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� Customer X 
� Buys Metallica CD 
� Buys Megadeth CD 

� Customer Y 
� Does search on Metallica 
� Recommender system 

suggests Megadeth from 
data collected about 
customer X 
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Items 

Search Recommendations 

Products, web sites,  
blogs, news items, … 
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Examples: 



� Shelf space is a scarce commodity for 
traditional retailers  
� Also: TV networks, movie theaters,… 

 

� Web enables near-zero-cost dissemination  
of information about products 
� From scarcity to abundance 

 

� More choice necessitates better filters 
� Recommendation engines 
� How Into Thin Air made Touching the Void  

a bestseller: http://www.wired.com/wired/archive/12.10/tail.html 
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Source: Chris Anderson (2004) 
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Read http://www.wired.com/wired/archive/12.10/tail.html to learn more! 



� Editorial and hand curated 
� List of favorites 
� Lists of “essential” items 

 

� Simple aggregates 
� Top 10, Most Popular, Recent Uploads 

 

� Tailored to individual users 
� Amazon, Netflix, … 
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Today class 



� X = set of Customers 
� S = set of Items 

 

� Utility function u: X × S Æ R 
� R = set of ratings 
� R is a totally ordered set 
� e.g., 0-5 stars, real number in [0,1] 
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� (1) Gathering “known” ratings for matrix 
� How to collect the data in the utility matrix 

 

� (2) Extrapolate unknown ratings from the  
known ones 
� Mainly interested in high unknown ratings 
� We are not interested in knowing what you don’t like  

but what you like 
 

� (3) Evaluating extrapolation methods 
� How to measure success/performance of 

recommendation methods 
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� Explicit 
� Ask people to rate items 
� Doesn’t work well in practice – people  

can’t be bothered 
� Crowdsourcing: Pay people to label items 

 

� Implicit 
� Learn ratings from user actions 
� E.g., purchase implies high rating 

� What about low ratings? 
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� Key problem: Utility matrix U is sparse 
� Most people have not rated most items 
� Cold start:  
� New items have no ratings 
� New users have no history 

 

� Three approaches to recommender systems: 
� 1) Content-based 
� 2) Collaborative 
� 3) Latent factor based 
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� Main idea: Recommend items to customer x 
similar to previous items rated highly by x 

 
Example: 
� Movie recommendations 
� Recommend movies with same actor(s),  

director, genre, … 
� Websites, blogs, news 
� Recommend other sites with “similar” content 
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� For each item, create an item profile 
 

� Profile is a set (vector) of features 
� Movies: author, title, actor, director,… 
� Text: Set of “important” words in document 

 

� How to pick important features? 
� Usual heuristic from text mining is TF-IDF 

(Term frequency * Inverse Doc Frequency) 
� Term … Feature 
� Document … Item 
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fij = frequency of term (feature) i in doc (item) j 
 

 
ni = number of docs that mention term i 
N = total number of docs 
 
 
TF-IDF score:  wij = TFij  × IDFi 
 

Doc profile = set of words with highest TF-IDF 
scores, together with their scores 
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Note: we normalize TF 
to discount for “longer”  
documents 



� User profile possibilities: 
� Weighted average of rated item profiles 
� Variation: weight by difference from average  

rating for item 
� … 

� Prediction heuristic: 
� Given user profile x and item profile i, estimate 
𝑢𝑢 𝒙𝒙, 𝒊𝒊 = 𝑎𝑎𝑎𝑎𝑎𝑎cos (𝒙𝒙, 𝒊𝒊)  =  𝒙𝒙·𝒊𝒊

| 𝒙𝒙 |⋅| 𝒊𝒊 |
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f-existing ratings



� +: No need for data on other users 
� No cold-start or sparsity problems 

� +: Able to recommend to users with  
unique tastes 

� +: Able to recommend new & unpopular items 
� No first-rater problem 

� +: Able to provide explanations 
� Can provide explanations of recommended items by 

listing content-features that caused an item to be 
recommended 
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� –: Finding the appropriate features is hard 
� E.g., images, movies, music 

� –: Recommendations for new users 
� How to build a user profile? 

� –: Overspecialization 
� Never recommends items outside user’s  

content profile 
� People might have multiple interests 
� Unable to exploit quality judgments of other users 
 

1/26/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 21 



Harnessing quality judgments of other users 



� Consider user x 
 

� Find set N of other  
users whose ratings  
are “similar” to  
x’s ratings 

 

� Estimate x’s ratings  
based on ratings  
of users in N 
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� Let rx be the vector of user x’s ratings 
� Jaccard similarity measure 
� Problem: Ignores the value of the rating  

� Cosine similarity measure 
� sim(x, y) = arccos(rx, ry) = 

𝑟𝑟𝑥𝑥⋅𝑟𝑟𝑦𝑦
||𝑟𝑟𝑥𝑥||⋅||𝑟𝑟𝑦𝑦||

 

� Problem: Treats missing ratings as “negative” 
� Pearson correlation coefficient 
� Sxy = items rated by both users x and y 
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rx = [*, _, _, *, ***] 
ry = [*, _, **, **, _] 

rx, ry as sets: 
rx = {1, 4, 5} 
ry = {1, 3, 4} 

rx, ry as points: 
rx = {1, 0, 0, 1, 3} 
ry = {1, 0, 2, 2, 0} 

rx, ry … avg. 
rating of x, y 

𝒔𝒔𝒊𝒊𝒔𝒔 𝒙𝒙,𝒚𝒚 =
∑ 𝒓𝒓𝒙𝒙𝒔𝒔 − 𝒓𝒓𝒙𝒙 𝒓𝒓𝒚𝒚𝒔𝒔 − 𝒓𝒓𝒚𝒚𝒔𝒔∈𝑺𝑺𝒙𝒙𝒚𝒚

∑ 𝒓𝒓𝒙𝒙𝒔𝒔 − 𝒓𝒓𝒙𝒙 𝟐𝟐
𝒔𝒔∈𝑺𝑺𝒙𝒙𝒚𝒚 ∑ 𝒓𝒓𝒚𝒚𝒔𝒔 − 𝒓𝒓𝒚𝒚

𝟐𝟐
𝒔𝒔∈𝑺𝑺𝒙𝒙𝒚𝒚

 



� Intuitively we want: sim(A, B) > sim(A, C) 
� Jaccard similarity: 1/5 < 2/4 
� Cosine similarity: 0.386 > 0.322 
� Considers missing ratings as “negative” 
� Solution: subtract the (row) mean 
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sim A,B vs. A,C: 
0.092 > -0.559 
Notice cosine sim. is 
correlation when 
data is centered at 0 

𝒔𝒔𝒊𝒊𝒔𝒔(𝒙𝒙,𝒚𝒚)  =  
∑ 𝒓𝒓𝒙𝒙𝒊𝒊 ⋅ 𝒓𝒓𝒚𝒚𝒊𝒊𝒊𝒊

∑ 𝒓𝒓𝒙𝒙𝒊𝒊𝟐𝟐𝒊𝒊 ⋅ ∑ 𝒓𝒓𝒚𝒚𝒊𝒊𝟐𝟐𝒊𝒊

 
Cosine sim: 



From similarity metric to recommendations: 
� Let rx be the vector of user x’s ratings 
� Let N be the set of k users most similar to x 

who have rated item i 
� Prediction for item s of user x: 

� 𝑎𝑎𝑥𝑥𝑥𝑥 = 1
𝑘𝑘

 ∑ 𝑎𝑎𝑦𝑦𝑥𝑥𝑦𝑦∈𝑁𝑁  

� 𝑎𝑎𝑥𝑥𝑥𝑥 =
∑ 𝑠𝑠𝑥𝑥𝑦𝑦⋅𝑟𝑟𝑦𝑦𝑦𝑦𝑦𝑦∈𝑁𝑁
∑ 𝑠𝑠𝑥𝑥𝑦𝑦𝑦𝑦∈𝑁𝑁

 

� Other options? 
� Many other tricks possible… 
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Shorthand: 
 𝒔𝒔𝒙𝒙𝒚𝒚 = 𝒔𝒔𝒊𝒊𝒔𝒔 𝒙𝒙,𝒚𝒚  



� So far: User-user collaborative filtering 
� Another view: Item-item 
� For item i, find other similar items 
� Estimate rating for item i based  

on ratings for similar items 
� Can use same similarity metrics and  

prediction functions as in user-user model 
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- estimate rating of movie 1 by user 5 
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Neighbor selection: 
Identify movies similar to  
movie 1, rated by user 5 
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sim(1,m) 

Here we use Pearson correlation as similarity: 
1) Subtract mean rating mi from each movie i 
    m1 = (1+3+5+5+4)/5 = 3.6 
    row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0] 
2) Compute cosine similarities between rows 
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Compute similarity weights: 
s1,3=0.41, s1,6=0.59 
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Predict by taking weighted average: 

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6 
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� Define similarity sij of items i and j 
� Select k nearest neighbors N(i; x) 
� Items most similar to i, that were rated by x 

� Estimate rating rxi as the weighted average:  
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baseline estimate for rxi � μ   =  overall mean movie rating 
� bx  =  rating deviation of user x 
            = (avg. rating of user x) – μ  
� bi   =  rating deviation of movie i  
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� In practice, it has been observed that item-item 
often works better than user-user 

� Why? Items are simpler, users have multiple tastes 
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� + Works for any kind of item 
� No feature selection needed 

� - Cold Start: 
� Need enough users in the system to find a match 

� - Sparsity:  
� The user/ratings matrix is sparse 
� Hard to find users that have rated the same items 

� - First rater:  
� Cannot recommend an item that has not been  

previously rated 
� New items, Esoteric items 

� - Popularity bias:  
� Cannot recommend items to someone with  

unique taste  
� Tends to recommend popular items 
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� Implement two or more different 
recommenders and combine predictions 
� Perhaps using a linear model 

 

� Add content-based methods to  
collaborative filtering 
� Item profiles for new item problem 
� Demographics to deal with new user problem 
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- Evaluation 
- Error metrics 
- Complexity / Speed 
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� Compare predictions with known ratings 
� Root-mean-square error (RMSE) 

� ∑ 𝑎𝑎𝑥𝑥𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑥𝑥∗
2

𝑥𝑥𝑥𝑥  where 𝒓𝒓𝒙𝒙𝒊𝒊 is predicted, 𝒓𝒓𝒙𝒙𝒊𝒊∗  is the true rating of x on i 

� Precision at top 10:  
� % of those in top 10 

� Rank Correlation:  
� Spearman’s correlation between system’s and user’s complete rankings 

 
� Another approach: 0/1 model 
� Coverage: 
� Number of items/users for which system can make predictions  

� Precision: 
� Accuracy of predictions  

� Receiver operating characteristic (ROC) 
� Tradeoff curve between false positives and false negatives 
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� Narrow focus on accuracy sometimes  
misses the point 
� Prediction Diversity 
� Prediction Context 
� Order of predictions 

� In practice, we care only to predict high 
ratings: 
� RMSE might penalize a method that does well  

for high ratings and badly for others 
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� Expensive step is finding k most similar 
customers: O(|X|)  

� Too expensive to do at runtime 
� Could pre-compute 

� Naïve pre-computation takes time O(k ·|X|) 
� X … set of customers 

� We already know how to do this! 
� Near-neighbor search in high dimensions (LSH) 
� Clustering 
� Dimensionality reduction 
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� Leverage all the data 
� Don’t try to reduce data size in an  

effort to make fancy algorithms work 
� Simple methods on large data do best 

 

� Add more data 
� e.g., add IMDB data on genres 

 

� More data beats better algorithms 
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html  
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� Training data 
� 100 million ratings, 480,000 users, 17,770 movies 
� 6 years of data: 2000-2005 

� Test data 
� Last few ratings of each user (2.8 million) 
� Evaluation criterion: root mean squared error 

(RMSE)  
� Netflix Cinematch RMSE: 0.9514 

� Competition 
� 2700+ teams 
� $1 million prize for 10% improvement on Cinematch 
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� Next topic: Recommendations via  
Latent Factor models 
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Koren, Bell, Volinksy, IEEE Computer, 2009 
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CS246: Mining Massive Datasets 
Jure Leskovec, Stanford University 

http://cs246.stanford.edu 

Announcement: 
Class on Tuesday and Jure’s OH on Wed are cancelled. 
We will post a link to the video on Piazza. We will also 
show the video in class and TAs will answer questions. 



� Training data 
� 100 million ratings, 480,000 users, 17,770 movies 
� 6 years of data: 2000-2005 

� Test data 
� Last few ratings of each user (2.8 million) 
� Evaluation criterion: Root Mean Square Error (RMSE) 

= 1
𝑅𝑅

∑ 𝑟̂𝑟𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑥𝑥𝑥𝑥 2
(𝑥𝑥,𝑥𝑥)∈𝑅𝑅

 

� Netflix’s system RMSE: 0.9514 
� Competition 
� 2,700+ teams 
� $1 million prize for 10% improvement on Netflix 
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Training Data 

 
 

100 million ratings 

Held-Out Data 

3 million ratings 

1.5m ratings 1.5m ratings 

Quiz Set: 
scores 
posted on 
leaderboard 

Test Set: 
scores 
known only 
to Netflix 

Scores used in 
determining 
final winner 

Labels only known to Netflix Labels known publicly 
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� The winner of the Netflix Challenge 
� Multi-scale modeling of the data: 

Combine top level, “regional” 
modeling of the data, with  
a refined, local view: 
� Global: 
� Overall deviations of users/movies 
� Factorization:  
� Addressing “regional” effects 
� Collaborative filtering:  
� Extract local patterns 
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Global effects 

Factorization 

Collaborative 
filtering 



� Global: 
� Mean movie rating: 3.7 stars 
� The Sixth Sense is 0.5 stars above avg. 
� Joe rates 0.2 stars below avg.  

⇒ Baseline estimation:  
Joe will rate The Sixth Sense 4 stars 

� Local neighborhood (CF/NN): 
� Joe didn’t like related movie Signs 
� ⇒ Final estimate: 

Joe will rate The Sixth Sense 3.8 stars 
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� Earliest and most popular collaborative 
filtering method 

� Derive unknown ratings from those of “similar” 
movies (item-item variant) 

� Define similarity measure sij of items i and j 
� Select k-nearest neighbors, compute the rating  
� N(i; x): items most similar to i that were rated by x 

1/28/2015 8 Jure Leskovec, Stanford C246: Mining Massive Datasets 

∑
∑

∈

∈
⋅

=
);(

);(ˆ
xiNj ij

xiNj xjij
xi s

rs
r sij… similarity of items i and j 

rxj…rating of user x on item j 
N(i;x)… set of items similar to 
     item i that were rated by x 



� In practice we get better estimates if we 
model deviations: 
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μ   =  overall mean rating 
bx  =  rating deviation of user x 
      = (avg. rating of user x) – μ 
bi   = (avg. rating of movie i) – μ 
 

Problems/Issues: 
1) Similarity measures are “arbitrary” 
2) Pairwise similarities neglect 
interdependencies among users  
3) Taking a weighted average can be 
restricting 
Solution: Instead of sij use wij that 
we estimate directly from data 

^ 

∑
∑

∈

∈
−⋅

+=
);(

);(
)(

xiNj ij

xiNj xjxjij
xixi s

brs
br

baseline estimate for rxi 

𝒃𝒃𝒙𝒙𝒙𝒙 = 𝝁𝝁 + 𝒃𝒃𝒙𝒙 + 𝒃𝒃𝒙𝒙 

①→ similarity Cisjl
• pre

de f

• learn from data



� Use a weighted sum rather than weighted avg.:  

 𝑟𝑟𝑥𝑥𝑥𝑥� = 𝑏𝑏𝑥𝑥𝑥𝑥 + � 𝑤𝑤𝑥𝑥𝑖𝑖 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑁𝑁(𝑥𝑥;𝑥𝑥)

 

� A few notes: 
� 𝑵𝑵(𝒙𝒙;𝒙𝒙) … set of movies rated by user x that are

 similar to movie i 
� 𝒘𝒘𝒙𝒙𝒊𝒊 is the interpolation weight (some real number) 
� We allow: ∑ 𝒘𝒘𝒙𝒙𝒊𝒊 ≠ 𝟏𝟏𝒊𝒊∈𝑵𝑵(𝒙𝒙,𝒙𝒙)  

� 𝒘𝒘𝒙𝒙𝒊𝒊 models interaction between pairs of movies  
(it does not depend on user x) 
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Que
ight optimised

regression / NN based on

training OB)



� 𝑟𝑟𝑥𝑥𝑥𝑥� = 𝑏𝑏𝑥𝑥𝑥𝑥 + ∑ 𝑤𝑤𝑥𝑥𝑖𝑖 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖𝑖𝑖∈𝑁𝑁(𝑥𝑥,𝑥𝑥)  
� How to set wij? 

� Remember, error metric is: 1
𝑅𝑅

∑ 𝑟̂𝑟𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑥𝑥𝑥𝑥 2
(𝑥𝑥,𝑥𝑥)∈𝑅𝑅  

or equivalently SSE: ∑ 𝒓𝒓�𝒙𝒙𝒙𝒙 − 𝒓𝒓𝒙𝒙𝒙𝒙 𝟐𝟐
(𝒙𝒙,𝒙𝒙)∈𝑹𝑹  

� Find wij that minimize SSE on training data! 
� Models relationships between item i and its neighbors j 

� wij can be learned/estimated based on x and  
all other users that rated i 
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Why is this a good idea? 



� Goal: Make good recommendations 
� Quantify goodness using RMSE: 

Lower RMSE ⇒ better recommendations 
� Want to make good recommendations on items  

that user has not yet seen. Can’t really do this! 
 

� Let’s set build a system such that it works well  
on known (user, item) ratings 
And hope the system will also predict well the 
unknown ratings 
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� Idea: Let’s set values w such that they work well  
on known (user, item) ratings 

� How to find such values w? 
� Idea: Define an objective function 

and solve the optimization problem 
 

� Find wij that minimize SSE on training data!  

 𝐽𝐽 𝑤𝑤 =� 𝑏𝑏𝑥𝑥𝑥𝑥 + � 𝑤𝑤𝑥𝑥𝑖𝑖 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑁𝑁 𝑥𝑥;𝑥𝑥

− 𝑟𝑟𝑥𝑥𝑥𝑥
2

𝑥𝑥,𝑥𝑥

 

 

� Think of w as a vector of numbers 
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Predicted rating 
True 
rating 

ssa-EF.FR,
MSE

-



� A simple way to minimize a function 𝒇𝒇(𝒙𝒙): 
� Compute the take a derivative 𝜵𝜵𝒇𝒇  
� Start at some point 𝒚𝒚 and evaluate 𝜵𝜵𝒇𝒇(𝒚𝒚) 
� Make a step in the reverse direction of the 

gradient: 𝒚𝒚 = 𝒚𝒚 − 𝜵𝜵𝒇𝒇(𝒚𝒚) 
� Repeat until converged 

14 

𝑓𝑓 

𝑦𝑦 

𝑓𝑓 𝑦𝑦 + 𝛻𝛻𝑓𝑓(𝑦𝑦) 
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� We have the optimization  
problem, now what? 

� Gradient decent: 
� Iterate until convergence: 𝒘𝒘 ←  𝒘𝒘− η𝜵𝜵𝒘𝒘𝑱𝑱 
� where 𝜵𝜵𝒘𝒘𝑱𝑱 is the gradient (derivative evaluated on data): 

𝛻𝛻𝑤𝑤𝐽𝐽 =
𝜕𝜕𝐽𝐽(𝑤𝑤)
𝜕𝜕𝑤𝑤𝑥𝑥𝑖𝑖

= 2� 𝑏𝑏𝑥𝑥𝑥𝑥 + � 𝑤𝑤𝑥𝑥𝑘𝑘 𝑟𝑟𝑥𝑥𝑘𝑘 − 𝑏𝑏𝑥𝑥𝑘𝑘
𝑘𝑘∈𝑁𝑁 𝑥𝑥;𝑥𝑥

− 𝑟𝑟𝑥𝑥𝑥𝑥 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖
𝑥𝑥,𝑥𝑥

 

  for 𝒊𝒊 ∈ {𝑵𝑵 𝒙𝒙;𝒙𝒙 ,∀𝒙𝒙,∀𝒙𝒙 }   
  else 𝜕𝜕𝜕𝜕(𝑤𝑤)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
= 𝟎𝟎 

� Note: We fix movie i, go over all rxi, for every movie 
𝒊𝒊 ∈ 𝑵𝑵 𝒙𝒙;𝒙𝒙 , we compute 𝝏𝝏𝑱𝑱(𝒘𝒘)

𝝏𝝏𝒘𝒘𝒙𝒙𝒊𝒊
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η … learning rate 

while |wnew - wold| > ε:  
   wold = wnew  
   wnew = wold - η ·∇wold 

𝐽𝐽 𝑤𝑤 =� 𝑏𝑏𝑥𝑥𝑥𝑥 + � 𝑤𝑤𝑥𝑥𝑖𝑖 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑁𝑁 𝑥𝑥;𝑥𝑥

− 𝑟𝑟𝑥𝑥𝑥𝑥
2

𝑥𝑥

 



� So far: 𝑟𝑟𝑥𝑥𝑥𝑥� = 𝑏𝑏𝑥𝑥𝑥𝑥 + ∑ 𝑤𝑤𝑥𝑥𝑖𝑖 𝑟𝑟𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑥𝑥𝑖𝑖𝑖𝑖∈𝑁𝑁(𝑥𝑥;𝑥𝑥)  
� Weights wij derived based  

on their role; no use of an  
arbitrary similarity measure  
(wij ≠ sij) 
� Explicitly account for  

interrelationships among  
the neighboring movies 

� Next: Latent factor model 
� Extract “regional” correlations 
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Global effects 

Factorization 

CF/NN 



Grand Prize: 0.8563  

Netflix: 0.9514  

Movie average: 1.0533 
User average: 1.0651  

Global average: 1.1296  

Basic Collaborative filtering: 0.94 
CF+Biases+learned weights: 0.91 
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� “SVD” on Netflix data: R ≈ Q · PT 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

� For now let’s assume we can approximate the 
rating matrix R as a product of “thin” Q · PT 

� R has missing entries but let’s ignore that for now! 
� Basically, we will want the reconstruction error to be small on known 

ratings and we don’t care about the values on the missing ones 
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� How to estimate the missing rating of  
user x for item i? 
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� How to estimate the missing rating of  
user x for item i? 
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� How to estimate the missing rating of  
user x for item i? 
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� Remember SVD: 
� A: Input data matrix 
� U: Left singular vecs  
� V: Right singular vecs 
� Σ: Singular values 

 

� So in our case:  
“SVD” on Netflix data: R ≈ Q · PT  
A = R,  Q = U,  PT = Σ VT 

A m 

n 

Σ 
m 

n 

VT 

≈  

25 

U 

𝒓𝒓�𝒙𝒙𝒙𝒙 = 𝒒𝒒𝒙𝒙 ⋅ 𝒑𝒑𝒙𝒙 
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- error ( At , v VT )
- optimization sand on iterations



� We already know that SVD gives minimum 
reconstruction error (Sum of Squared Errors): 

min
𝑈𝑈,V,Σ

� 𝐴𝐴𝑥𝑥𝑖𝑖 − 𝑈𝑈Σ𝑉𝑉T 𝑥𝑥𝑖𝑖
2

𝑥𝑥𝑖𝑖∈𝐴𝐴 

 

� Note two things: 
� SSE and RMSE are monotonically related: 

� 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟏𝟏
𝒄𝒄
𝑹𝑹𝑹𝑹𝑹𝑹   Great news: SVD is minimizing RMSE 

� Complication: The sum in SVD error term is over  
all entries (no-rating in interpreted as zero-rating).  
But our R has missing entries! 
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-



� SVD isn’t defined when entries are missing! 
� Use specialized methods to find P, Q 
� min

𝑃𝑃,𝑄𝑄
∑ 𝑟𝑟𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑥𝑥 ⋅ 𝑝𝑝𝑥𝑥 2

𝑥𝑥,𝑥𝑥 ∈R  

� Note: 
� We don’t require cols of P, Q to be orthogonal/unit length 
� P, Q map users/movies to a latent space 
� The most popular model among Netflix contestants 
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� Our goal is to find P and Q such tat: 

𝒎𝒎𝒙𝒙𝒎𝒎
𝑷𝑷,𝑸𝑸

� 𝒓𝒓𝒙𝒙𝒙𝒙 − 𝒒𝒒𝒙𝒙 ⋅ 𝒑𝒑𝒙𝒙 𝟐𝟐

𝒙𝒙,𝒙𝒙 ∈𝑹𝑹
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� Want to minimize SSE for unseen test data 
� Idea: Minimize SSE on training data 
� Want large k (# of factors) to capture all the signals 
� But, SSE on test data begins to rise for k > 2 

 

� This is a classical example of overfitting: 
� With too much freedom (too many free 

parameters) the model starts fitting noise 
� That is it fits too well the training data and thus not 

generalizing well to unseen test data 
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� To solve overfitting we introduce 
regularization: 
� Allow rich model where there are sufficient data 
� Shrink aggressively where data are scarce 
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1 

λ1, λ2 … user set regularization parameters 

“error” “length” 

Note: We do not care about the “raw” value of the objective function, 
but we care in P,Q that achieve the minimum of the objective 
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� Want to find matrices P and Q: 
 

 
 

� Gradient decent: 
� Initialize P and Q  (using SVD, pretend missing ratings are 0) 
� Do gradient descent: 
� P ← P - η ·∇P 
� Q ← Q - η ·∇Q 
� where ∇Q is gradient/derivative of matrix Q: 
𝛻𝛻𝑄𝑄 = [𝛻𝛻𝑞𝑞𝑥𝑥𝑖𝑖]  and 𝛻𝛻𝑞𝑞𝑥𝑥𝑖𝑖 = ∑ −2 𝑟𝑟𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑥𝑥𝑝𝑝𝑥𝑥 𝑝𝑝𝑥𝑥𝑖𝑖𝑥𝑥,𝑥𝑥 + 2𝜆𝜆2𝑞𝑞𝑥𝑥𝑖𝑖 
� Here 𝒒𝒒𝒙𝒙𝒇𝒇 is entry f of row qi of matrix Q 

� Observation: Computing gradients is slow! 
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How to compute gradient 
of a matrix? 
Compute gradient of every 
element independently! 
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� Gradient Descent (GD) vs. Stochastic GD 
� Observation: 𝛻𝛻𝑄𝑄 = [𝛻𝛻𝑞𝑞𝑥𝑥𝑖𝑖]  where 

𝛻𝛻𝑞𝑞𝑥𝑥𝑖𝑖 = �−2 𝑟𝑟𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑥𝑥𝑖𝑖𝑝𝑝𝑥𝑥𝑖𝑖 𝑝𝑝𝑥𝑥𝑖𝑖
𝑥𝑥,𝑥𝑥

+ 2𝜆𝜆𝑞𝑞𝑥𝑥𝑖𝑖 = �∇𝑸𝑸
𝒙𝒙,𝒙𝒙

𝒓𝒓𝒙𝒙𝒙𝒙  

� Here 𝒒𝒒𝒙𝒙𝒇𝒇 is entry f of row qi of matrix Q 

� 𝑸𝑸 = 𝑸𝑸 −



� Convergence of GD vs. SGD  
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GD improves the value 
of the objective function 
at every step.  
SGD improves the value 
but in a “noisy” way. 
GD takes fewer steps to 
converge but each step 
takes much longer to 
compute.  
In practice, SGD is 
much faster! 



� Stochastic gradient decent: 
� Initialize P and Q  (using SVD, pretend missing ratings are 0) 

� Then iterate over the ratings (multiple times if 
necessary) and update factors: 

   For each rxi: 
� 𝜀𝜀𝑥𝑥𝑥𝑥 = 2(𝑟𝑟𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑥𝑥 ⋅ 𝑝𝑝𝑥𝑥)                            (derivative of the “error”) 

� 𝑞𝑞𝑥𝑥 ← 𝑞𝑞𝑥𝑥 + 𝜇𝜇1 𝜀𝜀𝑥𝑥𝑥𝑥 𝑝𝑝𝑥𝑥 − 𝜆𝜆2 𝑞𝑞𝑥𝑥            (update equation) 

� 𝑝𝑝𝑥𝑥 ← 𝑝𝑝𝑥𝑥 + 𝜇𝜇2 𝜀𝜀𝑥𝑥𝑥𝑥 𝑞𝑞𝑥𝑥 − 𝜆𝜆1 𝑝𝑝𝑥𝑥          (update equation) 

� 2 for loops: 
� For until convergence: 
� For each rxi 

� Compute gradient, do a “step” 
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𝜇𝜇 … learning rate 



Koren, Bell, Volinksy, IEEE Computer, 2009 
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� μ  =  overall mean rating 
� bx  =  bias of user x 
� bi   =  bias of movie i 

 

user-movie interaction movie bias user bias 

User-Movie interaction 
� Characterizes the matching between 

users and movies 
� Attracts most research in the field 
� Benefits from algorithmic and 

mathematical innovations 

Baseline predictor 
� Separates users and movies 
� Benefits from insights into user’s 

behavior 
� Among the main practical 

contributions of the competition 



� We have expectations on the rating by  
user x of movie i, even without estimating x’s 
attitude towards movies like i 

 
 

 
– Rating scale of user x 
– Values of other ratings user 

gave recently (day-specific 
mood, anchoring, multi-user 
accounts) 

 

– (Recent) popularity of movie i 
– Selection bias; related to 

number of ratings user gave on 
the same day (“frequency”) 
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� Example: 
� Mean rating:  µ = 3.7 
� You are a critical reviewer: your ratings are 1 star 

lower than the mean: bx = -1 
� Star Wars gets a mean rating of 0.5 higher than 

average movie:  bi = + 0.5 
� Predicted rating for you on Star Wars:  

 = 3.7 -  1  +  0.5  = 3.2  
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Overall 
mean rating 

Bias for  
user x 

Bias for 
movie i 

𝑟𝑟𝑥𝑥𝑥𝑥 = 𝜇𝜇 +  𝑏𝑏𝑥𝑥 +  𝑏𝑏𝑥𝑥 +  𝑞𝑞𝑥𝑥⋅ 𝑝𝑝𝑥𝑥 
User-Movie 
interaction O.EE.¥

"

• other factors in world outside
mene- waking

• combination of ideas

• latent factorization

u II.HIEI



� Solve: 
 
 
 
 

 
 
 

� Stochastic gradient decent to find parameters 
� Note: Both biases bx, bi as well as interactions qi, px 

are treated as parameters (we estimate them) 
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regularization 

goodness of fit 

λ is selected via grid-
search on a validation set 
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Millions of parameters 

CF (no time bias)

Basic Latent Factors

Latent Factors w/ Biases
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Grand Prize: 0.8563  

Netflix: 0.9514  

Movie average: 1.0533 
User average: 1.0651  

Global average: 1.1296  

Basic Collaborative filtering: 0.94 

Latent factors: 0.90 

Latent factors+Biases: 0.89 

Collaborative filtering++: 0.91 
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� Sudden rise in the  
average movie rating  
(early 2004) 
� Improvements in Netflix 
� GUI improvements 
� Meaning of rating changed 

� Movie age 
� Users prefer new movies  

without any reasons 
� Older movies are just  

inherently better than  
newer ones 
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Y. Koren, Collaborative filtering with 
temporal dynamics, KDD ’09 



� Original model: 
rxi = µ +bx + bi + qi ·px 

 

� Add time dependence to biases: 
rxi = µ +bx(t)+ bi(t) +qi · px 
� Make parameters bx and bi to depend on time 
� (1) Parameterize time-dependence by linear trends 

(2) Each bin corresponds to 10 consecutive weeks 
 

� Add temporal dependence to factors 
� px(t)… user preference vector on day t 
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Y. Koren, Collaborative filtering with temporal dynamics, KDD ’09 
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Millions of parameters 

CF (no time bias)

Basic Latent Factors

CF (time bias)

Latent Factors w/ Biases

+ Linear time factors

+ Per-day user biases

+ CF



Grand Prize: 0.8563  

Netflix: 0.9514  

Movie average: 1.0533 
User average: 1.0651  

Global average: 1.1296  

Basic Collaborative filtering: 0.94 

Latent factors: 0.90 

Latent factors+Biases: 0.89 

Collaborative filtering++: 0.91 
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Latent factors+Biases+Time: 0.876 

Still no prize! / 
Getting desperate. 
Try a “kitchen  
sink” approach! 
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June 26th submission triggers 30-day “last call” 



� Ensemble team formed 
� Group of other teams on leaderboard forms a new team 
� Relies on combining their models 
� Quickly also get a qualifying score over 10% 

 

� BellKor 
� Continue to get small improvements in their scores 
� Realize they are in direct competition with team Ensemble 

 

� Strategy 
� Both teams carefully monitoring the leaderboard 
� Only sure way to check for improvement is to submit a set 

of predictions 
� This alerts the other team of your latest score 
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� Submissions limited to 1 a day 
� Only 1 final submission could be made in the last 24h 

 

� 24 hours before deadline… 
� BellKor team member in Austria notices (by chance) that 

Ensemble posts a score that is slightly better than BellKor’s 
 

� Frantic last 24 hours for both teams 
� Much computer time on final optimization 
� Carefully calibrated to end about an hour before deadline 

� Final submissions 
� BellKor submits a little early (on purpose), 40 mins before 

deadline 
� Ensemble submits their final entry 20 mins later 
� ….and everyone waits…. 

 
 
 

1/28/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 56 

-



1/28/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 57 

8



1/28/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 58 

0



u /
Rum = rating from user u to movie m

Basic Collab filtering (Pearson
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� Some slides and plots borrowed from  
Yehuda Koren, Robert Bell and Padhraic 
Smyth 

� Further reading: 
� Y. Koren, Collaborative filtering with temporal 

dynamics, KDD ’09 
� http://www2.research.att.com/~volinsky/netflix/bpc.html 
� http://www.the-ensemble.com/ 
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