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(g} The Jessan Procedures 35 and 36 are simple for selection but cannot be

rotated easily and score poorly on most other counts.

(h} Sinka's Procedures 42 and 43 look particularly promising for moderate

values of 7n . Since the Ty are arbitrary they can be chosen to

minimize (or using expression (3.7.3) to come close to minimizing) the
variance of the Sen-Yates-Grundy variance estimator. For large values

of 7 the procedures become unmanageable,

(j} Because the Systematic Procedures 2 and 3 are so convenient en all
counts other than variance estimation, the approximate variance CHAPTER 4

formula (3.7.4) which does not depend on the T may be used to

I SELECTION PROCEDURES USING SPECIAL ESTIMATORS

remedy this deficiency,

4.1 INTRODUCTION

In Chapter 3 a comparison was made of those selection procedures for which the
Horvitz-Thompson estimator possessed the ratic estimator property. It was mentioned,
however, in Section 1.7 that certain special estimators had also been devised for use
with particular selection procedures, and that in the context of these procedures they
also possessed the ratio estimator property. In this Chapter the performance of these

special estimators will be compared in the context of their appropriate selasction

procedures; that is,
(i) Das's estimator with Procedure b,
(ii) Raj's and Murthy's estimators with Procedure U4,
(iii) the Raoc-Hartley-Cochran (RHC)} estimator with Procedure 25,
(iv) unbiased and ratic estimators for Poisson sampling with Procedure 27,

(v) unbiased and ratio estimators for Modified Poisson Sampling with
Procedure 38,

(vi)- unbiased and ratio estimators for Collocated Sampling with Procedure

39, and

(vii} Lahiri's estimator with Procedures U5-46.
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4.2 DESCRIPTION QF SPECIAL ESTIMATORS

4.2.1 Das's Estimator

This estimator was devised by Das (1951} for use with Procedure 4, the draw by
draw procedure with probabilities proportional to original size at each draw. e
first suggested the following ordered linear combinations, which are unbiased

estimators of population tetal Y

t

1= 9/P

tf = (J.—pl)yzfplpz(ﬂ-l)

e . (4,2,1)
y=-1 k r r-1
o (b § el « [T T oo
£=1 J=1 t=1 1=l
n
Every linear combination &' = ¥ ¢ t! ,where Y o =1, is an unblased sstimator
i r=1
of ¥ . The choice of 2, is free but for simplicity Das chose e = n—l . The

unbiased variance estimator he provided can assume negative values.

Murthy (1957) showed that estimators such as those in (4.2.1) could be improved
by wiordering; that is, taking the expectation of the estimators derived from any
given estimator formula by considering all possible orderings (permutaticns) of the

observed sample, The unordered form of tl'. ig identical with Murthy's estimator

(Pathak 1961). This estimator is considered in Section 4.2.2., Unorderings of tz'v ,

r # 1 , yield estimators inferior to Murthy's {Samiuddin, Hanif and Asad 1978). These

estimators will not be considered further in this monograph.

4.2.2 The Raj and Murthy Estimators

These estimators were devised by Raj (1956a) and Murthy (1957) for use with
Procedure 4. The set of unbiased and mutually uncorrelated estimators of population

total Y suggested by Raj is

t

17 yl/Pl )

by =y + E (1P ip,
. (4.2.2)

T

n yl+y2+... +yn_l

Pn {l"Pl pz_ “}_pﬂ—l}

The estimator tmean of the population total ¥ is the arithmetic mean of the above

set of estimators, which for »n = 2 yields
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¥y ¥q
tmean = i[(l*pl) ;—;; + [l-Pl] E-zzl i

with variance

) rrg [ 5
v(¢ = 22 P f2-P-P)iz- - 5 - (4.2.4)
mean: S i IPJ oJ PI PJ
J#I -
An unbiased estimator of (4.2.4%) given by Raj is
2 2
(1) 4, w
o[t SRR b 'S R {%.2.5)
mean L P, D3
Pathak (1967a) derived a formula for the variance of f:mean for any n . This

variance formula is

T, f=1
JET

2
V(tmeml] = 2 Ez PIFJE * z QIJ(P l)][ _;_ﬂ > (4:2.8)

where QIJ(I:-J_) denotes the probability of non-inclusion of one or both of the units
I and J in the first (p-l) sample units.

An urbiased estimator of variance suggested by Raj (1956a) for any » is

v(tmean] = n(n 1

3 Z (t -‘]2 (4.2.7)

=

t.

RN~

which is non negative for all n = 2 . Here T = g %

1
Murthy (1957) suggested that the estimator tmean could be improved by the
process of unordering. For =n = 2 the unordered form of tmean , denoted by tsy'mrn B

may be written as follows:

v -
1 2
L r—— + — [1- . (4.2,8}
Faymm = 2-p17Pp I;l[ 22 Py (i-p,)
The variance of tsylm for n=2 is

1-p-P_|¥ r]?

_rez. g (4.2.9)

V(*symm] : IEJZJ_ Py opp, PP, |P; P_

JED

An unbiased variance estimator of (%.2.9} is
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T”'{tsyﬂm (4.2.10)

: (1-p,) (1-2,) (1-p,#,) [y_l_ y_QT

2
{2-py-P2) P1 Pz

Murthy (1957) further showed that an unordered and therefore more afficient

{ased variance estimator for * for n=2 is
mean
¥ Y 2
_ 1 2
vﬂ(tmean} - %El-P_'L) {.l_pQ) Eﬁ; - p_:] M (H.Q.ll)
Fathak (1967a) derived the following variance formula for 1 for any
2 3
[ '] ZNZ ( * pla I)E(S J) 2
vt ) =% PPAL - (4,2.12)
SyTm Par el IPJI sz pl8) I T PJ ?

J#T

.re plg) denotes the prebability of cbtaining the sample & of =n units,

slI) denotes the probability of obtaining the sample & given that unit I was

*
awn first, and ¥ denotes the sum over all samples &8 containing wnits I and
83IJ

Pathak (1967b) also derived the following unbiased variance estimator for any

2
G Lol¥s Y.
)= T3 pipj[p(s)p(s|i,j)-p(s|'5)p(s|j)]p(s) 2172 24 (w203
i,3=1 Py Fj

o[*

Symm
J#t
ere ple|ij) denotes the conditional probability of selecting the observed sample

, given that units i and j were selected in that order at the first two draws.

(4.2.13) is non negative but the computation becomes cumbersome as n inereases.
iyless (1968) developed a computer programme to caloulate plalif), plald) and pls)
r UPEWOP .

Pathak (1961) showed that Murthy's estimator (4.2.8) could be obtained by

ovdering any linear combination of the individual Raj estimators (4.2.2).

Note. Basua (1970) suggested that it was natural to estimate the ratio

N n n
E E P E Py
I- £=1 J 1 i=1

y some sort of an average of the observed ratlos. Two particular averages which he

uggested were 2 ¥yt z p; » which led to the conventional ratio estimator, and

n ,
nl T y/p; which led to the estimator

yB=§y l%ﬂl-%p.. (4.2.14)
i=1 n APy =1

He claimed that these two estimators had 1as much Face validity' as unordered forms of
the individual Raj estimator (4.2.2), and that although they were not unbiased, they
were Far simpler to salculate. His argument for teace validity' appears to be based
on their being symetrie functions of the sample values and possessing the ratio
estimator property., The awthors are not aware of any investigation that has been made
as to the performance of Basu's estimators with Procedure 4, but they are not design

unbiased, even asymptotically.

4,2,3 The Rao-Hartley-Cochran Estimator

The RHC sampling scheme {Procedure 25) has already been described jn Chapter 2.
The population units are divided randomly into groups containing ¥ units,
J =1, 2, 3, vaas 7, WheETE the N; are predetermined. One unit is selected from
each group, the probabilities of selection being the normed measures of size within
the group. The RHC egtimation procedure is te form the Horvitz-Thompson estimator for

each group separately, and add over the groups.

The ynbiased estimator ef population tetal ¥ is, therefore,

' ’{: Yig"s (4.2,15)
gl = i .2,
RHC 20 Pg

N,
<
where pit ig the sample value of the normal measure of size PiT > My = T:.:L/P;T ’
n
and E L 1
The variancs of (4,.2.15) 1is
( ] 2 2 % 1;1; Y‘%T Y2 ¢
Vig! = n[z w_-zv] J N(N-1} T - =l 4.2.16)
RHC it isr e

Rao, Hartley and Cochran minimized (H.2. 16) by noting that since § = nR +k , where
Ock «<n and R is a positive integer, it was possible to put

F o= By = oee ® 8, = R+l and N =R e = Nn = R , in which case (4.2.16)

reduces to

w1, k)| 2 N Yy P
Sy -ml, ekl L 4,2.17
V{vguc) {1 Lt N(H—I)H Z]_ TZ‘l "Pip ( )




(4,2.18)

An unb:lnod variance estimator of (%.2.16) is

e _ )
" b n v.
. - -3 2 2 it ] . w2
o{yduc) 'Lgl n m] / [zr igl Ni]:[ 7:;1 “i[&:t yRHCJ {(4,2,19)

or the simpler forms (%.2.17) and (4,2.18}, (4,2,19) reduces to

2
2 7
o N k(n-k)-#n ¥it
vigt. ) = St ", - -yt (4.2.20)
RIC™  y2(n-1)-kin-k) 471 C[Pg  RC
ndd
2
7 R
1 7 Tt
v(yhe) =——[l--] ¥om, == -y . (4.2.21)
RHC n-1 i i1 2 Pry RHC

.2.4 Poisson Sampling

Poisson sampling as defined by Hajek (1964) gives each unit in the population a

ertain probability of inclusion in the sample which will be denoted by Lh for the

th unit, I =1, 2, ..., § . To select, a set of N Dbinomial trials is carried out

o determine whether each unit in turn is to be included in the sample & ov not.

The unbiased Hervitz-Thompson estimator of the population total is

<

U= L ao - {4.2.22)
i€ 1

ince the Jjoint probability of inclusion Trr takes the simple form Ty = WMy s the

ariance of (4.2.22)} is

2
b r
1] = - —
V(-’!PS] Igl (x ’TI) n (4.2.23)
nd an unbiased estimator of (4.2,23) is
¥
vlph) = T (-7} <. (4.2.24)
13: '|'|1:

ecause the sample size varies in this sampling procedure, the ratio estimator

a3

yl

Pg .
- - n if m>0,

¥ps = {(4.2,25)
0 otherwise,

is more efficient than yI’,S .

The mean square error of ygs is given approximately by

Iy

Fi
V(ygS] = r§1 nI(l_nI] - +PY (4.2.26)

[
R
[

where PO =Pr(m =Q) and % = E(m) = ¥ o (A proof of (4.2.26) is given in
I=1

Appendix B.}
The conventional estimator of the approximation (4.2.25) is

y-" 2 2
" .
+ Po¥pg §

)

o,

(4.2.27)

U(ygs] = i%g (l'“q;) -

n

ool

but a more stable estimator is obtained by multiplying the first expression on the

right hand side by n/m .

4.2,5 Modified Poisson Sampling

Modified Poisson sampling is a procedure which ensures that an empty sample is
never selected. It was first suggested by Ogus and Clark (1971). An ordinary Poisson
sample is drawn fipst, but if there are no units in that sample, a second Poisson

sample is drawn, and so on repeatedly until a non-emply sample is achieved.

Assuming that the probability of including the Ith population unit in sample is

to be held constant at T, , the probability of selecting this unit in each ordinary

I
Poisson sample drawn must be rrI(luPa] , where PS is the probability of selecting
an empty sample at each such draw. Then
N
22 = T T {1-r (2-F3} ,
I=1
and its value may be obtained iteratively using the initial value zero. For medified

Poisson sampling

- _p#
My = Tprg(1-Pg) , for I £
The variance of the Horvitz-Thempson estimator, yb-;PS , formed analogously to (4,2.22)

but using modified Poisson sampling is
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e ] f_'“; , I,
L e ) = 1-m -prrt - ¥ o], (4.2.29)
VIR P &’HPS) I)=:1 ( I] T Oh =1 I

3

and an unbiesed estimator of this variance is

i B[, ¥
. ) TR 2y TE {4.2,29)
vlylng) = 1-m T ¥ )
1 - T

The mean square error of the ratic estimater yl’{’PS , Formed analogously to (4.2.25) is

approximately given by

v ¥ 2
- I X
V(yﬁps) = E 'ITI{l—(_'Lv—P;]ﬂI} T~ ; . (4.2.30)
I=1 I
The conventiconal estimator of this approximate wean square error is
2
¥, y
" - _(1_p# 7L TMpS|
vlyps) Es {r-fa Pnlﬂi}lﬂi =, (4.2,81)

but a more stable estimator can be obtained by multiplying this expression by w/m .

We motice that V(yb'ﬁPSJ < V[HE:S] and that provided

2
¥ ¥
Ir Y 2
Y ml=-3 <p¥ (4,2.32)
0 & 1T T w 0

- a condition which is easily satisfied - it is also true that

?(ygps) < V(yl'j's) . Despite this, the only advantage of modified Poissen sampling over

ordinary Poisson sampling is that it ensures a non-empty sample. If the sample
selected iz much smaller (or much larger) than the target size, modified Poisson
sampling provides no remedy and will therefere receive no further consideration in
thiz monograph. A procedure which ensures a more stable sample size is described in

the following Subsection.

4,2.6 Collocated Sampling

Collocated sampling is similar to Poisson sampling, but reduces the variation in

sample size by requiring the random variable ¥, to be uniformly spaced instead of

uniformly distributed over the interval [0, 1} . A random ordering L

[LI =1, 2y vuny H} is chosen with equal probabilities, and a random wvariable 8 is

alsc selected from a uniferm distribution over the Interval [0, 1) . TFor each I we
then define
9=
) LI+ 1

g A (4,2,33)
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The Hopvitz-Thompson estimator is still used, but now no simplification of itg

variance formula is possible. The variance of yés , formed analogously to (4.2.22)

is therefore

i) - L) o 55 (r ey 2
v(y!.) = 1-m) £ + 2 Y fm_-nm . (4.2,34)
Cs 71 I s I7=1 IJ Id “ITTJ
JrI
An unbiased variance estimator is well known to be
2
yi 111: .«rri'rl. Vs
U(yés} = z (l—'lfi) -5 + 2 ZZ T-l—l . (4.2.35)
K e S T,
its "11 1,5¢e g J

i
The ratio estimator ygs » formed analogously to (%.2.25),has approximate mean square
error (see Appendix B) given by
( ] N ( ] 'YI Y ?
vlpr) = ¥ (1w )|=- o
s =1 I I TrI n
V ¥
- i ¥|l"g ¥ 2
v2 TF (erm ) - G - Rt Byt s (8.2.36)
IJ=1 I
T

where POC‘ is the probability of selecting an empty sample.

The conventional estimator of this approximate mean square error is

2
d

z"
n

lege) = T ) 5 -

@
m
3

!

—J_ﬂ’;j_ﬁﬂ“' Y g E:Z B n2 (4.0
+2.Z.E . Ty § iy B % -2.37)
e td i J
7>t
A more stable estimator than (4.2.37) may be obtained by multiplying the First
term of (4.2.37) by wn/m and the second term by n(n-1)/m{m-1) .

The expressions for and for PG were devised by Brewer, Early and Hanif

IJ C

(1980) (see Appendices D and E). They are most convenlently expressed in terms of a

population listed in ascending order of size, so that mnE ., 2.0 = Ty - Writing

MTI = [N'!TI] + KI where [4] denotes the integral part of 4 , they showed that

om 1 (m -1} 4, [ J]ﬂnax{ (& ~x;) .0}
T = -1 .

(4.2.38)

Clearly also
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- ‘ z, (4.2.39)

1
= P lo1de ,
0 |, o

where {Pwlel iz the probabil:i':ty of an empty sample given a particular value of @ .

Approximate expressions for =

7 and PDC ean be obtained on the assumption

that the Ty are integer multiples of gt , in which case kI =0 for all I , via.
Ty [N'rrJ—l)
T T TR (4.2.40)
and
" T = “I(“J_l)
IJ I'J N-1 * (4.2,41)

>
where ‘HJ ’ITI B

Even when the Tr are not all integer multiples of vt » the use of (4.2,41) for
{HIJ'“IKJJ in the fom_ulae (4.2.34) and (4.2,.36) vesults in good approximations for

th i ! : i i
e variance of Yoo and the mean square error of yé’s - With this same approximate

formula for Trr s POC' becomes

N
1 . .
F"-Itl [I-—N‘HI) if mll_n [I—H‘I'II] >0,
B _ =
(¥l (4.2,42)
0 otherwise.

oo 18 much smaller than the corresponding P0 for Poisson sampling,

4.2,7 Lahiri's Estimator

The use of Procedures 45 and %6, for which the probability of selscrion of a
sample is proporticnal to its total measure of gize
estimator

» ensure that the conventional ratic

¥" = [12:1 y,E] / LZ:J. si] 4

(4.2.43)

is unbiaszed.

When n is large, the probabilities of selecting all particular samples tend ro
equality, and the variance of ¥" may be evaluated and estimated using the Taylor

expansion expressions familiar from equal probability sampling.

When, however, » is small and the inequalities in selection probability cannot

be ignored, difficulties arise in the estimation of variance, For =n = 2 the

™
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variance is

2
¥ (7ar)
1 ™ 3
Yy = T IEJ;L 7'?1—*'?‘; - ¥°, (4.2.44)
L=

J>I

Rac and Bayless (1369) used model (1,8,.5) and obtained the following expression

for the expected variance of (4.2.43) for = = 2 :

2y 2y
N P'+P N

BV = o@D Y Y Sl - § A (,2,u5)
> I°d I=1

They also found that for »n = 2 the Lahiri estimator was more efficient than the

Horvitz-Thompson, Raj, Murthy and RHC estimators when either

(a) few units in the population had large sizes relative te the sizes of
remaining units in the population, and samples contaiming those units

gave good estimates of Y , or
(b) the coefficient of variation of the benchmark variable was small.

For other populations it had peor efficiency. Raj (1954%) and Sen (1955) provided an

unbiased variance estimator for 7 = 2 , namely

w2 L1 2 1
Pz, [Eyl y2] +2Nyly2_ . (4.2.u48)

Lis -
vy = y
This can take negative values, and was found by Rac and Bayless (1968) to have very

peor stability. The modification suggested by Sen (1955), replacing negative values

of vR(y") by zero, did not lead to any substantial improvement.

Bayless and Rao (1870) in extending their earlier investigaticns to the cases
n =3 and ® =4 , arrived at the same conclusions as for 7 = 2 , both with respect
to the efficiency of the estimator of total and the poor perfeormance of the variance
estimators. The reader is referred to that paper for variance formulae and
estimators.

More recently Rao and Vijayan (1977} have preposed twe new umbiased variance

estimators which for some populations are nonnegative. For the case #n = 2 these

estimators coincide and take the form

v (™ = -z (8)a 5 ot (4.2.47)
AL AL TR i T P B o
it
where
zZ Z
a, (8) = —— r———- (N—l;i . (4.2.48)
12 zl+52 _zl+32 A

Tor n » 2 the first estimater suggested is
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- 7] e A
(g™ = - L}y 2.3, - (4.2.549)
al igee iy TR 5
i
whepe
_ (n-1)(@-n) 2 (ne1)(n-2) 4. 2.50
i D@D 2 T ADE-2) ( )
and

a..:z./[ﬂ'l) S [F z} 1. (4.2.51)
i n-l sa%,j 1és K

The second estimator suggested is

2
m-1 vy ¥y
v (y") =2 [Z z]—-—Z [E z} Y oomal|E - A L (4,2.52)
a2 rds K|l Kez ¥ i,0ee TE9B Py
J»t

This second estimator is computationally simpler than the first, but is consistently
less effliclent, and usually has a greater probability of producing a negative
estimate. Both estimators are typically (though not invariably) much more efficient

than uR(y") .

4,3, COMPARISON OF SAMPLING SCHEMES USING SPECIAL ESTIMATORS

The criteria for comparison will be as in Chapter 3; iimitation to the case
n > 2 , simplicity in selection, simplicity in variance estimation, the efficlency of
the estimator of total, the unbiasedness and stability of the variance estimator and

rotatability. ALl these concepts have been described in Chapter 3.

4.4. LIMITATION TC SAMPLE SIZE # = 2

When the Horvitz-Thompson estimator was used, the limit te the number of units
which could be selected in sample was P_l = &/2 +  This was because the
max max

probability of its inclusion in sample, nfhax ,» was not allowed to exeeed unity. For

four of the seven sampling procedures considered in this Chapter {Procedures %, 25, 45
and 46) this limit is not relevant and the number of units in sample can be set at any

value up to N itself. Tor the Poisson sampling group (Procedures 27, 38 and 29) the

upper limit to the expected number of sa.mple ynits remaing Pr_n‘;:x N
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4.5, SIMPLICITY IN SELECTION FRGCEDURE

It was mentioned In Chapter 3 that systematic procedures have an obvious
advantage over all cther procedures in simplicity of selection procedure. The Raj and
Murthy sample schemes use a selection procedure which is hardly more complicated than
systematic selecticn. The RHC Procedure 2% imvolves the formation of # random
groups., It is therefore slightly more tedious than that of the Raj and Murthy schemes
but perhaps slightly easier to apply than the rejective Rao-Sampford Procedure 11.

Poisson Sampling uses a series of N binomial trials to determine whether each
population unit is te be included in sample or not, Although this is more tedious
than the procedures mentioned abeve, it is appreciably simpler to use than those which
involve iteration., Collocated sampling is not feasible without a computer, at least

for the comparatively large populations fer which it was devised.

The Ikeda-Midzuno Procedure 46 appears to be somewhat less cumbersome than
Lahiri's Procedure 45 if a sample selected with probability proportional to aggregate

size is desired.

4.6. SIMPLICITY IN VARIANCE ESTIMATION

In Chapter 3 it was pointed out that for procedures using the Horvitz-Thompson
astimator, the problem of estimating variance was virtually identical with the problem

of determining the “IJ . In consequence it was the case for most, though not all,

procedures that the simplicity of the variance estimation procedure was directly

related to the simplicity of the selection procedure.

For the estimators discussed in this Chapter the variance estimation formulae for
these procedures have already been set out in equations (4.2.5), (4.2.10), (%.2,19},
(4.2.24), (4.2,27), (4.2.35) and {4.2.37). It will be seen that Raj's estimator, the
RHC estimator and the estimators for Poisson Sampling all have quite simple variance
estimators for any 7 . The same is true for collocated sampling provided the
approximate formula {(4.2,40) is used., The Murthy variance estimator is simple for

n = 2 but becomes rapldly more complicated as n Iincreases,
It has already been mentioned that ¢ _,(¥") is simpler than val(y”) for

estimating the variance of Lahiri's estimator.

4.7. EFFICIENCY OF ESTIMATOR OF TOTAL

In this Section the efficiency of the various procedures will be considered

empirically and semi-empirically using the model (1.8.5).




~

L itate comparison with the formilae relevant to the use of the
o ]
Wetimator with exact selection procedures, the symbols Trs M, 5 and

WL denote MPyp, NP, and so on, Note that there arve not the

o
W DL R -
Gf Inclugicn in the sample for either the Raj-Murthy or for the Rao-

an Procedures although they do have this meaning in the Poisson sampling

4.7.1 The Raj and Murthy Estimators

Writing Ty for 23[ in (4.2.3), (L.2.4), (4.2.8) and (4.2.9), we have fop
%= 2
¥ ¥
= 1 2
tmean =¥ (2+ﬂi) %I'* {2‘“1J ‘; > (4.7.1)
2
N Y i
V[t ]:l Zz TTﬂ[n—nﬁrr 2L _ g 4
J71.2
mean 8 s 19 T JJ N ( )
JET
2 yl yQ
3 e [2—77)——1— 2-m —_— L.7.3
symm " bw -m) 2 7 ( 1) Tl (4.7.3)
and
) 2-m - 2
oy =% $F wp, L0 1 L (%.7.4)
ym Tl Id M—WI—WJ TI mf LA

JEL

Rac and Bayless (19g9) used the model (1,8,5) and cbtained the expected variances
of th ti
e estimators tme and tsymm > frem (4.7.2) ang (4.7.4), viz,

an
E'*[V(f; ) = 02 2y X ry-12
meanl] = T (2/2) LI e ) (4.7.5)
j#I
and
¥ 2-7 -y
Plv(e, 0] = o’z DI e S 8.7
Sy Igsn 1 kmem (4.7.6)
JEL

Hanurav (1966b) and Vijayan {1966) compared the relative efficiencies under the

mnodel (1.8,5) of the Horvitz-Thompson estimator, yéT and ts - They proved that

the Horvitz-Thompson estimator was more efficient thap ¢ for vy =1 Rac
symm '

(1966b) further proved that yﬁT was more efficient thanp yéH for all valyes of Y

Rao (1966b) and Vijayan (1966) also ed that ¢
prov at the tsymm Wag better than yﬁT for
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Extensive empirical and gemi-empirical studies were carried out by Rao and
Bayless (1969) for the case n = 2 - @nd by Bayless and Rac (1970) for the cases
n=3 and m =4 . In their empirical studies they found that Murthy's estimatop yag
nearly always more efficient than the Horvitz-Thompson estimator, except iIn ceptain
artificial populations, In thein semi-empirical studies of the case n = 2 , the
values of Y which they used were 0.5, 0,75, 0,875 , and 1,0 + For all these
values of Yy , Murthy's procedure was consistently more efficient than Raj's
procedure. Raj's estimator was usually more efficient than the Horvitz-Thompson
estimator for ¥ = 0.5 and usually less efficient fon Y > 0.5 . Murthy's estimator
was more efficient than the Horvitz-Thompson estimator for Y £ 0.875 and less
efficient for ¥y = 1.0 . For ¥ = 0.875 Murthy's estimator was nearly always the

more efficient but the difference was very small,

For # =3 and & Bayless and Rao investigated the cases Y = 0.75, 0.8Y5 apd
1.0 only. Raj's estimator was less efficient than the Horvitz-Thempson estimators in
almost every case. Murthy's estimator was again mere efficient than the Horvitz-

Thompson estimator for Y = 0.875 ,

Tew of the differences in efficiency between Murthy's estimator and the Horvitz-
Thompson estimator for natural Populations exceeded 10% . The same was true for the
comparison of the Raj and Horvitz-Thompson estimators,

The close agreements between the empirical and the semi-empirical results of Rao
and Bayless tend to suggest that the form of the linear stochastic model assumed by
them is reasonably appropriate. However, Samiuddin e al (1978} studied the behaviour
of ts . yéT and several other estimators with six semi-empirical and six
artificial populations, The Horvitz-Thompson estimator was found to be reasocnably
efficient in all cases. Murthy's estimator was reasonably efficient for the semi-

empirical populations but somewhat less satisfactory for the artificial ones.

4.7.2 The Rao-Hartley-Cochran Estimator

When & is a multiple of 7 » the Rao-Hartley-Cochran variance estimator attains

the minimum value (4.2.18). The expected variance of the RHC estimator is (Rzo and

Bayless, 1969)

I
E*V[yéHC} = 020001(3/2)2Y ¥ [Q—WI)ﬂiY 1 . (4.7,7)
=
where
vty wwl
S it S 1 2
“ "7 3 7 and o) = gmess
n-i-N,

A corresponding formula for n > 2 is given by Bayless and Rao (1870).
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b, was: mome, equally or less effieient than the RHC estimator according
: -equal to, or less than 0.5 respectively, Further

estimatoy: ave given by Pedgaonkar and Prabhu Ajgacnkar (1978). Pathak (1968) also
proved that for large ¥ the RHC estimator is less efficient than Murthy's estimator
for vy = 0.5 . Singh and Kishore (1975) showed that after taking expected cost into
account the Hansen-Hurwitz estimator based on multinomial sampling was sometimes

superior to the RHC estimator.

Rac and Bayless {19689) and Bayless and Rac (1870) in their empirical studies for
n=2,3 and 4 concluded that the RHC estimator was consistently less efficient
than Murthy's estimator, and that it was sometimes slightly more and sometimes

slightly less efficient than the Horvitz-Thempson estimators.

In the semi-empirical studies ecarried out by the same authors, the BHC estimator
was found to be comsistently less efficient than both the Murthy and the Horvitz-
Thompson estimators, Its efficiency vis-3-vis the Murthy estimator was not greatly
affected by the value of vy , but vis-i-vis the Horvitz-Thompson estimators it was
least efficient for Y = 1 . As with Murthy's and Raj's estimators, most of the
differences were only of the order of a few percent, except for n = 4% where

differences of 20% and 30% were not uncommen.

4.7.3. Poisson and collocated sampling

Two empirical populatiens were used by Brewer, Early and Hanif (1980) to compare
Poisson and cellocated sampling with other unequal probability sampling strategies.
The first of these was the population of W9 cities listed in Cochran (1963), p. 156,
and the second that of 270 blocks listed in Kish (1965), p. 624. The Cochran

population contained one exceptional unit with very low T and high ratic II/ﬂI .
The Kish population contained no such maverick.
The strategies compared were as follows:

(i) Sampling with replacement (that is multinomial sampling) with the

Hansen~Hurwitz (1943) estimator.

(ii) Sampling without replacement (m Ffixed) with the Hovvitz-Thompson

(1952) estimator. For this strategy the asymprotic variance formula

2
v ¥
4 = w ﬂ L - 1
V(yH.TJ = Igl TfI[l - 'ﬂ'I] TTI n (1.8.4)

was used.
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(iii) Poisson sampling with the unbiased estimator y;s .
(iv) Poisson sampling with the ratio estimator y;s .
(v) Collocated sampling with the unbiased estimator yés .

(vi) Collocated sampling with the ratic estimator ygs .

For Poissen and collocated sampling, varlances were calculated both excluding and

including the terms Pofz, POCIQ , s0 as to indicate the importance of the non-zero

probability of an empty sample.

For collocated sampling the mean square errors were calculated using

(a) the exact Ay, values given in (4.2.38),

(b) the approxrimate Try values given by {(4,2,40),

(c) the approximate Trg values given by (4.2.40) wherever these exceeded

zero, but otherwise replaced by zero,
In every case the probabilities of inclusion in sample were taken te be proportional
to the Z-values supplied, The use of the approximate formula (4,2.40) for the L

resulted in reascnable approximations for the variance and mean square error formulae

for collecated sampling. The better of the two approximations was achieved when the
negative values obtained from (4.2.40) are set equal te zero, but the advantage held
only when # is small.

The results based on exact Lr7 values are given in Tables 4.1 and 4.2. Socme

highlights of these are as follows:

1. When the probability of an empty sample is small or Zerc, the mean square
epror of the ratio estimator for Poisson or collocated sampling is comparable with the
vapiance of the Horvitz-Thompson estimator when m is fized. (The calculations
actually show the vatic estimator mean square error to be smaller, but this is due to
the Taylor serdies approximation.)

2. When the probability of an empty sample is of the order of 0.003 or
greater, the contribution te the variance from the empty sample term is too large to
be ignored.

3. The probability of an empty sample is at least an order of magnitude smaller
in collocated sampling than in Poisson sampling, and becomes exactly zero for large

samples.




oy

95
TABLE 4.1
B
+hivs -Comparisona. of Efficiencies for Different Strategies
- ) . ) - E
RSN with Hansen-Hurwitz ppeur as Standard 9 lg
R w
. I'(_D' IE| —_
o
-~ Cochran's Population Kish's Population .
Strategy ¥ = 48 N = 270 S :: . 8
(=]
5 £ 2 g
™~ 2] > vl
m=2 5 9 n=2 10 20 30 " s o &
= B
Hansen-Hurwitz ppsur 1,0000 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 w0 - ;{-c- D §
a g =1 3 =N
o
Horvitz-Thompsen Tpswor i e x x )
(fixed sample size) 1,0037 1,0151 11.0307 1.0054 1,0511 1.114& 1.1859 B & 3, ~ @
3 E} 2@ 5
Poisson ! B @ o
_ E . s s 8
- Unbiased 0,1812 0.2022 0,2391 ¢.0817 0.0877 0.0967 0.1078 g g - E]
- Ratio % f’} 'g b
. 2 8 = o™ « z
- lgnoring P.Y 1.0075 1,8108 1,03u6 1,0108 1.0571 1.1212 1.1935 o L 3
. =1 = ™ g; 0
: : " 5 3 d
- Including Fy¥ 0,453% 0,9380 1,0344 0.2472 1.0532 1.1212 1.1935 g o I ¢
Collocated & 'q
- Unbiased 0,3127 0.3627 0.4300 0.1303 0.1448 0.1592 0.1776 B L?o %
- Ratio o - 0 -
~ W x £ oy
& [} ) [
I i F 2 i 2 Z & N a
- Ignoring Py ¥ 1,0169 1,0295 1.0472 1.0744 1,1519 1.2375 1.3287 E 3 " =z 3
2 z o = s 0
- Including P{)C'Y 0.874% 1.0282 1.0472 0.5771 1.1519 1.2375 1.3287 4;‘ s o~ = %
R E ;:c! IO IO
- B - . 2
Q g " 4 X +
0 g @ wy =
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ngg Q!ry small, sampling with probability proportional to
ﬁgptuuinntaa sampling with equal probabilities, Cochran (1953) showed
that the nﬂnmentinnal ratic estimator with equal probability sampling was more
effic1ent than the Horvitz-Thompson estimator with fpswer for low values of Y with a
hreak~evnn point cloge to ¥ = % . While much the same kind of conclusion was
reached for the RHC estlmator, the contrast here is much more severe. The RHC
estimator closely resembles the Horvitz-Thampson estimator, while the conwventional
ratio estimator is entirely different. Similarly the RHC Procedure 25 is nearly an
exact Spswor scheme, while Procedures U5 and L6 approximate equal probability

sampling.

4.8, UNBIASEDNESS AND STABILITY OF VARIANCE ESTIMATORS

4.8.1. The Raj and Murthy Estimators

Rac and Bayless (18639) used the model (1.8.5) to find the stability of variance
estimators (%.2.5) and (4.2.10). They had shown that the leading terms in the

expected variances of (4.2.5} and (4.2.10) for = = ? were

N 2
2 3 4 4 Ty=2 2y~
E*E%v [tmean] = g7 0 (8/2) i 12;2& nIﬂJ{2—ﬂ ] [FIY +nIY EJ s (4.8.1)
TET
and
{2- (2-r ) (2-7-7,) 2
E"Efvz(tsym}] = ac%(z2)"Y ZZ g [ﬂf_Y'zw?'QJ . (4.8,2)
I,d=1 (4-m -7 )

JEL

The leading term in the expected variance of (4.2.11) is also presented here:

E*F&v Symm)] = “g-va (zs2)* ZJ‘_[, T, [H "I'UJ) [E-TrI] [Z-HJ] [Trf.Y'zwj.T'Q]? . (4.8.3)
J I
Rao and Bayless (1969) and Bayless and Rao (1970) made semi-empirical and

empirical studies of the stabilities of variance estimators for =n = 2, 3 , and 4 .
They ceoncluded from their semi-empirical studies that Murthy's wvariance estimator was
consistently more stable than the Sen-Yates-Grundy variance estimator. This was
particularly the case for the smaller values of ¥ . Murthy's variance estimator also
tended to be more stable than Raj's variance estimator, especially for the larger

values of ¥ and of n .

In their empirical studies Rac and Bayless concluded that Raj's and Murthy's

variance estimators were essentially equivalent in stability for n = 2 , but that
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Murthy's was usually slightly more stable for n = 4 . Both these variance estimatq
were almost always more stable than the Sen-Yates-Grundy variance estimator, ang thef

gains were often appreciable.

4.8.2. The Rao-Hartley-Cochran Estimator

Rao and Bayless (1963) and Bayless and Rao (1970} used the linear stochastle
model (1.8.5) to derive the expected variance of the RHC variance estimator. The

formulae, which are extremely complicated, are given in their 1969 paper for n = 2

and in Appendix B of their 1970 paper for any n .

In their semi-empirical studies they also concluded that for # = 2 , the RHC
variance estimator was consistently more stable than the Raj, Murthy, and Sen-Yates-
Grundy estimators for all values of ¥ ; however the gains over Murthy's variance
estimator were not large., For # = 3 and % , the RHC variance estimator was still
almost always more stable than the Murthy variance estimator for <y = 0.875 , but
for ¥ = 1 the reverse was the case. It was consistently more stable than the Sen-
Yates-Grundy variance estimator for all values of ¥ . In their empirical studies
they found that for all values of # considered, the RHC variance estimator was more

stable than the Raj, Murthy, and Sen-Yates-Grundy variance estimators.

These special variance estimators are much more stable than the Sen-Yates-Grundy
vapiance estimator, even when the joint probabilities of selection are chosen
specifically to stabilise the latter. This result is consonant with Raj's own
findings {1956a) and is also heuristically plausible in that the coefflcients of
{[yl/nl]—[yzfﬂg])Z for all these three variance estimators are usually close to and
always less than unity, whereas for the Sen-Yates-Grundy variance estimator the
coefficients are [ﬁlﬂznlé l} , which tend to be rather variable (zee¢ for instance
Table 3.1).

4.8,3, Lahiri's Estimator
It has already been mentioned that val(y”) is appreciably more stable than

) 2(y") for estimating the variance of Lahiri's estimator.

4.9, ROTATABILITY

Raj's and Murthy's sample schemes are not appropriate for rotation except using
the Alternative III mentioned in Section 3.8. Samples selectsd by the Rao, Hartley
and Cochran Procedure 25 may be rotated using a slightly modified version of
Alternative I. Since selection within each of the #» groups occurs independently,

each selection may be rotated around the population units allocated to that groub,
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Measure of Size, ZI.A WA

vay was presmnted by Brewer, Early and Joyce (1972).
b )
‘MHeasure of Size, ZI

COMPLETELY ENUMERATED SECTOR

Z
0 o 1
I‘I hd

FIGURE 4.2. Two ways of rotating a mps Poisscn sample.

contained in the area AOB . A fixed proportion rotation, such as 20% , gives the

50% SAMPLE new sample area as 4'0B' . A usually preferable alternative is represented by

A"0"BY . This gives fast rotation for small units and slow for large, Similar
- —— procedures may be used if the probability of selection is any function of size.
20% !
_— 1 A formal description of this method was presented by Brewer, Early and Hanif
. I
10% { L (1880}, Choose an arbitrary fixed mumber ¢ and (for all 7T ) a uniformly
6.0 0.1 0.2 0.5 distributed random nunber r, in the interval [G, 1) . Then the Ith unit is in

Random nunber, rI >

PIGURE 4.1. Stratified random Poisson sample. sample if r, < max{0, n -l+e} or o = ro< min{nI+c, 1} ; that is, the Ith unit

I I

is selected if {“I' rr} lies in the shaded area in Figure L4.3. Since re is

Figure 4.1 shows how Poisson sampling works for a stratified random sample with mmiformly distributed over {0, 1) , the probability that the Ith unit is selected

three sampled strata and a completely enumerated sector. The units of the population is max{o, T -4} + min{nI+c, 1 -a = . for all I , as required.

correspond to points on the chart specified by » and Z . The sample consists of 1
all points in the chart to the left of the thick line. Rotation can be effected by

shifting the sample area to the right. If the shift is 0,02 in » , all units for
which r is less than 0.02 are rotated cut of sample and replaced by units for

which r lies between W[ZIJ and H[ZI} + 0.02 where n(ZI] is the probability of

inclusion in sample of a unit with size ZI . This would give a 20% rotation in the

lowest sampled stratum, 10% in the next, and 4% in the highest. The chart should
be thought of as cylindrical, so that for the completely enumerated sector where

TT(ZI] = 1.00 , the new limit of ‘IT(ZI] + 0.02 or 1,02 brings in again those units
which would otherwise be rotated out, giving nil rotation in the completely enumerated
sector.

Figure 4.1 can obviously be used to select other samples of various sizes with

minimum or maximum overlap, and shows at a glance what is feasible and what is mot

feasible about, say, different rates of rotation for samples with minimum overlap.
FIGURE 4.3. Diagram showing selection region.

Figure 4.2 illustrates two different ways of rotating a sample drawn with

probabilities proportional to size (fpe). The oripinal sample is that of all points
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mple with (updated) values ] for each 1 , we can

I
p between the samples by varying the value of ¢ ,
0=e+d <1 and

Suppose
,qur.the revised sample to ¢ + d where
’ w C} the probability of inclusion of the Ith
» fakuu the values set out in the following table.

unit in both

samples,
dz L d = L
d = 1-w} 0 min{‘lr}, nI—cl}
- (4.9.1)
dz il min{w_, v}-1+d} Tl
Noticing that when d = T, and d= l—ﬂ; ,
w} S min[ﬂI, W}—ltd] + min[ﬁ}, nI—d) .
we have that
&
§ BAd) = T nin(m, 1d v+ ¥ min(7,, ml-1+d) (4.9.2)
I=) T=d wial-d

is the expected number of population units in the overlap of the samples, so that

%'EI(d) will be a measurs of the expected proportion of original sample units

retained.

The maximum expected overlap is Y min(ﬂI, ﬂiJ which occurs if d =10, 1.

I
The minimum expected overlap will he approximated closely in practice by taking

d =%, and its value will be close to ¥

) [rr +T —J.]
nI+nI>l

(see Appendix C}.

These maximum and minimum overlap situations may be represented diagramatically
as foliows;

MAXIMUM OVERLAP MINIMUM OVERLAP

1 1
IN BOTH ‘ N N
SAMPLES BOTH BOTH
+ + IN IN
wat mpt FIRST SECOND
NOT IN
EITHER
NOT NOT
SAMPLE R N
_ EITHER ETTHER
Q PI > 1 0 PI -+ 1
FIGURE 4.4,

Diagrams showing maximum and minimum averlap.
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An alternative wmethod of achieving minimum overlap

comparable} is illustrated in Figure 4.5,

FIGURE 4.5,

This second method of achieving minimum overlap is more powerful than the first in

situations where the
in magnitude.

which Ty

large units which in the first survey lie in the completely enumerated (CE) zeetor.

In this sitwation maximum and minimum overlaps are achieved by using the diagrams set

out in Figure 4.6.

is defipable, and that w!

1

[when the T

+ N
FIRST

N
BOTH

IN
SECOND

NOT
IN
EITHER

]
ﬂI and ﬂI

To simplify the discussion suppose that

I

r_* 1

I

goes on inereasing to a maximum of unity for

An alternative method of achieving minimum overlap.

are roughly proportional but differ substantially

F'

I

T and w

%WI for all I for

The annotations in these diagrams indicate whether the regions are

CE, 'IN' sample or 'OUT' of sample on each occasion.

MAXIMUM QVERLAP

P
ﬂI—l
1, CE
2. IN
1. CE
2, OUT
T,=1,71=%§
I I 1. IN 1. IN
2. 1N 2, OUT
L. 0UT
2. 00T
n -
o] H 1

FIGURE 4.6,

=1

rhTE

0

MINIMUM OVERLAP

1. CE
2. IN
1. ¢cE
. ouT
1, IN
1. IN 5. IN
2. our 1. oUT
2. IN
1. our
2. QUT
n >
I 1

Maximum and minimum overlap where samples are of markedly different size.
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shieved in the control of rotation and respondent
ohvious. They are applicable only to Peisson and
t&gﬁe!ted in Chapter 6 that these procedures are for
sriate for use in large scale surveys of businesses,
Sﬁlmé ;nlfs differ greatly in size and it is not unusual
Leé" in use simultaneoﬁsly which have been selected from the same

" Another approach to achieving a desired overlap between successive Polsson
samples is to stipulate & new inclusion probability for each population unit,
conditional on whether or not that unit was ilncluded in the first sample. This
Keyfitz (1951) inspired methed was used by the US Bureau of the Census {0Ogus and
Clark, 1971) and yields the same overlap as the method first described, but does not

share its simple control properties.

As already mentioned, the method of rotation and updating for controlling overlap
between successive samples applies equally te collocated sampling. The only
complication arises when units enter and leave the population between the selection of

the original and revised samples. In these cases we must allow the values of r. to

change between samples. We can minimize this problem (improving on the procedure
suggested by Brewer, Early, and Joyce, 1972) by defining a new ordering H to replace

L as follous.

Assume that I new units have been added to the population and X% original

units deleted. There are two cases to congidep,
Case 1: I >k

The population labels of the K deleted units are attached at random to k of
the 7 new units. The remaining 7 - k new units are assigned populaticn labels

LI = Ntl, ..., F+l-k . Cheoose, using simple random sampling without replacement,

T - k distinet integers Hy 5 ..., Ay g from the set {1, ..., N+i-k} . Then let

the Jth largest of the remaining N - k integers define the new label value HI

where I is the original population label of the surviving units with the Jth
largest value of LI .
Case 2: 1=k

The population labels LI of a random sample of ¢ of the %k deleted units

are attached at random to the 1 new units. The remaining unattached % - [
population labels I are destroyed. Then let the integer J define the new label

value HI' where I {is the original population label of a new or surviving unit with

the Jth largest value of LI .
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We have thus defined K, For each unit in the new population, and the values af¥ .

E are uniformly distributed over the set {1, ..., W+l-k} . TFor each I as abave,

set
B+HI—1
= . {4.9.
b= wE 3

Provided k and [ are small in comparison to N we may assume tI = r, for any
surviving unit, and thus use the result of Poisson sampling te control overlap.

Collocated sampling thus retains the most desirable properties of Poisson
sampling (simplicity of selection and estimation of variance, and contrsl over the

sample). The my; can be avaluated gquite straightforwardly and are given in

(4.2.40).

4.10. SUMMARY

In Tables 4.3 and 4.4, summaries of the properties of the procedures using

special estimators are given for # = 2 and »n > 2 rvespectively.
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