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Abstract

This technical report provides a tutorial on the theoretical details

of probabilistic topic modeling and gives practical steps on implement-

ing topic models such as Latent Dirichlet Allocation (LDA) through the

Markov Chain Monte Carlo approximate inference algorithm Gibbs Sam-

pling.

1 Introduction

Following its publication in 2003, Blei et al.’s Latent Dirichlet Allocation (LDA)
[3] has made topic modeling – a subfield of machine learning applied to ev-
erything from computational linguistics [4] to bioinformatics [8] and political
science [2] – one of the most popular and most successful paradigms for both
supervised and unsupervised learning. Despite topic modeling’s undisputed
popularity, however, it is for many – particularly newcomers – a di�cult area
to break into due to its relative complexity and the common practice of leav-
ing out implementation details in papers describing new models. While key
update equations and other details on inference are often included, the inter-
mediate steps used to arrive at these conclusions are often left out due to space
constraints, and what details are given are rarely enough to enable most re-
searchers to test the given results for themselves by implementing their own
version of the described model. The purpose of this technical report is to help
bridge the gap between the model definitions provided in research publications
and the practical implementations that are required for performing learning in
this exciting area. Ultimately, it is hoped that this tutorial will help enable the
reader to build his or her own novel topic models.

This technical report will describe what topic modeling is, how various mod-
els (LDA in particular) work, and most importantly, how to implement a work-
ing system to perform learning with topic models. Topic modeling as an area
will be introduced through the section on LDA, as it is the “original” topic model
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and its modularity allows the basics of the model to be used in more complicated
topic models.1 Following the introduction to topic modeling through LDA, the
problem of posterior inference will be discussed. This section will concentrate
first on the theory of the stochastic approximate inference technique Gibbs Sam-
pling and then it will discuss implementation details for building a topic model
Gibbs sampler.

2 Latent Dirichlet Allocation

LDA is a generative probabilistic model for collections of grouped discrete data
[3]. Each group is described as a random mixture over a set of latent topics where
each topic is a discrete distribution over the collection’s vocabulary. While LDA
is applicable to any corpus of grouped discrete data, from now on I will refer
to the standard NLP use case where a corpus is a collection of documents, and
the data are words. The generative process for a document collection D under
the LDA model is as follows:

1. For k = 1...K:

(a) �

(k) ⇠ Dirichlet(�)

2. For each document d 2 D:

(a) ✓

d

⇠ Dirichlet(↵)

(b) For each word w

i

2 d:

i. z

i

⇠ Discrete(✓
d

)

ii. w

i

⇠ Disctete(�(zi))

where K is the number of latent topics in the collection, �

(k) is a discrete
probability distribution over a fixed vocabulary that represents the kth topic
distribution, ✓

d

is a document-specific distribution over the available topics, z
i

is
the topic index for word w

i

, and ↵ and � are hyperparameters for the symmetric
Dirichlet distributions that the discrete distributions are drawn from.

The generative process described above results in the following joint distri-
bution:

p(w, z, ✓,�|↵,�) = p(�|�)p(✓|↵)p(z|✓)p(w|�
z

) (1)

The unobserved (latent) variables z, ✓, and � are what is of interest to us. Each
✓

d

is a low-dimensional representation of a document in “topic”-space, each z

i

represents which topic generated the word instance w
i

, and each �

(k) represents
a K ⇥ V matrix where �

i,j

= p(w
i

|z
j

). Therefore, one of the most interesting
aspects of LDA is that it can learn, in an unsupervised manner, words that

1
While LDA is an extension to probabilistic latent semantic analysis [12] (which in turn has

ideological routes in the matrix factorization technique LSI), the topic modeling “revolution”

really took o↵ with the introduction of LDA likely due to its fully probabilistic grounding.
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“environment” “travel” “fantasy football”
emission travel game

environmental hotel yard
air roundtrip defense

permit fares allowed
plant special fantasy
facility o↵er point
unit city passing
epa visit rank
water miles against
station deal team

Table 1: Three topics learned using LDA on the Enron Email Dataset.

we would associate with certain topics, and this is expressed through the topic
distributions �. An example of the top 10 words for 3 topics learned using LDA
on the Enron email dataset2 is shown in Figure 1 (the topic labels are added
manually).

3 Inference

The key problem in topic modeling is posterior inference. This refers to reversing
the defined generative process and learning the posterior distributions of the
latent variables in the model given the observed data. In LDA, this amounts to
solving the following equation:

p(✓,�, z|w,↵,�) =
p(✓,�, z,w|↵,�)

p(w|↵,�) (2)

Unfortunately, this distribution is intractable to compute. The normalization
factor in particular, p(w|↵,�), cannot be computed exactly. All is not lost,
however, as there are a number of approximate inference techniques available
that we can apply to the problem including variational inference (as used in the
original LDA paper) and Gibbs Sampling (as we will use here).

3.1 Gibbs Sampling

3.1.1 Theory

Gibbs Sampling is one member of a family of algorithms from the Markov Chain
Monte Carlo (MCMC) framework [9]. The MCMC algorithms aim to construct
a Markov chain that has the target posterior distribution as its stationary dis-
tribution. In other words, after a number of iterations of stepping through the
chain, sampling from the distribution should converge to be close to sampling

2
http://www.cs.cmu.edu/

~

enron/.
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from the desired posterior. Gibbs Sampling is based on sampling from condi-
tional distributions of the variables of the posterior.

For example, to sample x from the joint distribution p(x) = p(x1, ..., xm

),
where there is no closed form solution for p(x), but a representation for the
conditional distributions is available, using Gibbs Sampling one would perform
the following (from [1]):

1. Randomly initialize each x

i

2. For t = 1, ..., T :

2.1 x

t+1
1 ⇠ p(x1|x(t)

2 , x

(t)
3 , ..., x

(t)
m

)

2.2 x

t+1
2 ⇠ p(x2|x(t+1)

1 , x

(t)
3 , ..., x

(t)
m

)

2.m x

t+1
m

⇠ p(x
m

|x(t+1)
1 , x

(t+1)
2 , ..., x

(t+1)
m�1 )

This procedure is repeated a number of times until the samples begin to con-
verge to what would be sampled from the true distribution. While convergence
is theoretically guaranteed with Gibbs Sampling, there is no way of knowing
how many iterations are required to reach the stationary distribution. There-
fore, diagnosing convergence is a real problem with the Gibbs Sampling ap-
proximate inference method. However, in practice it is quite powerful and has
fairly good performance. Typically, an acceptable estimation of convergence
can be obtained by calculating the log-likelihood or even, in some situations, by
inspection of the posteriors.

For LDA, we are interested in the latent document-topic portions ✓

d

, the
topic-word distributions �

(z), and the topic index assignments for each word
z

i

. While conditional distributions – and therefore an LDA Gibbs Sampling
algorithm – can be derived for each of these latent variables, we note that both
✓

d

and �

(z) can be calculated using just the topic index assignments z
i

(i.e. z is a
su�cient statistic for both these distributions).3 Therefore, a simpler algorithm
can be used if we integrate out the multinomial parameters and simply sample
z

i

. This is called a collapsed Gibbs sampler.
The collapsed Gibbs sampler for LDA needs to compute the probability of a

topic z being assigned to a word w

i

, given all other topic assignments to all other
words. Somewhat more formally, we are interested in computing the following
posterior up to a constant:

p(z
i

|z�i

,↵,�,w) (3)

where z�i

means all topic allocations except for z

i

. To begin, the rules of
conditional probability tell us that:

p(z
i

|z�i

,↵,�,w) =
p(z

i

, z�i

,w|↵,�)
p(z�i

,w|↵,�) / p(z
i

, z�i

,w|↵,�) = p(z,w|↵,�) (4)

3✓d,z =

n(d,z)+↵P
|Z| n(d,z)+↵ , �z,w =

n(z,w)+�P
|W | n(z,w)+� .
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We then have:

p(w, z|↵,�) =
Z Z

p(z,w, ✓,�|↵,�)d✓d� (5)

Following the LDA model defined in equation (1), we can expand the above
equation to get:

p(w, z|↵,�) =
Z Z

p(�|�)p(✓|↵)p(z|✓)p(w|�
z

)d✓d� (6)

Then, we group the terms that have dependent variables:

p(w, z|↵,�) =
Z

p(z|✓)p(✓|↵)d✓
Z

p(w|�
z

)p(�|�)d� (7)

Both terms are multinomials with Dirichlet priors. Because the Dirichlet dis-
tribution is conjugate to the multinomial distribution, our work is vastly sim-
plified; multiplying the two results in a Dirichlet distribution with an adjusted
parameter. Beginning with the first term, we have:

Z
p(z|✓)p(✓|↵)d✓ =

Z Y

i

✓

d,zi

1

B(↵)

Y

k

✓

↵k
d,k

d✓
d

=
1

B(↵)

Z Y

k

✓

nd,k+↵k

d,k

d✓
d

=
B(n

d,· + ↵)

B(↵)
(8)

where n
d,k

is the number of times words in document d are assigned to topic k, a
· indicates summing over that index, and B(↵) is the multinomial beta function,

B(↵) =
Q

k �(↵k)
�(

P
k ↵k)

. Similarly, for the second term (calculating the likelihood of

words given certain topic assignments):

Z
p(w|�

z

)p(�|�)d� =

Z Y

d

Y

i

�

zd,i,wd,i

Y

k

1

B(�)

Y

w

�

�w

k,w

d�
k

=
Y

k

1

B(�)

Z Y

w

�

�w+nk,w

k,w

d�
k

=
Y

k

B(n
k,· + �)

B(�)
(9)

Combining equations (8) and (9), the expanded joint distribution is then:

p(w, z|↵,�) =
Y

d

B(n
d,· + ↵)

B(↵)

Y

k

B(n
k,· + �)

B(�)
(10)
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The Gibbs sampling equation for LDA can then be derived using the chain rule
(where we leave the hyperparameters ↵ and � out for clarity).4 Note that the
superscript (�i) signifies leaving the ith token out of the calculation:

p(z
i

|z(�i)
,w) =

p(w, z)

p(w, z(�i))
=

p(z)

p(z(�i))
· p(w|z)
p(w(�i)|z(�i))p(w

i

)

/
Y

d

B(n
d,· + ↵)

B(n(�i)
d,· + ↵)

Y

k

B(n
k,· + �)

B(n(�i)
k,· + �)

/
�(n

d,k

+ ↵

k

)�(
P

K

k=1 n
(�i)
d,k

+ ↵

k

)

�(n(�i)
d,k

+ ↵

k

)�(
P

K

k=1 nd,k

+ ↵

k

)
·
�(n

k,w

+ �

w

)�(
P

W

w=1 n
(�i)
k,w

+ �

w

)

�(n(�i)
k,w

+ �

w

)�(
P

W

w=1 nk,w

+ �

w

)

/ (n(�i)
d,k

+ ↵

k

)
n

(�i)
k,w

+ �

w

P
w

0 n
(�i)
k,w

0 + �

w

0

(11)

3.1.2 Implementation

Implementing an LDA collapsed Gibbs sampler is surprisingly straightforward.
It involves setting up the requisite count variables, randomly initializing them,
and then running a loop over the desired number of iterations where on each
loop a topic is sampled for each word instance in the corpus. Following the
Gibbs iterations, the counts can be used to compute the latent distributions ✓

d

and �

k

.
The only required count variables include n

d,k

, the number of words assigned
to topic k in document d; and n

k,w

, the number of times word w is assigned
to topic k. However, for simplicity and e�ciency, we also keep a running count
of n

k

, the total number of times any word is assigned to topic k. Finally, in
addition to the obvious variables such as a representation of the corpus (w), we
need an array z which will contain the current topic assignment for each of the
N words in the corpus.

Because the Gibbs sampling procedure involves sampling from distributions
conditioned on all other variables (in LDA this of course includes all other cur-
rent topic assignments, but not the current one), before building a distribution
from equation (11), we must remove the current assignment from the equation.
We can do this by decrementing the counts associated with the current assign-
ment because the topic assignments in LDA are exchangeable (i.e. the joint
probability distribution is invariant to permutation). We then calculate the
(unnormalized) probability of each topic assignment using equation (11). This
discrete distribution is then sampled from and the chosen topic is set in the z
array and the appropriate counts are then incremented. See Algorithm 1 for
the full LDA Gibbs sampling procedure.

4
For the full, nothing-left-out derivation, please see [5] and [11].
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Input: words w 2 documents d
Output: topic assignments z and counts n

d,k

, n

k,w

, and n

k

begin
randomly initialize z and increment counters
foreach iteration do

for i = 0! N � 1 do
word w[i]
topic z[i]
n

d,topic

-=1; n
word,topic

-=1; n
topic

-=1
for k = 0! K � 1 do

p(z = k|·) = (n
d,k

+ ↵

k

) nk,w+�w

nk+�⇥W

end
topic sample from p(z|·)
z[i] topic

n

d,topic

+=1; n
word,topic

+=1; n
topic

+=1
end

end
return z, n

d,k

, n

k,w

, n

k

end
Algorithm 1: LDA Gibbs Sampling

4 Extensions To LDA

While LDA – the “simplest” topic model – is useful in and of itself, a great
deal of novel research surrounds extending the basic LDA model to fit a specific
task or to improve the model by describing a more complex generative process
that results in a better model of the real world. There are countless papers
delineating such extensions and it is not my intention to go through them all
here. Instead, this section will outline some of the ways that LDA can and has
been extended with the goal of explaining how inference changes as a result of
additions to a model and how to implement those changes in a Gibbs sampler.

4.1 LDA With a Background Distribution

One of the principal problems with LDA is that for useful results, stop-words
must be removed in a pre-processing step. Without this filtering, very common
words such as the, of, to, and, a, etc. will pervade the learned topics, hiding the
statistical semantic word patterns that are of interest. While stop-word removal
does a good job at solving this problem, it is an ad hoc measure that results in a
model resting on a non-coherent theoretical basis. Further, stop-word removal
is not without problems. Stop-word lists must often be domain-dependent,
and there are inevitably cases where filtering results in under-coverage or over-
coverage, causing the model to continue being plagued by noise, or missing
patterns that may be of interest to us.

One approach to keep stop-words out of the topic distributions is to imag-

7



ine all stop-words being generated by a “background” distribution [6, 7, 10].
The background distribution is the same as a topic – it is a discrete probability
distribution over the corpus vocabulary – but every document draws from the
background as well as the topics specific to that document. [7] and [10] use this
approach to separate high-content words from less-important words to perform
multi-document summarization. [6] uses a similar model for information re-
trieval where a word can either be generated from a background distribution, a
document-specific distribution, or one of T topic distributions shared amongst
all the documents. The generative process is similar to that of LDA, except
that there is a multinomial variable x associated with each word that is over the
three di↵erent “sources” of words. When x = 0, the background distribution
generates the word, when x = 1, the document-specific distribution generates
the word, and when x = 2, one of the topic distributions generates the word.

Here, we will describe a simpler model where only a background distribution
is added to LDA. A binomial variable x is associated with each word that
decides whether the word will be generated by the topic distributions or by the
background. The generative process is then:

1. ⇣ ⇠ Dirichlet(�)

2. For k = 1...K:

(a) �

(k) ⇠ Dirichlet(�)

3. For each document d 2 D:

(a) ✓

d

⇠ Dirichlet(↵)

(b) �

d

⇠ Dirichlet(�)

(c) For each word w

i

2 d:

i. x

i

⇠ Discrete(�
d

)

ii. If x = 0:

A. w

i

⇠ Discrete(⇣)

iii. Else:

A. z

i

⇠ Discrete(✓
d

)

B. w

i

⇠ Disctete(�(zi))

where ⇣ is the background distribution, and �

d

is a document-specific binomial
sampled from a Dirichlet prior �.

Developing a Gibbs sampler for this model is similar to the LDA imple-
mentation, but we have to be careful about when counts are incremented and
decremented. We only adjust the background-based counts when the back-
ground was sampled as the word generator, and we only adjust the topic counts
when it is the converse. We must update the x-based counts each time, however,
because we sample the route that led to the word being generated each time.
The sampler must compute the probability not only of a topic being chosen
for the given document and the probability of that topic generating the given
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word, it must also compute the probability that the model is in the topic-model
state. This too, however, is straightforward to implement. A distribution of
T + 1 components can be created for each word (on each iteration) where the
first component corresponds to the background distribution generating the word
and the other T are the probabilities for each topic having generated the word.

5 Conclusion

LDA and other topic models are an exciting development in machine learn-
ing and the surface has only been scratched on their potential in a number of
diverse fields. This report has sought to aid researchers new to the field in
both understanding the mathematical underpinnings of topic modeling and in
implementing algorithms to make use of this new pattern recognition paradigm.
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