9.00	2009-03-21 16:20:50				

/28/2015

Progress Prize 2007Jure Leskovec, Stanford C246: Mining Massive Datasets

Million \$ Awarded Sept 21st 2009

T			
		2009	
	NETELIX	DATE 09-21-09	
PAY	BellKor's Pragmatic Chaos	\$ 1,000,000 ₩	
AM	OUNT ONE MILLION	00/100	. Sant
EOR	The Netflix Prize Red H	actings	

Kum = rating from user u to movie m M Rum Basic Collab Filtoning Pearson user ang = Zm Kum » M psot of ratu ucer u Zu Kum o User X = Rum -Mu 1=D J=1 o horma Sur. Rum · USer Similarty M J Rum, J Rum burnon Ih JRum

Acknowledgments

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - http://www.the-ensemble.com/

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - http://www.the-ensemble.com/

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - http://www.the-ensemble.com/