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PREFACE

Work for this monograph on sampling with unequal probabilities was started when
Muhammad Hanif was a visitor to the then Commonwealth Bureau of Census and Statistics,
Canberra, in 1969. It remained in abeyance until he again visited Canberra, this time
the Australian National Univérsity's Survey Research Centre in 1978 as Visiting
Fellow. The work was substantially completed when K.R.W. Brewer visited El-Fateh
University during January 1980 as Visiting Professor. Finally, in 1982 the
Bibliography was revised and corrected, and a number of references added which do not

appear in the text. These are indicated by an asterisk (#).

The authors are indebted to Mr. E.K. Foreman and the sampling staff (past and
present) at the Australian Bureau of Statistics for their help and encouragement and

to Mrs Barbara Geary for her excellent mathematical typing.

Canberra K.R.W. Brewer

May 1982. Muhammad Hanif
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CHAPTER 1

AN INTRODUCTION TO SAMPLING WITH UNEQUAL PROBABILITIES

1.1 SOME BASIC CONCEPTS

Most survey work involves sampling from finite populations. There are two parts
to dny sampling strategy. First there is the selection procedure, the manner in which
the sample units are to be selected from the finite population. Then there is the
estimation procedure which prescribes how inferences are to be made from the sample to

the population as a whole. These inferences may be either enumerative or analytical.

Enumerative inference seeks only to describe the particular finite population
under study; analytical inference in some sense to explain it. Thus in dealing with
a population of households we might attempt to enumerate the mean number of persons
per household, the total number of persons in the population, the proportion of adults
with tertiary education, the mean household income, and the ratio of total income to
total number of persons (that is, per capita income). Enumerative inference typically

concerns itself with such means, totals, proportions and ratios.

Viewing the same population analytically we might seek to regress household
income on such variables as number of employed adults, educational level of household
head, and dummy variables indicative of geographical location. Regression implies an
explanatory model, and analytical inference consists of specifying what model is
appropriate, estimating its parameters, and (at least in principle) checking to see
whether the fitted model adequately describes the s@mﬁlg; and hence the population
from which it was selected. Estimation of simple and multiple correlation

coefficients also implies a regression model.

It is customary to distinguish between enumerative and analytical inference in
terms of the complexity of the population characteristics being estimated. Estimating
a mean is regarded as an enumerative problem; estimating a regression or

correlation coefficient as an analytical one. But if the mean in



question is a parameter of a simple explanatory model, the inference is in fact
analytical. Similarly if the regression or correlation coefficient is being used as a
purely descriptive measure without any explanatory significance, the inference is
enumerative. (One may question the usefulness of estimating such coefficients in

these circumstances, but not the fact that such estimation is often carried out.)

It is therefore the use of a statistical model for explanatory purposes which
separates analytical from enumerative inference. (Such models may be used, especially
at the sample design stage, to ensure that a particular piece of enumerative inference
can be carried out with reasonable efficiency, but unless that enumerative inference

is robust against model breakdown, it will not receive general acceptance.)

Analytical and enumerative inferences therefore proceed along entirely different
paths. For analytical inference the model used provides its own probability
structure, in terms of which the inference can proceed. This is the same methodology
as is used in almost every other area of statistics. For enumerative inference a
quite different probability structure is generally used, which depends on the manner
in which the sample is selected. This is the classical finite population sampling

inference deriving from Bowley (1913) and developed by Neyman (1934).

The co-existence of these two methods of inference is a matter that impinges very
sharply on samples drawn with unequal probability. As long as all samples are drawn
with equal probabilities the two forms of inference are equivalent (apart from the
finite population correction) or can be made equivalent. Thus, for instance, in a
stratified sampling situation where the sampling fractions differ from stratum to
stratum, the two inferences can be made equivalent by considering each stratum as a
separate population. A self-weighting sample drawn in two stages can also be
considered, from the standpoint of analytical inference, as though it were an

experimental design problem with the block effects being random variables.

But when each unit in a population has its own individual probability of
inclusion in sample, there is no simple way in which the two methods of inference can
be made to coincide. For analytical purposes the probabilities of selection are
irrelevant. For enumerative inference they are crucial. This monograph is basically
concerned with the situation where the probabilities of selection are relevant, and
therefore with enumerative inference. Population models will be called on for
comparative purposes for help in optimal design, and to shed light on the estimation
process; but they will not be central to the problem, and any estimation of their

parameters will be a means to an end rather than an end in itself.

The use of unequal probabilities in sampling was first suggested by Hansen and
Hurwitz (1943). Prior to that date there had been substantial developments in
sampling theory and practice, but all these had been based on the assumption that the
probabilities of selection within each stratum would be equal. Hansen and Hurwitz

demonstrated, however, that the use of unequal selection probabilities within a

stratum frequently made for more efficient estimators of total than did equal
probability sampling. They proposed a two-stage sampling scheme. The first-stage
selection took place in independent draws. At each draw a single first-stage unit was
selected with probabilities proportional to a size measure (the number of second-stage
units within each first-stage unit). At the second stage, the same number of second-

stage units was selected from each sample first-stage unit.

Because it was possible for the same first-stage unit to be selected more than
once, this type of unequal probability sampling (ups) is generally known as sampling
with replacement. Since, however, the independence of the draws is not a necessary
condition for the units to have a non-zero probability of being selected more than
once, another name first suggested by Hartley and Rao (1962) will be used instead.
This is multinomial sampling, a term justified by the multinomial distribution of the

number of units in the sample.

This scheme compared favourably with two other two-stage sampling schemes; these
used unequal probabilities of selection at the first stage, and then took either a
fixed number or a constant proportion of sub-sampling units from each selected first

stage unit.

This first suggestion for the use of ups was thus already associated with the
technique of multistage sampling and sampling with probability proportional to size
(also known as pps or sometimes as Tps sampling). Unequal probability sampling can,
however, be used in single stage designs, and need not necessarily be with probability
exactly proportional to size, although some kind of size measure is almost always used
as a starting off point for assigning selection probabilities. A number of without
replacement selection procedures result in probabilities of inclusion in sample which
are only approximately proportional to size, and sometimes it is actually desirable to

select with probability proportional to a power of size.

Practically all the published literature on ups to date has been concerned either
with sampling with replacement (multinomial sampling) or sampling without replacement.
It is these two cases which will be considered in the main portion of this Chapter.
Chapters 2, 3 and 4 will be taken up with a detailed discussion of procedures for
sampling without replacement. A full description of each procedure will be found in
Chapter 2. Those procedures specifically designed for use with the Horvitz-Thompson
(1952) estimator will be compared in Chapter 3, and other procedures in Chapter 4. In
Chapter 5, ups is considered in the context of multistage sampling, and an algorithm
is presented for estimating the components of variance for any sampling method that
uses unbiased estimation. Finally, in Chapter 6, robust estimation is examined in the
context of ups, and in particular the simultaneous optimization of the estimator and

the selection probabilities in a large single stage sample.



1.2 NOTATION AND ABBREVIATIONS

The following is a summary of the principal notation to be used in this
monograph. It is intended for reference purposes only, and further notation will also

be introduced as required.

Capital letters and subscripts will be used for population values, and lower case

for sampling values. Thus YI is the value of the Y-variate taken by the Ith

population unit and ¥y is the corresponding value taken by the <th sample unit.

This departure from the usual practice is needed to avoid ambiguities in multistage
sampling and in any case makes for greater clarity. The adoption of this notation is

also useful for teaching purposes.

N, n, ... will denote the number of units in the population and sample
respectively. Wherever the number of sample units is a random variable

it will be denoted by 7 , and its expectation by Vv .

Y, y, ... will denote values of the current or estimand variable.
X, x, ... will denote values of a benchmark variable used in ratio
estimation.
Z, 3, ... will denote measures of size.
P, p, ... will denote normed measures of size, that is, PI = ZI/Z where
v
z:ZzI.
I=1
LESREE will denote the probability of inclusion in sample of the Ith unit

and ﬂi will denote its sample value.

Moy +or will denote the joint probability of inclusion in sample of the

Ith and Jth population units and ﬂij will denote its sample

value.

E ... 1is the sampling expectation operator (expectation over all possible
samples).

V ... 1is the sampling variance operator, and v will denote a sample

estimator of the corresponding variance.
The following abbreviations will also be used:

srswr ... simple random sampling with replacement.

srswor ... simple random sampling without replacement.
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mpswor ... probability of inclusion in sample proportional to size without
replacement.

ppswr ... probability of selection proportional to size with replacement
(multinomial sampling).

ups ... unequal probability sampling.
upswor ... unequal probability sampling without replacement.
upswr ... unequal probability sampling with replacement.

The last three abbreviations are more general in their application than the others in
that they do not require the probabilities of selection to be proportional to a given
size measure. They therefore embrace such schemes as sampling with probability
proportional to a function of size, and the special selection procedures devised by

Raj, by Das, and by Rao, Hartley and Cochran, mentioned in Section 1.5 below.

1.3 MULTINOMIAL SAMPLING (Sampling with Replacement)

As already mentioned, the sampling procedure of Hansen and Hurwitz (1943) used
sampling ppswr. One unit was selected at each of 7 draws. The probability of
selection of the Ith population unit at any of these draws was PI = ZI/Z , where

N

ZI was the measure of size of that unit and 2 = z ZI was the total measure of
I=1

size of the N units in the population.

N
The Hansen-Hurwitz estimator yéH of the population total, Y = JZA YI is

noy.
Yy = Ly x, (1.3.1)
" Py
The estimator is unbiased and its variance may be expressed variously as
2
Ny
> Iy (1.3.2)
! = — _— o Je
Vo) = 5 Igl P, e
1 N YI 2 ; ,
==Y Pls-Y ,or 1.3.3
noi I PI . .
2
N Y Y
T I __d (1.3.4)
= = PP (- = . .3.
i =1 E " E
JET

An unbiased estimator of this variance is
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2
n |y.
1 1
vyl ) = == ¥ L -yt s (1.3.5)
HH n(n-1) = 1P HH
2
.1 A (1.3.6)
m?(n-1) i,4=1 [Pz Bj
J#t

This scheme of sampling with replacement is less efficient than certain
alternative schemes which have since been proposed for sampling without replacement.
In spite of this some people prefer to use sampling with replacement for the following

reasons:
(i) Selection of the sample is simple.

(ii) The method can be used for any finite predetermined (but not

necessarily distinct) number of units in sample.
(iii) The unbiased estimator of variance is simple.

(iv) It is also comparatively easy to obtain unbiased estimators of total

variance and components of variance in multistage designs.

1.4 mpswor METHODS USING THE HORVITZ-THOMPSON ESTIMATOR

$ix years after Hansen and Hurwitz's paper, Madow (1949) proposed the use of
systematic sampling with unequal probabilities so as to avoid the possibility of units
being selected more than once. This suggestion was followed up by a large number of
alternative selection procedures commencing with that devised by Narain (1951), which

will be considered in detail in Chapter 2.

Horvitz and Thompson (1952) produced a general theory of sampling with unequal
probabilities without replacement based on the use of the estimdtor

(1.4.1)

s

noy,
] LA _=
HT igi "

where ¥; is the value of the <th sample unit. The important properties of the
Horvitz-Thompson estimator are as follows:

(i) It is the only unbiased estimator of the class in which the same
weight is attached to a particular population unit whenever it is

selected (Horvitz and Thompson 13852).

(ii) It is admissible in the class of all homogeneous linear unbiased
estimators of population total Y ; that is, there does not exist

any member of that class which has a smaller variance than yéT (Roy

and Chakravarti, 1960; Godambe, 1960).

(iii) If the Y, are all exactly proportional to the corresponding L

and the number of units in sample is fixed, the variance of yéT is

zero. This is a property usually associated with ratio estimators

and will be referred to as the ratio estimator property.

If Z_ values are known for all units in the population, and the YI are

I
approximately proportional to the ZI , the variance of yéT can be made small by
setting the L proportional to the ZI . This is one important reason why selection

with probability proportional to size has assumed a central importance in upe.

The following is a summary of the general estimation theory for selection with
probabilities to size without replacement (mpswor) based on the papers by Horvitz and

Thompson (1952) and by Hanurav (1962a, 1967).

N
L Ty = E(n) = v , (1.4.2)
I=1 ,
g‘
J, T = (v-1)T (L.4.3)
JET IJ I
and
)
>y Tpy = VVv-1) + V(n) . (L.4.4)
I,J=1
J#I

The variance of the unbiased estimator yéT is:

N 17 N om._-mm
o) = 2 5 e DT St (14.5)
I=1 I I,J=1 Id

JEL

The following alternative expression, which was derived independently by Sen
(1953) and by Yates and Grundy (1953) (it will be attributed to Sen-Yates-Grundy), is

valid only if the number of units in sample is fixed:

;ﬁ YI YJ

14 - —_ . —]

V(yHT} = R (ﬂIﬂJ,WIUJ e . (1.4.8)
L=
»r : :

The following estimator of V(yéT] is unbiased if Trs #0 forall J#17I,

that is if all possible pairs of distinct population units have a non-zero probability
of inclusion in sample. (Such estimators as these will be referred to as

conditionally wnbiased.)
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7 l«ﬂi 9 n Wij—ﬂiﬂj
r - ———
v(yHT) - E_: 2 Yt 22 7o, Ji¥g o (L.4.7)
=1 m. 1,J=1 13 1 g
7 p

This estimator suffers from the disadvantage that it is not always zero when the
variance is zero. The following alternative conditionally unbiased estimator was
suggested by Sen (1953) and by Yates and Grundy (1953) for use when the number of
sample units is fixed:

2
B T Mg ¥ Yy
boyeltiip) = XX w5 -w - (1.4.8)
1,d=1 id A
P

Both (1.4.7) and (1.%.8) can assume negative values, but (1.4.8) rarely seems to
do so in practice. It has also performed much better than (1.4.7) in a number of
empirical comparisons, commencing with that in Yates and Grundy's (1953) paper. Tor

n = 2 it is the only possible non-negative variance estimator (Vijayan, 1975).

Sen (1953) also compared the efficiency of (1.4.7) and (1.4.8) taking a
population of five units and selecting all possible samples of two units under the

following two schemes:

(a) The first unit is drawn with pps and the second unit with pps without

replacement.

(b) The first unit is drawn with pps and the second unit with equal

probabilities without replacement.

He demonstrated that the expression (1.4.8) took positive values for all these
samples, but that (1.4.7) was negative for some of the pairs. He further showed that
nij > w5 for all ©#J for m =2 , and hence that when selection is made with
Tpswor using the Horvitz-Thompson estimator, (1.4.8) is always positive.

Raj (1956a) proved further that the expression (1.4.8) was always positive under

the schemes (a) and (b) above.

Rao (1963a) also proved under two other well-known procedures for upswor that
(1.4.8) was always positive. These procedures (that of Midzuno - reported by Horvitz
and Thompson (1952) - and the Yates and Grundy (1953) rejective procedure) will be

described in Chapter 2.

Rao and Singh (1973) used Brewer's (1963) mpswor selection procedure to compare
(1.2.7) and (1.4.8) for the case 7 = 2 , employing a wide variety of populations.
Their empirical evidence also indicates that (1.4.8) is more stable than (1.4.7). A

similar result was obtained by Lanke (1974) using Hajek's "Method I" (196u4b).

1.5 upswor METHODS USING OTHER ESTIMATORS

Das (1951) suggested the following strategy. A sample of 7 units is selected.
At each draw the selection is made among those units not already selected with

probabilities proportional to size. The estimator téean of the population total Y

is the arithmetic mean of the #n unbiased estimators:

g

1 p,°
1

ot Y2

2" m-1°
PP, " (1.5.1)
r-1 i r r-1

t! = 1- ) p.ly = p. (N-2) , Pr=1,2, ..., " .

4= PSS R S =

Raj (1956a) modified Das's strategy as follows. The estimator ¢ of the

mean
population total Y is the arithmetic mean of the following set of unbiased cnd

uncorrelated estimators:

Yy
t. = _;L R
1 pl
Yy
t, =y, + ——-(l—p ),
2 1 1/
) > (1.5.2)

Yy

tk:yl+y2+"'+yn—l+a(l_pl‘_p2_"'_pn—l) .

(The estimator tl thus depends only on the first unit selected, t2 on the first

two units, and so on.)

Murthy (1957) considered all possible permutations of the sample order which led

to different values of tmean . He proved that the symmetrized estimator, which gave

weight to each possible value of tmean in proportion-to the a priori probability of

the observed sample units being selected in that order, had a smaller variance than
t .
mean

Rao, Hartley and Cochran's (1962) sampling strategy is as follows. The

population units are divided randomly into # groups of NJ units,

J=1, 2, 3, ..., n , where the NJ are predetermined. One unit is selected from
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each group, the probabilities of selection being the normed measures of size within Procedure 24: Hanurav's Sequential Procedure; Hanurav (1962a).
the group. Their estimation procedure is to form the Horvitz-Thompson estimator for Procedure 25: Rao-Hartley-Cochran Procedure; Rao, Hartley and Cochran
each group separately and to add these over the groups. (1962).

Procedure 26: Stevens' Procedure; Stevens (1958).
Procedure 27: Poisson Sampling; Hajek (1964b).
Procedure 28: Hajek's "Method I"; Hajek (196u4b).
Procedure 29: Hajek's "Method II"; Hajek (1964b).
Procedure 30: Hajek's "Method III"; Hajek (196ub).
Procedure 31: Hajek's "Method IV"; Hajek (1964b).

1.6 LIST OF PROCEDURES FOR SAMPLING WITHOUT REPLACEMENT

The following is a list of 50 mpswor procedures. A mnemonic title is suggested
for each, and a basic reference is given. Descriptions of these procedures will be

given in Chapter 2. i . .
Procedure 32: Deming's Systematic Procedure; Deming (1960).

Procedure 1: Ordered Systematic Procedure; Madow (1949). Procedure 33: Variance Estimator Optimization Procedure; Brewer and
Procedure 2: Random Systematic Procedure;. Goodman and Kish (1950). Hanif (1969a).
Procedure 3: Grundy's Systematic Procedure; Grundy (1954). Procedure 34: Jessen's "Method 1"; Jessen (1969).
Procedure 4: Yates-Grundy Draw-by-Draw Procedure; Yates and Grundy Procedure 35: Jessen's "Method 2"; Jessen (1969).

(1953). Procedure 36: Jessen's "Method 3"; Jessen (1969).
Procedure 5: Yates-Grundy Rejective Procedures; Yates and Grundy Procedure 37: Jessen's "Method u4"; Jessen (1969).

(1953). Procedure 38: Modified Poisson Sampling; Ogus and Clark (1971).
Procedure 6: Midzuno's Procedure; reported by Horvitz and Thompson Procedure 39: Collocated Sampling; Brewer, Early and Hanif (1980).

(1952). Procedure 40: Das-Mohanty Procedure; Das and Mohanty (1973).
Procedure 7: Narain's Procedure; Narain {1951). Procedure 4l: Mukhopadhyay's Procedure; Mukhopadhyay (1972).
Procedure 8: Brewer's Procedure; Brewer (1963, 1975). Procedure 42: Sinha's Extension Procedure; Sinha (1973).
Procedure 9: Durbin's "Method I"; Durbin (1967). Procedure 43: Sinha's Reduction Procedure; Sinha (1973).
Procedure 10: Durbin's "Grouped Method"; Durbin (1967). Procedure 44: Chaudhuri's Procedure; Chaudhuri (1976).
Procedure 11: Rao-Sampford Procedure; Rao (1965), Sampford (1967). Procedure 45: Lahiri's Procedure; Lahiri (1951).
Procedure 12: Durbin-Sampford Procedure; Sampford (1987). Procedure 46: Ikeda-Midzuno Procedure; Midzuno (1952).
Procedure 13: TFellegi's Procedure; Fellegi (1963). Procedure 47: Fuller's "Scheme B"; Fuller (1971).
Procedure 14: Carroll-Hartley Rejective procedure; Carroll and Hartley Procedure 48: Singh's Procedure; Singh (1978).

(1984). Procedure 49: Choudhry's Procedure; Choudhry (1979).
Procedure 15: Carroll-Hartley Draw-by-Draw Procedure; Carroll and Hartley Procedure 50: Chromy's Procedure; Chromy (1979).

(1964).
Procedure 16: Carroll-Hartley Whole Sample Procedure; Carroll and Hartley

(1964). 1.7 CLASSIFICATION OF PROCEDURES

Procedure 17: Durbin-Hanurav Procedure; Durbin (1953b); Hanurav (1966,
1967).

Procedure 18: Hanurav's Scheme B-A'; Hanurav (1967).

The fifty procedures listed above may be classified in a number of ways. This

section deals with three of the most useful and instruct%ve classifications.

Procedure 19: Hanurav-Vijayan Procedure; Hanurav (1967); Vijayan (1968). . . .
1.7.1 Classification by Manner of Selection

Procedure 20: Raj's Variance Minimization Procedure; Raj (1956b).

Procedure 21: Hanurav's Simple Junctional Procedure; Hanurav (1962a). The classification by manner of selection set out below is based on that of
Procedure 22: Hanurav's Modified Junctional Procedure; Hanurav (1962a). Carroll and Hartley (1964), which although not entirely unambiguous is nevertheless
Procedure 23: Hanurav's Double Junctional Procedure; Hanurav (1962a). useful for expository purposes.
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(i) Draw-by-Draw Procedures

At each successive draw one unit is selected, usually from among those population
units not previously selected. Probabilities of selection are defined for each draw
and (since the selection is without replacement) always depend on which units are
already selected. If the probabilities of selection at a given draw are (apart from a
normalizing factor) independent of which units were selected at previous draws, they
are sometimes referred to as working probabilities. The draw-by-draw procedures
listed above are Procedures 4, 6, 7, 8, 9, 10, 12, 13, 15, 18, 19, 21, 22, 23, 24, 25,
26, ul, 44, 46, 47, 49 and 50.

(ii) Systematic Procedures

Systematic selection involves an ordering of the population and the cumulation of
inclusion probabilities. The order of units may or may not be random. A random
number r (0 < » < 1) is chosen and the # units selected are those whose cumulated

values of T (the desired probability of inclusion) are the smallest equal to or

greater than each of r, r+l, r+2, ..., rin-1 . The systematic procedures listed

above are Procedures 1, 2, 3, 32 and 48.
(iii) Rejective Procedures

The term rejective has been employed by Hajek (1964b) and is somewhat wider in
its connotation than the term mass draw used by Carroll and Hartley (1964%). Rejective
procedures resemble draw-by-draw procedures in that only a single unit is selected at
each of n successive draws. They differ from ordinary draw-by-draw procedures in
that the selection at a given draw may give rise to the selection of an already
selected unit, in which case the partial sample is abandoned and the selection
pecommenced. The rejective procedures listed above are Procedures 5, 11, 14, 17, 28,

29, 30 and 31.
(iv) Whole Sample Procedures

In these procedures the units are not individually drawn: a probability is
specified for each possible sample of 7 distinct units and one selection using these
probabilities selects the whole sample. The whole sample procedures listed above are

Procedures 16, 20, 33, 34, 35, 36, 37, 40 and u5.
(v) Other Selection Procedures

Other selection procedures not listed in the above four categories are as

follows:

Procedure 27: Poisson Sampling.

Procedure 38: Modified Poisson Sampling.
Procedure 39: Collocated Sampling.
Procedure 42: Sinha's Extension Procedure.

Procedure 43: Sinha's Reduction Procedure.
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1.7.2 Classification by Equivalence Class

Two procedures belong to the same equivalence class when the joint probabilities
of inclusion of all possible combinations of units are identical. It is obvious that
each systematic, draw-by-draw and rejective procedure has an equivalent whole sample
procedure. Godambe (1955) pointed out that any whole sample procedure also has a
draw-by-draw equivalent. Hence it is possible, for a number of the procedures
described in this monograph, to devise different selection procedures in the same

equivalence class in a straightforward fashion.

Procedures 9, 11 and 12 belong to an equivalence class possessing the
characteristic that the joint inclusion probabilities ﬂij can be stated explicitly
in analytic form, thus making the variance formulae comparatively simple. This will

be referred to as Equivalence Class A. Procedure 8 belongs to this class for #n = 2 .

Procedures 14, 15 and 16 belong to a second equivalence class. Since they
include the symmetric mass draw procedures, they may be designated as symmetric
procedures, or Equivalence Class B. For the case #n = 2 , Procedures 13 and 49 also

belong to this equivalence class.
1.7.3 Classification by Type of Estimator Appropriate

The first estimator suggested for use with sampling with unequal probabilities
without replacement was that of Horvitz and Thompson (1.4.1). Any selection procedure
may be used with the Horvitz-Thompson estimator, but it is only those for which the
sample number is fixed and the probabilities of inclusion in sample can be made
exactly proportional to an already known measure of size for which this estimator has
the ratio estimator property (see Section 1.4). A further important property which
applies under the same conditions is that the value of the Sen-Yates-Grundy (1953)
variance estimator (1.4.8) is then also zero. Procedures possessing this property
exactly are all those listed except Procedures 4, 5, 25-31, 38-39 and u45-46. Most of
these exceptions were initially put forward as approximations to an ideal procedure
which would confer the ratio estimator property on the Horvitz-Thompson estimator.
Procedure 25 however was suggested explicitly for use with a special estimator.

Certain other special estimators, notably t¢' _, ¢
mean’ “mean

suggested for use with Procedure 4 by Das (1951), Raj (1956a) and Murthy (1957). The

s . . . . . .
pecial estimators tmean and tsymm > when used in conjunction with Procedure 4 also

and © have since been
symm

Possess the ratio estimator property.
All published selection procedures may therefore be classified into three groups:

(i) Those for which the Horvitz and Thompson estimator possesses the ratio

estimator property exactly. These are Procedures 1-3, 6-24, 32-37, 40-44 and 47-50.

(ii) Those for which no estimator possesses this property exactly but for which

the Horvitz and Thompson estimator possesses it approximately. These are Procedures
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5, 26 and 28-31.

(iii) Those for which some other estimator or estimators possess this property.

Procedure Y4: Yates-Grundy Draw-by-Draw Procedure - with the estimator

ted by Raj (1956a) or the estimator ¢
tmean suggested by Raj ( <

ymm
suggested by Murthy (1957).

Procedure 25: Rao-Hartley-Cochran Procedure - with RHC estimator.

Procedure 27: Poisson Sampling - with a ratio estimator (Brewer, Early and
Joyce 1872).

Procedure 38: Modified Poisson Sampling - with a ratio estimator (Brewer,
Early and Hanif 1980).

Procedure 39: Collocated Sampling - with a ratio estimator (Brewer, Early
and Hanif 1980).

Procedure 45: Lahiri's Procedure - with the conventional ratio estimator.

Procedure 46: Ikeda-Midzuno Procedure - with the conventional ratio

estimator.

1.8 SOME ASYMPTOTIC VARIANCE FORMULAE FOR mpswor

The variance (1.4.5) of the Horvitz-Thompson estimator involves the quantities

bl Considerable difficulties are involved in the determination of these quantities
IJ

for most of the procedures listed in Section 1.6. Hartley and Rao (1962) obtained an
approximate solution to this problem for the Random Systematic Procedure with the help
of an asymptotic theory which assumed that N was large and that n/N >0 as

They obtained an expression for the asymptotic value of T under these

N> >

assumptions and substituted this in expression (1.4.5) to obtain the following

asymptotic variance formula for any 7% :

2 2 2
¥ 7 ¥ 3 T X oo oy
! = _n__.l;-n-]_I_.Z. _ﬂ 2m -——ZT[ —_ - =
V(yHT)_Igl “I[l ol 3] ) IR Igl 172 Al T
201) | %y —Z§n22 (1.8.1)
n LT o ngn g

. . 0
This formula is correct to order N .

Rao (1963a) showed that with =n = 2 the variances of the Horvitz-Thompson

: 0
estimator for three selection procedures were given asymptotically to order N by
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2 2 2
OTRIS I 1) R R 45 1
I=1 I I=1 J=1 I
2
N N
Y 2
+ Al Y TY -2 Y oyl . (1.8.2)

I=1 r'r =

The value of A in this formula is 3/32 for Narain's Procedure, 1/8 for the
Carroll-Hartley Rejective Procedure and 1/4 for the Random Systematic Procedure.
Rao (1965) later showed that A = 0 for Brewer's Procedure. Since Fellegi's
Procedure and the three Carroll-Hartley Procedures are in the same equivalence class,
the value of A is 1/8 for all these Procedures. Similarly, since the Rao-Sampford
Procedure, Durbin's "Method I" and Brewer's Procedure are ip the same equivalence

class, A = 0 for all these procedures.
All the procedures mentioned so far in this Section have the same variance

formula to order Nl for n = 2 , namely:

N T [Y
= L _I_ ;Y_
V(g _Igl “I[l e (1.8.3)

From (1.8.1) it follows that for the Random Systematic Procedure, to order Nl R

v
4EM *12 “_r[l - “IJ n—I - % . (1.8.4)

Equation (1.8.4%) was also shown by Rao (1963b) to be asymptotically valid for

Narain's Procedure and the Carroll-Hartley Rejective Procedure.

There are almost certainly other mpswor procedures for which (1.8.4) is also
asymptotically valid, but it seems necessary to derive it for each one separately. It
is shown in this Section that under the assumption of a linear stochastic model,

(1.8.4) is asymptotically valid for all mpswor procedures (Hanif, 1974).

The model is the same as that employed by Cochran (1953), which appears to have
been originated by Smith (1938). The same linear model has been employed by several
other authors, for example, Rao (1966), T.J. Rao (19675, Hanurav (1967), Vijayan
(1967), Foreman and Brewer (1971), Hénif and Ahmad (1977), Cassel, Sarndal and Wretman
(1977).

The assumption is that the observed population can be treated as a sample of one
from an infinite set of hypothetical populations generated by a stochastic model. In
this particular application of the model it is assumed that the probabilities of

inclusion in sample Ty are exactly proportional to size and constant from population

to population. The model specification then is
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Yp =82+ €
cf_ L, Jg=1T
B*e) =0, E*(e€)) = (1.8.5)
0 , otherwise
0? = 02Z12.Y where ¥ <Y =1,

where 8, 02 ape constants and E* denotes the expectation over all possible
hypothetical populations. The model based variance of y' regarded as an estimator

of Y will be written as
2
%(,, ! = Ayt _
V*yhe) = E (1) - (1.8.6)

The design expectation of expression (1.8.6) when Lia ZI is

N

2 2

EEA{(yf )" = X GI[ﬂi— l] ; (1.8.7)
I=1 I

but the same expression may be obtained asymptotically from the model expectation

of the right side of the expression (1.8.4). This model expectation is

N
-1 F 4
B S ﬂ[l_ﬂ._ﬂ]___
=1 I n I WI n

“f‘ L
= - ¥ of{ . (1.8.8)
n ~ I
I= J

¥ ¥
2(1 n-1 2

=Y o [—— - 1] + =2 Y otm. - z
= I\ B =T =

Now the second term of the expression (1.8.8) is of order NO while the leading term

contains only expressions of order N2 and IVl . Hence asymptotically only the
leading term is left, which is the same as (1.8.7). Hence under model (1.8.5) the

asymptotic variance formula (1.8.4) is valid for all mpswor procedures.

1,9 A GENERAL THEORY OF ESTIMATORS POSSESSING THE RATIO ESTIMATOR PROPERTY

Vijayan (1975), Rao and Vijayan (1977), and Rao (1979) have presented some
general results which enable the mean square errvor of any linear estimator of total
possessing the ratio estimator property in a straightforward fashion, and also exhibit
the necessary form of any non-negative quadratic unbiased estimators of that mean
square error. These results are essentially contained in the following theorem from

Rao (1979).

Let the general linear estimator of the population total Y , based on a sample
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8 with associated probability of selection p(s) be written

~ N
Y = E d s
Is™T 1.9.
31 ( 9.1)
h the we t o not depend on t Y =0 I ¢
where th lgh s dz. ds ds P d on the I and dz. if 8 . Suppose
Y 1is such th r=
u at MSE(Y) becomes zero when Y CZI where ¢ # 0 is an arbltrar'y

constant (the ratio estimator property). Then

(a) MSE(%) reduces to

N N
wse(H = - LY d..2.2 (R-R)?
171 TJ°T J( T 3 (1.9.2)
J>I

h R_=
where R, YI/ZI and

d;; = Bl -1)(d, 1) s (1.9.3)

(b) a non-negative quadratic unbiased estimator of MSE(?)
of the form

is necessarily

Y = - 2

mse(Y) Z? dr(e)2,2 (R -R)* , (1.9.4)
I,7=1
J>I

where the coefficients dIJ(s) do not depend on the YI , dIJ(s) =0

if 8 does not contain both units I and J and the following

unbiasedness condition is satisfied:

33§,J pledd (s} =d, ., J>1I. (1.9.5)
The proof of this theorem depends on the matrix lemma that if B = (bIU) is a
positive semidefinite matrix and Z?z b__ =0, then g b,., =0

=H 7 . A jodni for all I .

(a) Using (1.9.3) we can write
~ . 2 U
MSE(Y) = E(3-1)° = EJ:l dp 2.2 R,
N N
= Igl &2 23R+ I?ng d, 2 IRR . (1.9.6)

J£I

~ N
Since MSE(Y) = 0 when all R, =c¢ , we get =
' , ge IZ;EQ dIJZIZJ = 0 and by the



18
N 5 g
- 1 = - 7._Z_ . Substituting
1 d. 27 =0 for each I , that is, d d
emma ng 1717 : 121 jar Td
this result in (1.9.6),
~ N 2
MSE(Y) = - Y ¥ dIJzIZJ[RI-RIRJ]
I,J°1 :
JEI
$ ( )? (1.9.2)
=- Yy d R_-R . .9.
[ A Y i
A 1217
J>T

(b) Any unbiased non-negative quadratic estimator may be written

N
mse(¥) = ¥ ¥ d..(8)Y (1.9.7)
i 18y
NZ ( )2 ZNZ d. (s)z ZJ.RZ (1.9.8)
= - d_(s)2 R_-R + s . 9.
I§J=l IJ IZJ I d .71 IJ IJTI
J>I

By unbiasedness, non-negativity, and the ratio estimator property,

N
11 the R. = ¢ . But the d,,(5) are
>y dIJ(S)ZIZJ must be zero when a T 7

I,J71

the lemma
independent of the Y, , Hence, by the

hence it must always be zero.

}I% d. (8)2.2_ =0 forall I, and the second term on the right hand side of (1.9.8)
Id IJ

J=1

disappears, leaving expression (1.9.4). //

Infinitely many choices for dIJ(s) satisfying (1.9.5) are possible. Rao (1979)
makes two suggestions. The first is

= 1.9.9)
dIJ(s) dr /s (

and the second, valid for unbiased ? only, is

d,(g) =d, d (8)/p(s) (1.9.10)

I 1685 = f1g

where The second has

(s) 1is any choice satisfying Y frls)=1, J>I.
fIJ 83T,d IJ

the advantage that the dIJ need not be calculated.

For the important special case where the sample is constrained to consist of two

distinct units (I and J) the only possible non-negative umbiased estimator of

MSE(Y) is

d
9 =-2L -r)? (1.9.11)
mse(Y) = - T ZIZJ(RI RJ) .
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For the Hansen-Hurwitz estimator used with ppswr the choice

t.t
1 IJ
dy(8) = - = —— (1.9.12)
IJ - 3 . .
n n(n l)PIPJ
where tI is the number of times the Ith wunit appears in sample, and PI = ZI/Z s
leads to the usual variance estimator,
2
Y
1 I
vl = 5oy % trlee - Yl - (1.9.13)
HH nin-1) S 7T Py HH
Alternatively (1.9.9) leads to Rao's new non-negative variance estimator
PP (v, 1)
1 J | I J
nlbg =5 XY -5 - (1.9.14)
I,Jé 17 "1 ‘g :

J>I

For the Horvitz-Thompson estimator used with fixed sample size 7pswor (1.9.9)

leads to the Sen-Yates-Grundy variance estimator (1.4%.8) which for # = 2 is the only

possible non-negative unbiased variance estimator. But (1.9.10) with fIJ = M;l
where M2 = [Z:g) » gives a new variance estimator for »n > 2 , that is
1TIﬂJ—p(.s)M2 YI YJ 2
UQ(yl-;T) = zz W— T T . (1.9.15)
I,Jés 2 "y
J>I

Further, (1.9.10) with Fryie) = p(s|I, J) (the conditional probability of getting s

given that I and J were selected in the first two draws) gives another new

estimator for #n > 2 , that is

2
TrITer(slI,J)—p(s) [Y Y,

TS| (1.9.16)

v3(yéT) = IZJZ )

€s
J>T
The properties of (1.9.15) and (1.9.16) remain to be investigated, but (1.9.15) in

particular appears to offer some gain in computational simplicity.

Rao (1969) also applied the above theory to Murthy's estimator and the Rao-
Hartley-Cochran estimator, but without producing any new variance estimator of
practical interest. The work of Rao and Vijayan (1977), in producing new variance
estimators for the unbiased ratio estimator used with selection probabilities

proportional to aggregative size, is considered in Chapter 4.
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CHAPTER 2

DESCRIPTIONS OF PROCEDURES FOR SAMPLING WITH
UNEQUAL PROBABILITIES WITHOUT REPLACEMENT

2.1 INTRODUCTION

In Chapter 1, 50 upswor procedures were listed. In this Chapter these selection
»

I . . indicatin
cedures will be described in detail. The descriptions will be aimed at indicating
pro

i i tages of
the relationships between selection procedures and at showing how the disadvantag

some methods have led to the suggestion of others. The following descriptive
abbreviations will be used.
strmps: probability of inclusion strictly proportional to size,

strwor: strictly without replacement,

n fiwved: number of units in sample fixed,

syst: systematic,

d by d: draw by draw,
ws: whole sample,
ord: ordered,
unord: unordered.

saas . . {11
In addition to these purely descriptive abbreviations certain disadvantages Wl

be indicated as follows:
inexact: fails to satisfy at least one of the three descriptions

strmps, strwor and n fixed above,

n = 2 only: limited to two sample units per stratum,

b est var: estimator of variance generally biased,

J p enum: calculation of joint probabilities of inclusion in sample

involves enumeration of all possible selections, or at least

a large number of them,
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J p iter: calculation of joint probabilities of inclusion in sample

involves iteration on computer,
not gen app: mnot generally applicable,
non-rotg: non-rotating.
The last two of these disadvantages require some explanation.

(i) Not Generally Applicable

Since the probability of inclusion is proportional to size and no probability of
inclusion can be greater than unity, the theoretical limit to the size of individual
units is Z/nm . If the procedures break down before this theoretical limit on maximum

size of unit is reached, it will be described as not gen app.
(ii) Non-Rotating

In large scale field surveys it is often desirable to be able to rotate the
sample, that is, to drop a portion of the sample and replace it by another at
predetermined intervals. The principal reason for wishing to do this is to avoid the
kinds of response bias and non-representativeness which can result from being in
sample on a number of occasions; phenomena known generally as sample fatigue.
Rotation will be considered in greater detail in Chapter 3. Meanwhile it should be
noted that certain procedures make specific allowance for rotation; that others can
be used in rotating samples by selecting initially more units than are required
immediately and rotating the excess into the sample as required; and that the
remainder (including all those limited to 7 = 2 ) can only be rotated as whole

stratum at a time. Both the latter categories will be described as non-rotg.

2.2 DESCRIPTIONS OF SELECTION PROCEDURES

A description of each of the selection procedures listed in Chapter 1 follows.
The format of these descriptions will be

Procedure number and mnemonic title,

Descriptive abbreviations and disadvantages,

Principal references,

Prose description of selection procedure,

Comments.

PROCEDURE 1: Ordered Systematic Procedure

Strmnps, strwor, n fized, syst, ord, b est var, j p enum

Madow (1949), Hartley (1966), Cassel et al (1977, p. 17).

Arrange the populationunits in any convenient order. Cumulate the measures of size
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down this order. Divide the total measure of size Z by the required number of units
in sample, 7 , to obtain the skip interval Z/n . Choose a random start, that is, a
random number greater than or equal to zero and less than the skip interval. The
first unit selected is that for which the cumulated size measure is the smallest
greater than or equal to the random start. The second unit is that for which the
cumulated size measure is the samllest greater than or equal to the random start plus
the skip interval. In general the (r+1)th unit selected is that for which the
cumulated size measure is the smallest greater than or equal to the random start plus

r times the skip interval.

This is the simplest way of selecting a sample with unequal probabilities without

replacement. Because of the ordering process, Try will be zero for most pairs

I, J . In consequence the Yates-Grundy variance estimator will yield considerable
under-estimates of variance. Hartley (1966) sought to overcome this disadvantage by
making an assumption about the nature of the population sampled. This assumption is
that, for any gi?en unit, the value of the variable being estimated depends on the
order in which it appears in the population. The population is therefore divided into
quasi-strata, one for each sample unit, and the variance calculated accordingly.

PROCEDURE 2: Random Systematic Procedure

Strmps, strwor, n fixed, wnord, b est var, j p enum

Goodman and Kish (1850), Horvitz and Thompson (1952), Hartley and Rao

(1962), Rao (1963b), Raj (1964, 1965), Connor (1966), Hanif (1974), Asok

and Sukhatme (1976), Cassel et al (1977, p. 17).

This procedure is identical with the Ordered Systematic Procedure 1, except that
the population units are listed in random order prior to selection.

For this type of selection procedure Hartley and Rao (1962) have given a formula
for Mo, which is asymptotically correct as N > under certain conditions (see
Chapter 1, Section 1.8).

Connor (1966) gave the exact formula for ., for any value n and N for this

selection procedure.

The main drawbacks of the systematic procedures are the difficulty of calculating
the joint probabilities of inclusion for the purpose of estimating the variance, and
the fact that one or more of these joint probabilities is sometimes zero. A simple

example of a situation in which one of the Trr is zero is given by n=2; N =53
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PROCEDURE 3: Grundy's Systematic Procedure

Strmps, strwor, n fixed, syst, unord, b est var, § p enum
Grundy (1954).

This procedure is a modification of the Random Systematic Procedure 2 which
avoids listing all population units in random order. Instead, a single unit is
selected with probability proportional to size using a procedure originally devised by
Lahiri (1951) (see Procedure 45) and the remaining units are selected systematically

using the size of the largest unit in the population Z (or a somewhat larger
max

round number for convenience) as skip interval. Since it is rather difficult to
follow this procedure unless it is spelled out step by step, Grundy's description will
be repeated (with the notation slightly altered in order to avoid confusion with

symbols used elsewhere in this monograph).
(i) Let o denote either Zmax , or, if more convenient a round number slightly

larger. The 1 iti i
= ( e inequalities ZmaX =a= [Z—Zmax]/(n—l) are the essential conditions on

« )

(ii) Choose a random number »r in the range 0 < r < o and a random integer s

in th i
erange 1 to N . If r= Zs accept unit & as a member of the sample and
proceed to (1ii); otherwise repeat (ii).

(iii) Choose further integers 855 84 in the range 1 to N , distinet from

each other and from & , but otherwise random. Note the sizes of the corresponding

sampling units. Each time the cumulative sum r + Zs +Z, + ...+2 first
8 : s
2 3 t

exceeds one of the values a, 20, ..., (n-1)a , accept the unit 8, as a member of

the sample,

This selection procedure may be represented by the following diagram, which

corresponds to % = 4 .

<>
1

1 1

T

T

HHRE

il

= ) o = o

Because the skip interval is smaller than for the Random Systematic Procedure 2
E]
cases where the joint probabilities of selection of one or more pairs of units are
2 - . P
ero will be still less common. However it is still relatively easy to produce such

cases, One is givenby n =2 3; N =75, ZI =1, 2, 4, 5, 8 ; skip interval = 8 .

The joint probability of selection of the smallest pair is then zero. It is, of

course, only under such circumstances that the formulation of an unbiased estimator of

variance is impossible.
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Another advantage of this modified procedure over the Random Systematic Procedure

is that if N is large compared with nZ/Zmax it is only necessary to order a small
portion of the population randomly.

PROCEDURE 4: Yates Grundy Draw By Draw Procedure
Not strmps, strwor, #n fized, d by d, unord, inexact, non-rotg.
Yates and Grundy (1953), Raj (1956a), Murthy (1957), Hanurav (1962b),
Hajek (1964), Rao and Bayless (1969), Bayless and Rao (1870), Cassel et al
(1977, pp. 15, 24, 42-3, 153ff).

Select the first unit in the sample with probability proportional to size ZI ;

the second unit, without replacement, again with probability proportional to size.
The total probability of the inclusion of the Ith unit to be in sample is

N P P

J I
n_o=P |1+ Y —5 - | - (2.2.1)
TN S TRy P,

The joint probability of selecting the Ith and Jth unit is

1 1
m. =P ey ] (2.2.2)
1 =y 1-Pp  1-P,
The selection may proceed to 7z = 3 or more, but the formulae for ﬂI’ ﬂIJ and

so on, become rapidly complicated.

The procedure is inexact, but the unbiased estimators of Raj (1956a) and Murthy

(1957), compensate for this inexactness. They will be considered in detail in

Chapter 4.

PROCEDURE 5: Yates-Grundy Rejective Procedure

Not strmps, strwor, n fized, rej, unord, inexact, non-rotg.

Yates and Grundy (1953), Durbin (1953a), Hajek (1964) .

Select each of the #n sampling units in turn with probability proportional to
size with replacement. If any unit is selected more than once in the sample, reject
the whole sample selected up to that point and continue selecting a new sample with

replacement until 7 distinct units are selected in the sample.
For 7n = 2 , the probability of rejecting the initial sample because unit I was
selected twice is P§ , that of selecting units I and J in either order is

2PIPJ . The probability of including unit I in the final sample is therefore

N
- 2
L 2PI(1—PI) /1 - J§=l Pl (2.2.3)

J£I
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The sample for #n > 2 may be obtained similarly, but formulae become complicated very
rapidly.
The order of approximation to exactness is poorer than for the Yates-Grundy

Draw-by-Draw Procedure 4.

PROCEDURE 6: Midzuno's Procedure

Strmps, strwor, n fived, d by d, unord, j p iter, not gen app, non-rotg.
Horvitz and Thompson (1952), Yates and Grundy (1953), Rao (1963a).

Select the first unit using a specially calculated set of working probabilities

P} , and the remaining units with equal probabilities without replacement. The

probabilities used at the first draw are such that the total probability of inclusion

of each unit is exactly proportional to size, that is,

n-1

M= Pi+ IV_:I (_l—P}) , ZP} = 1. (2.2.4)
From (2.2.4),
2o Ly L (2.2.5)
Similarly
= "_:% Flg_:’zt_ (p?p;) + %ﬂ . (2.2.8)

Horvitz and Thompson mentioned that this selection procedure was suggested by
Midzuno, presumably on the analogy of his other selection procedure for selecting
samples with probabilities proportional to the aggregate measures of size (PPAS) of
the units in the sample (Procedure 46). Procedure 6 will break down unless

ZI > Z(n-1)/n(N¥-1) for all I . This is a very stringent requirement; consequently
the procedure is frequently not applicable. ’

Rao (1963a) has shown that for 7 = 2 the variance of yl-’IT with this Procedure
is always smaller than the variance of the ppswr estimator yéH provided
ZI > 7Z/2(N-1) , which is also the condition for non-negativity of the working

probabilities.

PROCEDURE 7: Narain's Procedure

Strhps, strwor, n fixed, d by d, unord, n = 2 (for all practical
purposes), J p iter, non-rotg.

Narain (1951), Horvitz and Thompson (1952), Yates and Grundy (1953),
Brewer and Undy (1962), Rao (1963b), Cassel et al (13977, p. 21).

Calculate a set of working probabilities P} . Select the first unit using these
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P} , and the second unit without replacement with probabilities proportional to the

same P} . These working probabilities are calculated so that each unit's probability

of inclusion in sample is proportional to size. They thus conform to the requirement:

N P*

I
M. =P+ Y —=xP%. (2.2.7)
17T PR

A numerical procedure for obtaining the P} is given in Appendix A.

The joint probability of inclusion of the Ith and the Jth units together in
sample is:
1 1
= pAp# = .2,
"1y PIPJ[l—P* * 1—P*] : (2.2.8)
I J
The sample values of the Try e required for the Sen-Yates-Grundy variance

estimator.

For 7 = 2 this procedure is generally applicable and the Horvitz and Thompson
estimator is always more efficient than the corresponding multinomial sampling
estimator. For 7 > 2 the equations for the working probabilities are so complicated

that no solution has been proposed.

PROCEDURE 8: Brewer's Procedure

Strmps, strwor, n fived, d by d, unord, non-rotg, j p emm (for n > 2 )
Brewer (1963, 1975), Rao and Bayless (1969), Rao and Singh (1973), Chromy
(1974), Fuller (1971), Sadasivan and Sharma (1974), Cassel et al (1977, p. 16).

Gelect the »rth last sample unit, from among those not already selected, with

working probabilities proportional to PI(l_PI)/{l_PPiJ . Brewer (1975) gives a

pecursive formula for the joint probabilities of inclusion in sample which involves
the consideration of the selection probabilities of all subsets of the sample

containing (n-m) units from population of (N-m) (m =1, 2, «vos 1=2) .

This takes a simple form when 7 = 2, that is,

1 N N PK
T = |oP —  ——] T |1 + 2 —s5 . (2.2.9)
IJ IPJ—J_.-ZPI l—2PJ— %=1 l—2PK

In this case the joint probabilities of inclusion, and hence also the variance
estimator, are simple functions of size. Rao (1963a) found that the Horvitz-Thompson:
estimator was always more efficient than the corresponding Hansen-Hurwitz estimator
for multinomial sampling, and that its variance estimator was never negative. Chromy

(1974) found that the m for this procedure (still for 7 = 2 ) asymptotically

IJ

minimized the expected variance of the Horvitz-Thompson estimator when Y = 5 .
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PROCEDURE 9: Durbin's 'Method I'

Strmps, strwor, n fived, d by d, unord, not gen app for n > 2 .,
Durbin (1967), Rao and Bayless (1969), Brewer and Hanif (1970), Fuller
(1971), Cassel et al (1977, p. 16).

For n = 2 , select the first unit with probability PI and the second unit

without replacement with probabiliyy proportional to P 1

1
T 55— t 5755 | » Where p
Jj. 2pl 1-2PJ 1

is the sample value of the norméd size measure PI of the unit already selected at

the first draw.

The joint probability/;f inclusion of the Ith and Jth units is

/= |2 P S SN | R E ? T (

Iy c JiToep. T 1| ¢ L 1o 2.2.10)
T 7 g1 1%y

7/

which is the same as given for Procedure 8 (2.2.9). Brewer's Procedure 8 and Durbin's
1 .

Method I' ape therefore in the same equivalence class for 7 = 2 . Hence in this
case Procedure 9 shows the same properties of simplicity of variance estimation and

the same superior efficiency vis-3-vis multinomial sampling as Procedure 8.

For n > 2 , the probability of selection of the Jth population unit at the
rth draw, conditional on the results of all the previous draws and in particular

given that the Ith unit was selected at the (»-1)th draw, is proportional to

1 1 —I

.
(r-1)1 T P(r1)g]

Plp-1)7|T2P

where P(r-l)I is the probability of selection of the Ith unit at the (»-1)th
draw, conditional on the results of the previous draws.

This extension to 7 > 2 1is not generally applicable. Fuller (1971) with his
'Scheme A' extended its range of applicability by introducing certain modifications

when some units had size ZI close to Z/n . Even so, the extension remained not

generally applicable.

The procedure would be suitable for rotation, in that the probability of

inclusion in sample is constant from draw to draw, but for ifs lack of general

-

applicability for 7 > 2 . An example of where the procedure fails to be generally
applicable is given by n =3 , N = 102 ; Pl = P2 =0.3,
P, =P = ... = =

3 L P102 0.004 .

PROCEDURE 10: Durbin's "Grouped Method"

Strups, strwor, n fixed, d by d, unord, n = 2 only, non-rotg.
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Durbin (1967), Cassel et al (1977, p. 16).

Arrange the population units in groups such that each group contains as few units
as possible subject to the requirement that the size of the largest unit in each group
is less than or equal to half the total size of the group. Select two units from the
whole population with replacement. If the units are from different groups, accept
both; otherwise accept the first one, replacing the second unit by the second
selection using Procedure 9 within the doubly selected group omnly. For any two units
coming from different groups their joint probability of inclusion in sample is

Trr = 2PIPJ . TFor any two units in the same group, their unconditional joint

probability of inclusion in sample is

P'
! 1 1 ] - ! X
A - lp » P,[ . s e K (2.2.11)
77 I[Z I} Jl_2pl'_ l-2P.}JJ 2 1—2P]2 s

!
where )  denotes summation over the units in the group and
' Z'
PI-PIT PI.

This selection procedure is slightly less convenient than some others because it
requires grouping, but on the other hand it avoids the need for any special

calculation of the Trr if the two units initially selected are from different

groups. It thus achieves a measure of simplification in the estimation of variance,
but at the cost of some stability in the Sen-Yates-Grundy variance estimator. By
using a randomization device in the variance estimation procedure, still further
simplification may be obtained at a slight extra cost in stability. This procedure
was, in fact, specially devised for handling variance estimation at two or more stages

in a simple fashion.

PROCEDURE 11: Rao-Sampford Rejective Procedure
Strmps, strwor, n fized, rej, unord, non-rotyg.
Rao (1965), Sampford (1967), Rac and Bayless (1969), Bayless and Rao (1970},
Asok and Sukhatme (1976), Cassel et al (1977, p. 17).

Select the first unit with probability proportional to measure of size. At each

subsequent draw select with probability of selection proportional to PI/(l—nPlJ with

replacement. If any unit is selected twice, reject the whole sample selected and

start again. The joint probability of selection for any n is

IAA. n [tn(p+p )} (T,7)
- nI'dJd I J n-t ’—l (2.2.12)

17 T a1l) &, nt2 1

where
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vy ot %
X = Z n-t
k]
O =N
L, =1,
A= 2p(znz))
and
L = Aos A
m S(L:n) I1° “r12° > A

the summation 52:) being over all possible sets of m distinet units drawn from the
m

population. Lm(I), Lm(I, J) are defined similarly to Lm but relate to the

subpopulation formed by omitting unit I and units I and J respectively from the

population.

For n=2,

. 1 1
LD ¢ 1 1
7 QPIPJ[1—2PI T
1 1 y r
= |2 S X
( PIPJ 1_2PI + l-ZPJ |11+ Kgl l_—ZPK- (2.2.13)

which is identical with (2.2.9) and (2.2.10) so that in this case Procedures 8, 9 and
?

11l are in the same equivalence class.

This procedure was first suggested by Rao (1965) for n = 2 only. Sampford

(1967) extended this procedure to cover 7n > 2 , but the formula for the
IJ

2.2, 1 1ff1
i 2.12), is then rather complex. The difficulty in their calculation stems from the
arge number of decimals which must be stored if they are to be calculated .with any

acceptable degree of accuracy.

Asok and Sukhatme (1976) compared this procedure with Procedure 2 and proved that
the Rao-Sampford Procedure was the more efficient asymptotically for y/ (1.4.1)
HT 4L1).

They also provided good approximations for the Try

PROCEDURE 12: Durbin-Sampford Procedure

Strmps, strwor, n fixed, d by d, unord, non-rotg.
Sampford (1967), Cassel et al (1977, pp. 16-17).

This procedure is difficult to describe for general = . Sampford's description

of = i
the procedure for # = 4 will therefore be reproduced with appropriate notational
changes,

Select the first unit (say the Ith ) with probability
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P(1) = C A, >y )\J)\K(l—PI—PJ—PK) . (2.2.14)
K£I,J<K
I#d
Select the Jth unit if the Ith unit has already been selected with
probability
P(2]1) = Ch,; K#%':,J )\K(l—PI-PJ—PK) . (2.2.15)
Select the Kth unit when the Ith and Jth units are already selected with
probability
PR3|I, J) = CB)\K(l-PI—PJ-PK] . (2.2.16)

Select the Lth unit when the Ith, Jth and Kth have already been selected
with probability
= 2.2.17)
PL(4|I, J, K) = CP . (

Equating the sum of the PI(l) at each stage to 1 we have

-1
P3|I, 7) = CA0,7

- -1 (2.2.18)
P (2|I) = CA L5 »

-1
PI(l) AC MLC,

so that the probability of drawing the Ith, Jth, Kth and Lth units in that order
is %ClXIXJAKPL ; that of drawing the Ith, Jth and Kth in any order, followed by

the Lth , is 3ClAIAJAKPL and that of drawing the Ith, Jth, Kth and Lth in any

order is
P P P P
7 J X L 2.2.19)
301)‘IAJ}‘KPKX;+§+7\;+TL : ¢

Although this procedure does not set out to use working probabilities, the
selection probabilities for the (n-1)th and the nth draws are in fact dependent on
working probabilities. Consequently for n = 2 this procedure is identical in every

way with Brewer's Procedure 8. For n > 2 , the selection probabilities are somewhat

- dure 11 is
more difficult to calculate than PI(l—nPI] , so that the Rao Sam?ford Proce ,

more convenient to use in practice.

PROCEDURE 13: Fellegi's Procedure

Strmps, strwor, n fiwed, d by d, unord, j p iter.
Fellegi (1963), Brewer (1967), Rao and Bayless (1969), Bayless and
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Rao (1970), Cassel et al (1977, p. 16).

Select a unit using working probabilities equal to the normed measures of size.
At each subsequent draw select one unit without replacement using working
probabilities calculated in such a way that the a priori probabilities of selection at
that draw are also proportional to size. These working probabilities must be
calculated by an iterative procedure, which is fairly simple for the second draw but
becomes less tractable as the number of the draw increases, especially if any of the

ZI is close to Z/m . Iterative processes for calculating these working

probabilities for #n = 2 are given in Appendix A. The iteration for n > 2 can be
slow if the population units are very unequal in size, and care should be taken to
ensure that the process has converged before using the working probabilities to select

the sample.

This procedure has only been demonstrated to be generally applicable for 7n = 2 ,

but appears to have this property for all values of n .

This procedure was devised specifically to facilitate rotation of the sample.
The probability of inclusion in sample is maintained proportional to size of unit
because the probability of selecting the Ith unit in sample at each draw is PI .

PROCEDURE 14: Carroll-Hartley Rejective Procedure

Strmps, strwor, n fized, rej, unord, j p iter.
Rao (1963b), Carroll and Hartley (1964), Hajek (1964), Rao and Bayless
(1969), Bayless and Rao (1970), Cassel et al (1977, p. 16).

Select the sample of #zn units with working probabilities P} with replacement.

If not all the units selected are distinct, discard the sample and repeat the same
procedure again until #n distinet units are selected in the sample. The working

probabilities P} must be so chosen that the probability of including the Ith wunit

in sample is nPI .
For »n = 2 this procedure is in the same equivalence class as Fellegi's
Procedure 13. For larger values of 7 it is nearly, but mot, quite equivalent (that
is, the joint probabilities of selection are nearly the same). Like Fellegi's
procedure it appears to be generally applicable for #.> 2.. Rao (1963b) proved that

for n = 2 the variance of yﬁT for this procedure is smaller than that for the

corresponding multinomial sampling estimator yéH .

PROCEDURE 15: Carroll-Hartley Draw-by-Draw Procedure

Strups, strwor, n fixed, d by d, unord, j p iter.
Carroll and Hartley (1964), Cassel et al (1977, p. 16),
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This, the draw by draw procedure equivalent of Procedure 14, was used by Carroll

and Hartley as an aid in determining the working probabilities for Procedure 14.

To use Procedure 15, as opposed to Procedure 14, involves additional calculation.
On the other hand it avoids the selection and consequent rejection of unacceptable

samples. For % = 2 it is identical in every way with Fellegi's Procedure 13.

PROCEDURE 16: Carroll-Hartley Whole Sample Procedure

Strups, Strwor, rej, n fixzed, ws, unord, j p tter.

Carroll and Hartley (1964), Cassel et al (1977, p. 16).

This whole sample equivalent of Procedures 14 and 15 was mentioned by Carroll and
Hartley solely for purpose of logical completeness. It is less convenient for
selection than either of those procedures and appears to offer no compensating

advantages.

PROCEDURE 17: Durbin-Hanurav Procedure (or, Hanurav's Scheme B-A)
Strmps, strwor, n fixed, rej, unord, n = 2 only.
Durbin (1953b), Hanurav (1966, 1967), Cassel et al (1977, p. 16).

(i) Arrange the population units in ascending order of size, so that the normed

measure of size of the largest unit is PN , and of the next largest is PN—l .

(ii) Conduct a Bernoulli trial (Hanurav's Scheme B) in which the probability of

success is
2(1-pP_j\P,~P
§ = _I___EZE_Q__EZEI., 0<§<1,.

l—PN—-PN_l

(iii) TIf the trial is successful at step (ii), the sample consists of the
largest unit and one other selected from the pemainder with probabilities proportional

to the measure of size.
(iv) If the trial is not successful at step (ii),

(a) the measure of size of the largest unit is reduced to that of

the next largest,

(b) all the measures of size, thus modified, are normed to sum to
unity. (These normed measures and sizes will be denoted by

* * - p*
P} . Note that Py =Ph . J

A sample of two units is then selected using a specifically devised scheme which
depends for its validity on the equality of the two largest units. Hanurav has
suggested three separate schemes at this point (Schemes A, A' and A"), and each gives

pise to a different set of joint probabilities of selection.
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(v) The first of these is the scheme A, described below. Select two units with

replacement with working probabilities P} . If the sample consists of two distinct

units, accept it. Otherwise select two units with replacement with probabilities

s 2 I . I . .
proportional to P} . Again if the sample consists of two distinct units accept it.
Otherwise reject the sample and select two units with replacement with probabilities

s b . . o .
proportional to P} , and so on, until at the kth trial two distinet units are

k-1
selected using probabilities proportional to P}Q .  The process terminates with

probability one.

Durbin (13953b) derived the formulae appropriate to Hanurav's Scheme A, but

without Scheme B it could only be used when PN = PN—l . Durbin did not publish this

derivation and Hanurav developed Scheme B-A independently of Durbin's work.

Hanurav indicated in an abstract (1966) that this procedure could be extended to
n > 2 ., Although full details were not given it would appear that the first part of
the procedure would be identical with Steps (i)-(iv) of the Hanurav-Vijayan Procedure
19 (q.v.). The remaining part appropriate to the situation when the population is

arranged in ascending order of size and Pﬁ—n+l = Pﬁ is described by Hanurav in his

1966 abstract.

PROCEDURE 18: Hanurav's Scheme B-A'

Strups, strwor, n fized, d by d, unord.
Hanurav (1967, 1969), Cassel et al (1977, p. 16).

In this selection procedure the first four steps are the same as for the Durbin-

Hanurav Procedure 17. The remainder are as follows:

(v) Select the first unit with a set of working probabilities calculated so as
to ensure that the total probabilities of inclusion are exactly proportional to size.

The working probabilities oy for this step were given at first incorrectly in

Hanurav (13867) but correctly in Hanurav (1969) as

1 2 %71

T - WT W2 T FomTc rsISEL. (2.2.20)

(Note that when o

N is defined by (2.2.20) it takes the value zero.)

(vi) Select the second unit with equal probabilities from among those units

which are later in the population's size ordering then the first selected unit.
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PROCEDURE 19: Hanurav-Vijayan Procedure (Hanurav's Scheme B-A")

Strmps, stmwor, n fiwed, d by d, unord.

Hanurav (1967, 1969), Vijayan (1968), Cassel et al (1977, p. 16).

The selection procedure as originally set out by Hanurav is limited to n = 2 .
Steps (i)-(iv) are as for Procedure 17. The remainder comprise Hanurav's Scheme A"
and are as follows:

(v) Select the first unit with a special set of working probabilities. These
are calculated so as to ensure that the total probabilities of inclusion are exactly

proportional to size. The working probabilities BI for this step were incorrectly

given in Hanurav (1967) but correctly in Hanurav (1969) as

B B B

- 1 2 I-1

B :P*2———T-—‘—*:—*‘— e T TTHEAC T PE | 1=I=<PN-1. (2.2.21)
I I l—Pl l—Pl P2 l—Pl vee PI—l)

(Note that when BN is defined by (2.2.21) it takes the value zero.]

(vi) The second unit is selected with probabilities proportional to P} from
among those units later in the population's size ordering then the one selected at
step (v).

The selection procedure given by Vijayan for 7 2 2 is as follows:

(i) Arrange the population units in ascending order of size.

(ii) Choose one of the numbers 1, 2, ..., % with probabilities Gi where

S+iPN—n+l
6; = "(Pypins Fyomed) —F (2.2.22)
N-n
s=Y P.,
I=1
and, by convention, PN+l = n_l . (Note: when n =2, 61 is the § of Hanurav's

Scheme B and &, =1 - 8 )

(iii) If the number < is chosen, the last (n-1) population units form part
of the sample and the remaining % are selected in accordance with Steps (iv)-(vi)

following.

(iv) Define new normed measures of size P}(i) for the (N-n+i) population

units as yet unselected where
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Pr
e for I < N-n+4l ,
pri) = , P
1= Py (2.2.23)
M eop Nemsl S IS Nensd
S+1P.
N-n+l

(v) Select the first of the remaining < units from the first of the (N-n+l)

population units as yet unselected with probabilities proportional to a,(1) where
J

al(l) = nPi(i) R
-1
a (1) = wPHE) [ | {1-G-LPFHD} (F = 2, ..., F-nsl)
J 7 ka1 k ’
and where (2.2.24)
ot ( ) N—g?i
p*() = (PE(2)) / PHI)| .
k k 1=k+l z

(vi) 1If the unit selected at step (v) is the jlth , select the second unit from
the set consisting of the (jl+l)th up to the (N-n+2)nd with probabilities

proportional to aj(2, jl] where

ajl+l(2, i) (1«—1)P3!l+l(i) ,

i-1
a5(2, 4,) = (-1)PX) T fcoamal, (2.2.25)
J k=7 k
7,41

(j = jl+2, vees N—n+2) .
(vi) Proceed in a similar manner until the last sample unit is selected. In

general if the (Z-1)st of the 7 units remaining to be selected at the end of step

(iv) is chosen to be the jl—lth population unit, then select the 7th unit from
among the (jZ-l+l)St up to the (N-n+l)th with probabilities proportional to
aj(l, Jz—l) where

i s J = _ % .
aJZ_l+l[Z di) = Z+l)EbZ_l+l(z) s

.

Q
—
—
N
<,
~
'
e
=
1

-1
(n-1+1)P%(%) h {1_(7;_1)1;7:*(,,;)} (2.2.26)
J k=f, ;+1

G =7, +1s o F-n+l) .
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PROCEDURE 20: Raj's Variance Minimization Procedure

Strups, strwor, n fiwed, ws, unord, n = 2 only, b est var, non-rotg.

Raj (1956b).

Use a linear programming technique to find those value of Trs which minimize
the variance (1.4.5) of the Horvitz-Thompson estimator (1.4.1) on the assumption that
the estimand variables YI and measures of size Z._ are related by

I

YI = o+ BZI N (2.2.27)

where o and B are unknown parameters.
This procedure is insufficiently defined for n > 2 . However values of Ty

determined using the same linear programming technique and minimization criterion can

be fed into one of Sinha's Procedures 42-43 (q.v.) to obtain a solution.
The value of the procedure is questionable in that, if the YI and ZI satisfy

(2.2.27) exactly, the regression estimator will have zero variance while the Horvitz-
Thompson estimator in general, will not. Further, linear programming tends to give

extreme solutions with one or more of the Trr taking the value zero. Hence the Sen-

Yates-Grundy variance estimator is seldom, if ever, unbiased.

PROCEDURE 21: Hanurav's Simple Junctional Procedure

Strmps, strwor, n not fized, d by d, unord', inexact, b est var, non-rotg.

Hanurav (1962a), Cassel et al (1977, p. 16).

If kl is the positive integer such that

kl
§. = Y m_o=s1<6 +mW s (2.2.28)
1 =1 I 1 kl+l

select the Ith unit with the probabilities

L if 1=I= kl s
PI(l) = {1-§, if I=k +1, (2.2.29)
0 if I = kl + 2.

Then (kl+l]th unit is called a junctional unit. Since it is selected with

probabilities 1 - Gl at the first draw, it will have probability T +1 of being
1

selected at least once (and hence of being included in the sample) if its probability-

1 Although Hanurav's suggestion is that the population should be arranged in size
order, the procedure may be applied with any ordering.
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of selection at the second draw is

(2) = (m -(1-51))/61 s (2.2.30)

P.
k1+l kl+1

and if at all subsequent draws its probability of selection is zero. The second draw

is therefore made with the following selection probabilities:

0 if lsIskl,

(wkl+l-(1-<sl])/él if I=k +1,

P2) = HI i k2= T < kk, | (2.2.31)
1—62 if I = kl # k2+1 R
0 if I= kl+k2+2 ,
where k2 is the integer such that
kl+k2
62 = Pkl+l(2) + kE;Q TS 62+ﬂkl+k2+l . (2.2.32)

The number of distinct units selected in the first two draws is thus two, with

probability 1 - Pk +l(l)Pk (2) , and otherwise only one. The procedure is
1

+
1 1
continued until it terminates.

Note that if neither the Ith nor the Jth unit is a junctional unit, and there

is no junctional unit between them in the ordering, then Tey = 0 . Hence an unbiased

Sen-Yates-Grundy variance estimator cannot be obtained using this procedure. The

next three procedures were devised in order to circumvent this problem.

PROCEDURE 22: Hanurav's Modified Junctional Procedure

Strups, strwor, n not fized, d by d, unord, inewact, non-rotg.
Hanurav (1962a), Cassel et al (1977, p. 16).

Select one unit from the entire population with probability proportional to size
and the remaining units by Procedure 21 in such a fashion that the probability of

selection at least once in the second or subsequent draws is

m
5 = ﬂI[l - %] [1 - TI] . (2.2.33)

The procedure does ensure that every pair of population units has a non-zero
probability of inclusion in sample. However the joint probabilities of most of the

pairs are only of order PIPJ/V and the Sen-Yates-Grundy variance estimator is

unstable particularly for large values of Vv .
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PROCEDURE 23: Hanurav's Double Junctional Procedure

Strmps, strwor, n not fized, d by d, unord, inexact, non-rotg.

Hanurav (1962a), Cassel et al (1977, p. 16).

Select two independent subsamples using Procedure 21, both with the same expected
sample number, with the probability of inclusion of the Ith unit in each subsample
given by
)55

T . (2.2.34)

n} =1 - (l-n

A unit is included in sample if it appears in either subsample. The total probability

of inclusion of the Ith unit is therefore

1 - (l—ﬂ})2 =T (2.2.35)

PROCEDURE 24: Hanurav's Sequential Procedure

Strmps, strwor, n not fiwed, d by d, unord, inexact, non-rotg.
Hanurav (1962a), Cassel et al (1977, p. 16).

Select the Ith wunit at the rth draw with probability

P (x-x .)
Py = L2 (2.2.36)
1T
when by convention KO =0 and
e
X =K+ P ) (2.2.37)
r r-1 |7=1 1- ol I

This procedure resembles the three preceding ones in that although selection can
occur move than once, inclusion in the sample is dependent only on selection at least
once. It differs from these procedures in that the probability of inclusion in sample
is proportional to size after each draw, so that sampling may be terminated once a
desired sample number is obtained. The expected sample number after r draws is

K . Hanurav supposed that as »r » « all units in the population would eventually be
included, so that Kr > N . He deduced that after a certain number of draws, the
probabilities of selection would turn negative. In fact, however, the limit of Kr

as pr -+~ is P;ix . Since this implies that the probability of inclusion of the

largest unit tends to unity as » + « , this procedure is generally applicable in a

rather special and interesting sense.
PROCEDURE 25: Rao-Hartley-Cochran Procedure

Not strwps, strwor, n fized, d by d, unord, inexact, non-rotg.
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Rao, Hartley and Cochran (1962), Stuart (1964), Raj (1966), Hanurav (1967), Rao and
Bayless (1969), Bayless and Rao (1970), Singh and Singh (1974}, Chotai (1974), Singh
and Kishore (1875), Singh and Lal (1978), Cassel et al (1977, pp. 15, 153ff).

Divide the population units at random into 7 groups of NJ units,

J =1, 2, «a., n , where the NJ are predetermined. Select one unit from each group

with probabilities proportional to the normed measures of size within the group.

A special unbiased estimator for use with this selection procedure will be
discussed in Chapter 4. Although this estimator is very similar to the Horvitz-
Thompson estimator, the two are not identical and their variance estimators are

entirely different.
PROCEDURE 26: Stevens' Procedure

Not strmps, strwor, n fixed, d by d, unord, inexact, non-rotg.
Stevens (1958), Kish (1965), Durbin (1967).

Form the population units into groups of not less than # units each, all units
within the group being as close in size as possible. Select n groups with
replacement with probability proportional to their total measure of size. If the Jth

group is selected ny times, select ny

units from this group with equal
probabilities without replacement. Slight variations of this procedure can be found
from author to author and even from the same author but the principle involved is the

same.

In practice the restriction to groups of at least 7 units may be relaxed, but

then the procedure ceases to be strictly without replacement.
PROCEDURE 27: Poisson Sampling

Strmps, strwor, n not fixed, d by d, unord, inexact.
Hajék (1964), Ogus and Clark (1971), Brewer, Early and Joyce (1972), Brewer,
Early and Hanif (1980), Cassel et al (1977, p. 17).

Assign a probability of inclusion in sample to each population unit. Conduct a
set of N Bernoulli trials, using each of these probabilities in turn, to determine
whether or not the corresponding unit is to be included in sample. The sample

consists of all the units for which the trials have been successful.

This procedure will be considered in detail in Chapter 4. The variability of the
number of units in sample in this procedure is large as compared with other procedures
in which the sample number is a random variable. Nevertheless its extreme simplicity

may will commend it for large samples.

Poisson sampling is known in forestry as 3-P sampling; see for instance

Sethumadhavi and Rajagopalan (1974).
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PROCEDURES 28-31: Hajek's Methods I-IV (respectively)

Not mps, strwor, M fized, rej, unord, inexact.

Hajek (1964).

These are four approximations to the Carroll-Hartley Rejective Procedure devised
by Hajek (1964) and labelled by him I-IV in descending order of accuracy. They differ
from the Carroll-Hartley Rejective Procedure only in their working probabilities,

which are given below (but not in Hajek's notation).

Procedure 28: Hajek's "Method I"

il
Bp(r) (pr(a-rpp) s (1np )] / ng P (1-2p)) /(1-nP ) (2.2.38)
where
L op) | T )| /|8 B ) )
ey B )y P 1mp /| Y Bil1-mPo)E . (2.2.39
)‘ ng ARG o A S Ty
(Note that A is of the order of unity.)
Procedure 29: Hajek's "Method II"
N
P(r) = [PI(l-PI]/(l-nPI)) / ng PJ(l—PJ)/(l_nPJ] . (2.2.140)
Procedure 30: Hajek's "Method ITIY
— n _
p ) = (B/(17-1P))) / z P /(1-nDE| . (2.2.81)
Procedure 31: Hajek's "Method IV"
N
} } - . .2.42
pr) = (P/(1-nP))) / ng P,/ (1-nP ) (2.2.42)

Hajek's mMethod I" appears to be a very accurate approximation. In the example

Hajek gives, the probabilities of inclusion are exact to within one or two parts in a
3

thousand. It may therefore be useful as an entry into the iterative procedure for the

Carroll-Hartley Rejective Procedure 14.
PROCEDURE 32: Deming's Systematic Procedure
Strmps, not strwors N fized, syst, ord, inexact.
Deming (1360).
Select systematically m subsamples of #n/m units using m different random
starts and a skip interval of mZ/n .
Variances may be estimated in an unbiased fashion with (m-1) degrees of freedom

by comparing the pesults of the m systematic samples. The larger m is made,
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however, the greater the departure from sampling without replacement. This procedure
was originally suggested in the context of equal probability sampling, but is just as

applicable to sampling with unequal probabilities.
PROCEDURE 33: Variance Estimator Optimization Procedure

Strmps, strwor, n fived, w.s., n = 2, j p iter.
Brewer and Hanif (1969a).

This procedure fixes the joint probabilities of inclusion in sample in such a

fashion as to optimize the stability of the Sen-Yates-Grundy variance estimator under

the stochastic model introduced in Chapter 1. Only the T,y can thus be specified so

that this procedure by itself is insufficiently defined for »n > 2 . It can in
principle be combined with one of Sinha's Procedures, 42, or 43, to arrive at a
defined sample for any value of % . The stability of the Sen-Yates-Grundy variance

estimator will be considered in detail in Chapter 3.
PROCEDURE 34: Jessen's Method 1

Strmps, strwor, n fired, w.s., unord, non-rotg,

Jessen (1969).

Choose a decrement qﬂ which is an aliquot part of every Ty (If no such
number exists the procedure is not applicable. It is simplest if the largest possible

value is chosen for qﬂ J

Set out a tableau, in which the first row displays the Tros I =1,2, ..., N .

The first possible sample consists of these 7 units with the largest value of

“I . Ties are split arbitrarily. Subtract qﬂ from those »n largest values. Enter
in the second row of the tableau (ﬂI-Q") for those units included in the first
sample and ﬂI for those units not in the first sample.

The rth possible sample consists of those # wunits with the largest values in
the rth row of the tableau. Decrease these values by qm and enter them in the

(r+1)th row. Repeat the remaining values from the rth row into the (r+l) row.

Continue until the process terminates.

There will then be D;l possible samples, some of whiéh will in general be

duplicated. Select one of these Q;L samples with equal probabilities.
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EXAMPLE (Modified from Jessen, 1969)

Population Unit No.
Steps and Decrements Interpretation
1 2 3 4
step No. 1 (m}) .2 .4 .6 .8
Sample containing units 3 and 4
Decrements .0 .0 .2 .2
Step No. 2 I SN T
Sample containing units 2 and 4
Decrements .0 .2 .0 .2
Step No. 3 20 .20
Sample containing units 3 and 4
Decrements .0 .0 .2 .2
Step No. W .2 20 .2 .2
Sample containing units 1 and 2
Decrements .2 .2 .0 .0
Step No. 5 0 W00 .20 .2
Sample containing units 8 and 4
Decrements .0 .0 .2 .2
.0 .0 .0 .0

Result: Sample contains units 1 and 2 with probability 0.2 3
2 and 4 with probability 0.2 ;
3 and 4 with probability 0.6 .

N.B. Jessen used the decrement 0.1 and obtained a different sample space. For

comments, see Procedure 36, Jessen's Method 3.
PROCEDURE 35: Jessen's Method 2

Strmps, strwor, n fized, w.s., unord, non-rotg.

Jessen {1969).

This is identical with Procedure 34, except that the decrement varies from step
to step. An (N+l)th column is needed, with the initial entry unity, to indicate the
probability not yet allocated to any sample prior to the rth step. The entries in

this column are decremented at every step.

For the mth step the decrement is chosen to be as large as possible subject to
two requirements. The first requirement is that, for every unit to be included in the
mth sample, the decrement must not exceed the smallest of the entries in the rth
row; otherwise one or more entries in the (m+l)th row could be negative. The
second requirement is that, for every unit not included in the mth sample, the

decrement must not exceed the smallest of the differences between the initial WI and

the entry for the Ith unit in the »rth row; otherwise the unit corresponding to

that entry would be left with an unallocated balance at the end of the process.

The selection of one out of the possible samples is then made with probabilities
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given by corresponding decrements.

EXAMPLE (Source: Jessen 1969)

Population Unit No.
DSet;‘p:mearicd (¥+1)th column .
nts 1 2 3 N (Unallocated Probability) Intrepretation
Step No. 1 {r)| .2 .» .6 .8 1.0 sample containi
containing
Decrements .0 .0 .6 .6 6 units 3 and 4
Step No. 2 2 4 0 2
. . . . 4
Sample containing
Decrements .2 .2 .0 .0 .2 units 1 and 2
Step No. 3 0 2 0 2
. . . . .2
Sample containing
Decrements O .20 W00 L2 .2 units 2 and 4
.0 .0 .0 .0 .0

Result: Sample contains units 1 and 2 with probability 0.2 ;
. . ?

2 and 4 with probability 0.2 ;

3 and 4 with probability 0.6 ;

N.B. This sample space is the same as for the example given under Procedure 3%, For

comments, see Procedure 36, Jessen's Method 3.

PROCEDURE 36: Jessen's Method 3

Strnps, strwor, n fixved, w.s., unord, non-rotg.
Jessen (1969).

Like Procedure 35, this uses a tableau with a probability decrement that varies
from row to row, the (#+1)th column indicating, at each step, the probability as yet

unallocated to any sample. Here, however, a step may relate to more than one sample.
At the mth step, the units are divided into three sets.

Set 1. Those whose entry in the tableau equals the unallocated probability in

the (N+l)th column. These units may be included in the rth and all subsequent
samples,

Set 2. Those whose entry is intermediate between zero and the corresponding
entry in the (N+1)th column. These units must be included in some but not all of
the mth and subsequent samples.

-+

‘ Set 3. Those whose entry is zero at that step. These units cannot be included
in any further samples.

For the mth step, the rule is to include in sample with certainty all units in
Set 1, and a random selection of the units in Set 2 large enough to make up the
required sample size.

If the probability decrement entered in the (N+1)th column at the mth step is
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qﬂ , the entries of those units in Set 1 must each also be decremented by qﬂ , while

those of the units in Set 2 must be decremented by Dmnm/Nm where Nm is the number
of units in Set 2 at the mth step, and nm is the number of units in Set 2 required

to make up the difference between the required sample size and the number of units in
Set 1.
The decrement Dm is chosen to be as large as possible subject to two

requivements. The first requirement is that Dmnm/Nm must not exceed the smallest

entry for any unit in Set 2 (otherwise the entries could become negative). The second

is that Dm must not exceed Nm/[Nm—nm) times the smallest of the differences

between the original L) and the current tableau entry in the Ith column for any

unit in Set 2 (otherwise the unit corresponding to that entry would be left with an
unallocated balance at the end of the process).

EXAMPLE (Source: Jessen 1969)

Steps and Population Unit No. (N+1)th Column Interpretation
Decrements 1 9 3 M (Unallocated Probability) 3
Step No. 1 (ﬂlJ .2 4 .6 .8 1.0 Random non-replacement
samples of 2 units
from units 1, 2, 3 and
Decrements .2 .2 .2 .2 4 4
Step No. 2 .0 .2 W .6 .6 samples including unit
4 and a random
selection of one from
Decrements .0 .2 .2 U4 M units 2 and 3
Step No. 3 .0 .0 .2 .2 .2 Sample containing
Decrements .0 .0 .2 .2 .2 units 3 and % only
.0 .0 .0 .0 .0
L

After completing the tableau, a random number is chosen between 0 and 1 . The
type of sample to be selected is indicated by the tunallocated probability' entry in

the (N+l)th column next larger than that random number. In the example given above,

a pandom number in the range 0.2 up to but not including 0.6 would indicate that

the sample should include unit 4 and a random selection of one from units 2 and 3.

These first three of Jessen's methods are reasonably convenient for selection

purposes and the Trs are readily calculable. However extreme solutions with one or

The T for Procedure 36

more of the ﬂIJ = 0 are common for Procedures 34 and 35. 17

are always strictly positive. 1In the example given by Jessen they are identical to

those obtained by the Random Systematic Procedure 2. These T, are not close to the

us

optimum set for stability of the Sen-Yates-Grundy variance estimator (see Section
3.7).

PROCEDURE 37: Jessen's Method 4
Strmps, strwor, n fixed, w.s., n = 2 only, unord, non-rotqg.

Jessen (1989),

Approximate t w - 2 i
PP e the 7 by {HI“J [n -y HJJ/N(N—l)} . Use trial and error to

. N
adjust these approximations so as t =
s to ensure that o Try = 07p for all I . Select
JEL
a sample of two units using these Ty to define the sample space

This procedure approximat i
pproximates equality for the (“I“J_WIJ] for all combinations

I, J . Exact equality (which is generally impossible) would simplify the variance of

1
yHT to

N N Y 2

gd = - £ 2f|| 2 [E- 2

HT == - = / (N-1)]| .

2 T & &R J (2.2.43)

There is no necessity to use trial and error, since the variance of the (ﬁ N ]
I'J IJ

could be minimized analytically. The use of trial and error in Jessen's example

results in i
a set of Trr which are unfavourable for the stability of the Sen-Yates-

Grundy variance estimator. Use of the analytical solution in this case yields a
solution close to the theoretical optimum for the stability of this variance

estimator. Two alternati i

ive formulae for the “IJ which would not require the use of
trial and error are given in (3.7.2) and (3.7.3).
PROCEDURE 38: Modified Poisson Sampling

Strmps, strwor, n not fixed, d by d, unord, inexact.

Ogus and Clark (1971), Brewer, Early and Hanif (1980).

Select an ordinary Poisson Sample (Procedure 27). If no units are selected in

that sample, reselect repeatedly until a non-empty sample is achieved

Assuming that the probability of inclusion in the sample of the JIth population
unit i
is to be held constant at Tr s the probability of selecting this unit at each

ordinary Poisson dra * i
w must be ﬂl{l—PO) where Ps is the probability of selecting an

Jij
empty sample at each attempt % = i
pt. Then P0 = I {l—ﬂI(l—Pé]} and its value may be
obtained iteratively using the initial value zero.

Modified Poisson sampling was devised to reduce the variability in sample size

whi s . : . s
hich obtains with ordinary Poisson sampling, and in particular to ensure that an
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empty sample is never selected. This procedure will be discussed in detail in Chapter
L,
PROCEDURE 39: Collocated Sampling

Strmps, strwor, n not fized, d by d, unord, inexact.

Brewer, Early and Joyce (1972), Brewer, Early and Hanif (1980).

Collocated sampling is similar to Poisson sampling, but reduces the variation in

sample size by requiring the random variables r, used in the Bernoulli trials to be

uniformly spaced instead of uniformly distributed over the interval [0, 1) . A

random ordering I (LI =1, 25 eces AO is chosen with equal probabilities, and a

random variable 6 1is also selected from a uniform distribution over the interval

{0, 1) . The value of ?; is then defined as (LI+9—1)/N . This procedure will
also be discussed in detail in Chapter [
PROCEDURE 40: Das-Mohanty Procedure

Strmps, strwor, n fixed, w.s., unord, non-rotg.

Das and Mohanty (1973).

Form a sample space containing b= bl + b2 samples, each of 7 distinct units.
The bl samples are to be such that each population unit appears precisely I times

in all samples combined, and that for each pair of units there is to be at least one

sample where both appear together. In the b2 samples the Ith population unit is

to appear (cZI-r) times in all samples combined. Select one sample at random from

the complete sample space giving equal probability to cach sample. Das and Mohanty

supply three schemes for the construction of sample spaces with these characteristics.

The advantage of this procedure lies in the simplicity of calculation of the

Trg o+ The difficulty lies in the construction of the sample spaces such that the

resulting M., provide stable vapiance estimators. The procedure can be used only

when the ZI are integers. When the original ZI are not integers, they can - to

any desired level of accuracy - be replaced by new integer-valued measures of size.

If these are large, however, the procedure becomes difficult to manage. The same is

. . -1 . .
true if Zmax/z is close to 7 , as then the required value of ¢ 18 large.

PROCEDURE 41: Mukhopadhyay's Procedure
Strwpe, strwor, 7 fixed, unord, d by d, non-rotg.
Mukhopadhyay (1972), Sinha (1973).

This procedure is one which enables a sample of any size n to be selected given

the T and the nIJ only. A description of this procedure is omitted here for the

u7

following reasons:

1. it is extremely complicated both to describe and to use;

2. it can be considered as superseded by Sinha's Procedures 42-43.

Readers who wish to consider this procedure in detail are referred to
Mukhopadhyay (1972). It will not be considered further in this monograph.
PROCEDURE 42: Sinha's 'Extension" Procedure

Strmps, strwor, n fived, w.s., unord, non-rotg.
Sinha (1973).

Given any set of non-negati w i i
gative T, and ﬁIJ which are feasible in the sense that

the T, sum to 7n , t
T , that the Tpy Sum over Jd to (n—l)ﬂI , and that no 7

IJ
exceed i i
ceeds mln(ﬂI, WJJ or [ﬂI+ﬁJ—l] > Sinha's Extension Procedure will provide one

possible sample space consistent with that feasible set. The procedure is as follows

Form the sample space for a sample of N - 2 (2 n) wunits with inclusion

probabilities ﬂ} and joint inclusion probabilities ﬂ}J given by

X

Tr = -2/,

(2.2.44)
mh, = T (H-2)(N-3)/n(n-1) .

The sample space for this sample of ¥ - 2 wunits is defined by

H{sample excludes units I and J} ¥ 4
= + T - A -3
1 IJ I J

If n=N- 2, the procedure terminates at this point.
sample of N - 2

. Otherwise, for each possible
in that sample space, calculate the probabilities of selecting each

ossib
P le subsample of # from the ¥ - 2 , using srswor. Add these probabilities

ove: i
r the sample space for each possible subsample of »n units, and select one such
subsample using these probabilities.

It will sometimes happen th
at t %, wk i i
PP he set {"I’ 7y is not feasible in the sense

stipulated above fo!
r the set {"I’ nIJ} . In these cases some of the 'possible’

samples of - i i i
e N - 2 units will have negative probabilities. "If, however, the resulting
A . . . :
gative probabilities for the srswor subsamples of =7 units are added algebraically
the procedure will still yield a feasible solution ’

PROCEDURE 43: Sinha's Reduction Procedure
Strups, strwor, n fived, w.s., unord, non-rotg.

Sinha (1973).

Given any set of non-negative T an which is feasible in th e
. a . - - s
d w £ 1 e sense

IJ
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defined for Procedure 42, ginha's Reduction Procedure will provide the identical

sample space to that obtainable from Procedure 42. The method is as follows.

Form the sample space for a sample of two units with inclusion probabilities ﬂ}*
and joint inclusion probabilities ﬂ}; given by the implieit formulae
n-2 N-1 _xx
LES o R
(2.2.45)

_ (n-2)(n-3) (N-n){n-2) 2n-2) . (n-2)(n-3)
Mo = ) (#-3) | (B-2)(N-3) (rgremss) + [ - Nt e

If n = 2 +the above equations pesult in the trivial solutions F}* =Tro

A% = . . PR
ﬂIJ ﬂIJ , and a whole sample of two units can be selected with probabilities Ty
in the usual way. For n > 2 the probability of selecting any given sample of n

(over the sample space of samples of two units) of the probabilities

units from the complementary set of N - 2

units is the sum

of selecting srswor the premaining (n-2)

units.

As with Procedure 42 it will sometimes happen that the {ﬁ}*, ﬂ}}} do not form a
feasible set. If, however, the resulting negative probabilities are added
algebraically the procedure will still yield a feasible solution.
PROCEDURE 44: Chaudhuri's Procedure

Strips, strwor, N fized, d by d, wnord, not gen app.

Chaudhuri (1976).

Choose any exact Tpswor procedure generally applicable for 7 = 2 . Select the

fiprst two units using that procedure, but with working probabilities calculated so as

to ensure that the final probabilities of inclusion (after the entire sample is

selected) are proportional to size. Select the remaining 7 - 2 units from among

those population units not previously selected, using srswor.

This procedure is somewhat analogous to Midzuno's (Procedure 6). Whereas Midzuno

selects one unit with unequal and the remainder with equal probabilities, Chaudhuri

selects two units with unequal and the remainder with equal probabilities. This

procedure is applicable when Pp > (n-1)/n(¥-1) for all I .

PROCEDURE  45: Lahiri's Procedure

Not strmps, strwor, n fized, w.8., unord, inexact, non-rotg.

Lahiri (1951), Sankaranarayanan (1969), Rao and Bayless (1969), Bayless and

Rao (1970), Vijayan (1975), Cassel et al (1977, pp. 120-121, 154£F).

gelect a set of 7 units using srswor and £ind the aggregate size measure of

those units, Choose a random number between zero and the sum of the sizes of the n
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largest units (or any number greater than this). If this random number exceeds the
aggreg?te size of the srswor sample of 7 wunits, reject the sample as a whole;
otherwise accept it. If the sample is rejected, repeat the process until a sa; le i
accepted. Clearly the probability that a sample will be accepted is proportion:l tos
the aggregate measure of size of the sample units and in consequence the conventional

rati pagt r is unbiased. This procedur ill be considered in detai in Chapter
tio estimato: nb pro edure w
b o d. d deta apte

PROCEDURE 46: Ikeda-Midzuno Procedure

Not strmpe, strwor, n fixed, d by d, unord, inexact, non-rotg.

Midzuno (1952), Avadhani and Srivastava (1972), Singh (1975b)

Select r units using srswor. Select the Ith wunit from the remaining N - r

r
units with probabili
P ility PI + jzi pj/(N—r) . Select the remaining 7 - » - 1 units

using srswor. The special case of this procedure with » = 0 was devised by Ikeda

and . . : s ’
the general case by Midzuno. Like Lahiri's Procedure 45, it selects samples with

robabiliti . .

probabilities proportional to their aggregate measures of size and in consequence the

conventional ratio estimator is unbias . t! O v
ed Further
discussion will be given 1n Chapter

PROCEDURE 47: Fuller's Scheme B

Strmps, strwor, n fized, d by d, n = 2 only, not gen app
Fuller (1971). '

Select the first draw with probabilities equal to the normed measure of size

PI , and at the second with probabilities given by

N N
P = 4P+ %P 2] 1 2 2 2 ]
slr = ¥yt ¥ E ) ||/ L B2pp)e]a P2 2p?
719D & Kgl X PJJ s (2.2.48)
where
N N
_ 2 2, 2
D= P/ P -2
Lgl K Kgl 2P| (2.2.47)
This method has joi iliti
joint b, i i i ini
probabilities of inclusion WIJ which minimize
N -
P
Ig=1 | "I ’ (2:2:48)

J>I
and in consequence are ne i
arly proport i
y proportional to ﬂIﬂJ . The procedure is applicable

only when
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N
2 2
2P < ¥ P;, (2.2.49)
max 3 I
where P is the largest of the P_ .
max I

Fuller (1971) indicated how this procedure could in principle be extended to

cover n > 2 but did not give details. (N.B. Fuller's Scheme A for 7 = 2 is

identical with Procedure 9, q.v.)

PROCEDURE 48: Singh's Procedure
Strupe, strwor, n fixzed, syst, ordered, J p emum, not gen app.

Singh (1978).

1. Select a sample of size

!

n (N+1)/2 if N is odd

N/2 +1 if N 1is even.

n

(A) Select a random number I from 1 to N by a predetermined
probability P(Z) . For N odd, choose P(I) = (' (22 ,)/2) - 1

For N even the specification of p(I) is available but

cunbersome.

(B) Starting with I select two contiguous units and thereafter

(n'-2) units in a circular systematic fashion with skip

interval 2 .
2. Select a sample of the required size 7 by simple random sampling from the
n' already selected.

From the form of P(I) with ¥ odd it will be seen that the method can only be
applied when ZI + ZI_l > Z/n' for all I . Even with an optimum arrangement of the

, second largest, second smallest, and so on) it is easy to

units (largest, smallest
The procedure does, however

produce counter-examples which violate this condition.

(1like the other systematic methods), have good rotational properties.

PROCEDURE 49: Choudhry's Procedure
Strips, strwor, n fized, d by d, unord, § p iter, non-rotg.
Choudhry (13879).
es and Grundy Procedure 4 for all draws except the last, and at

working probabilities such that the total probabilities of
For #n = 2 the procedure is equivalent

This uses the Yat

the last uses a set of

inclusion in sample are proportional to size.
For 7n > 2 it has the advantage that only one set of

to Fellegi's Procedure 13.
The procedure appears to

working probabilities need be calculated instead of (n-1) .

be generally applicable for n > 2 but no proof of this is available.
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PROCEDURE 50: Chromy's Procedure

Strmps, strwor, n fiwed, ord, j p enum, non-rotg.
Chromy (1979)

Each population unit is considered in turn, and given a probability of inclusion
in sample conditional on the history of the selection process up to that point

I

Let Int(I) = |} =« (that i . .
J:i J is the integral portion of the expression in square

I
brackets) and Frac(I) = - 3 N
) Jzi T, - Int(I) (that is the fractional portion of the same

expression).
By convention Int(0) = Frac(0) = 0 .,

.The procedure is such that the number of units selected in sample prior to
consideration of the Ith population unit is either Int(I-1) or Int(I-1) + 1
The following table indicates the conditional probabilities of inclusion in sam l; of
the Ith population unit, given the number of units already selected and the ’
relationship between Frac(I) and Frac(I-1) .

Conditional probability of inclusion

Case No. Relationship
in sample given
InF(I-l) units Int(I-1) + 1 units
previously selected previously selected
(@) Frac(I) = 0 1
0
(2) Frac(I) > Frac(I-1) = 0 Frac(I)-Frac(I-1)
1-Frac(I-1) 0
(3) Frac(I-1) > Frac(I) > 0 1 Frac(l)
Frac(I-1)

(Note that the above table is appropriate only when 0 < “l <1 for all I ]

Thil i
s selection procedure ensures that at every point in the selection process the

expect
pected value of the (cumulated) number of sample units already selected is equal to

Tt . .
can easily be generalized to the case where some*units are so large that

nz_/z > o i
T 1 . The number of times such large units are to be included in sample is
taken to be nZ_/Z] + 1 i i y -
with babili n
T pro. ilit nZI/Z ZI/Z , and nZI/Z with
Probabilit 1-nZ2./2 + i v 2 ti
y I/ nZI/Z . It is then convenient to express the selection

rules in a slightly different kind of table.
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Conditional probability that cumulated number

Case No. Relationship of units selected is to be Int(I) + 1 given
Previous cumulated Previous cumulated
number selected was number selected was

Int(I-1) Int(I-1) + 1
(1) Frac(I) =0 0 0
Frac(I)-Frac(I-1)
> - >
(2) Frac(I) = Frac(l =0 ——-1:f;g€(fjiy——— 1
Frac(I)
¢ -1) > > _fracio/
3) Frac(I-1) > Frac(I) > 0 0 Frac(T-D)

[This table may be used even if some of the nZI/Z take zero or integer values.)

or can be obtained for samples with

To ensure that an unbiased variance estimat

n > 2 , Chromy suggests the following steps:

(1) Develop an ordered sampling frame of N [population] units;

(2) Select a unit with probability proportional to its size to receive the

label 1 3

(3) Continue labelling serially to the end of the sampling frame;
(4) Assign the next sepial label to the first unit at the beginning of the

1ist and continue until all [population] units are labelled;

(5) Apply the sequential ... sample selection algorithm starting with the

"

sampling unit labelled 1 .

Chromy suggests the use of this selection procedure with meaningfully ordered
lists in order to obtain the reductions in variance associated with systematic,

stratified or zone sampling. An unordered form of his procedure (starting with a
pandomized ordering of the population in Step (1) gbove) could, however, be used, and
may yleld Trs values closer to those required for the optimum stability of the

Sen-Yates-Grundy variance estimator.
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CHAPTER 3

UNEQUAL PROBABILITY PROCEDURES AND THE

HORVITZ-THOMPSON ESTIMATOR

3.1. SELECT
CTION PROCEDURES APPROPRIATE FOR USE WITH THE HORVITZ-THOMPSON ESTIMATOR

As mentioned in Chapter l, h 1tz- hompson Estimator has a numb of
the Horvitz-T t t er
desirable properties when used with an exact sa T, ce (=Y o g

prop pll g pro dur T the three given

in Chapter 1 ca W under model 8.5 the expecte

n now be added a four th, that under (1 ) h Xpect d

. 5

variance of the HOIVltZ—ThO’HpSOH estimator achieves the lower bound of the expected

P

. . - . :
variance for an de31g'n—unb1ase estimator (Godambe and Joshi s L )
y d t t G 965).

The conditi i i

o 82122:izzq:;2iidlz Chap?er 2 f?r the description of a procedure as erxact
et be strfctly without replacement, that the probabilities
o ? st?lctly proportional to the original measures of
et ?nlts in sample should be fixed. In Chapter 2, 32 of the
s oon Brosedunes. ::crlbed had these properties. In this Chapter an attempt
ool ot vt Horvjii ii:;edures under the assumption that they are being

- pson estimator of total and the Sen-Yates-Grundy

.

estimator of variance.

The criteria f i i
aoptiomiss or comparison will be limited to samples of size n = 2
effici y, simplicity in selection, simplicity in variance estimati o *
1ciency of the Horvitz o
-Thompson estimator ’
of total, the unbia
sedness and stabilit
y

( that is, efficienc of the Sen-Yates- variance est to: and rotatabi
s ncy) of Tl £ GI‘undy sTimator tabilit
y » 1ity.
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3.2. LIMITATION TO SAMPLES OF SIZE 7 = 2

1f the number of units in the population is large and it is inconvenient to
divide into strata, it is imperative that the sample should not be limited to two
units. On the other hand it is often convenient to divide large strata into small

ones, particularly if they are geog

raphical entities. Moreover, each of the small

more homogeneous than the original pop

would be possible without stratification.

ulation,

strata thus formed can usually be made

he sample more representative than
in fact, the limiting case

making t
whepe the maximum advantage in

The case 7 = 2 is,

occurs consistent with obtaining an unbiased estimator of variance.

stratification

selecting one unit from ecach of a random subset of the strata and

(It is possible, by
to push this advantag

the remainder, e still further, but it is
suitable method of selecting two unit

is not as critical as it

two units from each of
s from some of these

still necessary to have a
= 2 , while important,

strata.) Hence the ilimitation to % =

might appear.
Procedures 7, 20, 33 and

can be extended to the

The following are formally limited to the case 7 = 2 3

A1l of these, however, with the exception of Procedure 7,

37.
in accordance with the cri

case n > 2 by calculating values of Moy terion suggested
by the chosen procedure, and feeding these T, ., into one of Sinha's Procedures 42-43.

3.3. GENERAL APPLICABILITY

r 2 as being generally applicable if they

Procedures were described in Chapte
could be used given any feasible set of inclusion probabilities {NI} . To constitute

N
0<m,.<1 and Y mpE
I=1

a feasible set the Tp must satisfy the conditions I

integer). Now the desired m, are typically derived from non-negative size measures
7. using the relationship T, = n ZI/Z and thus automatically from a feasible set

I

provide only that Zmax erious inconvenience when

< Z/n . It isan obvious and s

feasible sets {HI} are encountered which cannot be catered for by a chosen
not generally applicable even for n =2,

procedure. Those procedures which are

Procedures 6, 4l, 4k, 47 and 48, wi
though defined for 7 > 2,
These will be considered

and 49 appear to

namely, 11 therefore be excluded from further
are generally

The following procedures,

applicable for n = 2 only; Procedures 9, 10, and 18.
Procedures 13, 17,

context of that special case only.
, but no proofs are available.

consideration.

fupther in the
be generally applicable for 7 > 2
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3,4. SIMPLICITY IN SELECTION

SlllpllClty is of great importance in the choice of a selection ploceduze, but it
is difficult to be entire y
diff e t ly objective in the com 1
parison. It is neverthele 0SS e
T O S8 D bl
P P .
rocesses and provide tentative assessments of their ease or dlfflculty This is the

approach which will be followed in this Section

The Systematlc Procedures 1, 2, 3, and 48 are particular ly simple. Of these, the

Ordered SyS tematic Procedure 1 requlres no r andomization of the orderlng . In Gr undy 8
ystel 1 m m order,
Systematic Procedure 3 , & portion of the popula tion must be put into r andom ord d
T an
in the remalining Procedures 2 and 48, the whole of it. Chro my " S Procedure 50 is

somewhat less simple than these.

Jess W y app ment- e O s dre o)
essen's two generally applicable decrement-based Procedures 35 and 36 1
re atls
uite s:.mple. The decision rules to be used are straigthforward for Proced 35 b
q g ure ut

less so for Procedure 36.

For the remaining
procedures the cases 7n = 2
= and 7 > 2 will be consi
nsidered

separately.

CASE 1: n =2

Sinha's R i
eduction Procedure 43 takes a particularly simple form when »n = 2

Since, however, the 1 i Y ying em
s are arbitrary, some method must be used for specifying th
>

which may 1tse. e simple or complicated., ree simple methods wl € presen 1
tself b 1 1 ted Thre 1 thod ill b re. ted in

Section 3.7.

Brewer's 1

o ! gffo::Zu;:O?sizh;chdfor n = 2 is identical with Durbin's Method I, that

e 50, et : pford Procedure 11, the Durbin-Sampford Procedure 12, the

A Sel;ct‘ and the Hanurav-Vijayan Procedure 19 are all quite easy to

\ e O;on Procedure ?epends on the calculation of probabilities which

Dérbin_Hanurav e mi:sure.of 31%e. The Rac-Sampford Procedure 11, and the

g ohenray Froce ;urb? ?elng rejective, involve a slight extra complication over

N (P;ocedur:ngj ?rouped ?ethod (Procedure 10) is less convenient than

o ethod ® fore . in that it requires grouping, but on the other hand it
y special calculation whenever the two units initially selected

are from different oups This ocedure must o be classed as eas to use.
nt groups. pr d: also b 1. y
.

Jessen's s
! Method 4 (Procedure 37) involves the use of trial and error, and is

co] i
nsequently somewhat inconvenient.

Raj's Variance Minimization Proce e uses linear programmin, 0 determine
) dure 20 1 to det
| 228 £
Probabilities of whole samples. This is tedious espec:.ally when # 1is large. For

dny appreciable number .
y P: le numb of strata a computer program is necessary

Fellegi!
gi's Procedure 13, the Carroll-Hartley Rejective Procedure 14 and th
e
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Carroll-Hartley Draw-by-Draw Procedure 15 involve virtually identical iterative

calculations. Several iterative algorithms have been proposed by Fellegi (1963) and

by Carroll and Hartley (1964). One of those devised by Carroll and Hartley is claimed

to be fairly rapid (2 decimal places per cycle) unless the largest T, is near unity.

Fellegi (1963) also reported quite rapid convergence for his algorithm, provided that

all the T, were less than 0.85-0.90. Alternatively, using the geometrical
properties of Fellegi's Procedure pointed out by Brewer (1967) it is possible to
obtain an algorithm which achieves a very satisfactory convergence rate even for quite
extreme sets of values of o This algorithm, written in BASIC, is given in

Appendix A.

Narain's Procedure 7 also requires iteration to obtain the working probabilities

Procedures for obtaining iterative solutions have been described
Appendix A contains a BASIC

used in selection.
by Yates and Grundy (1953) and Brewer and Undy (1962)

algorithm based on the geometrical properties described by the latter authors. Again

a very satisfactory rate of convergence was found even for quite extreme sets of

values of ﬂI .

The approximate values of Hajek's Method I (Procedure 28) may be useful as

entry points to iterations for the Carroll-Hartley Rejective Procedure 14.

The Das-Mohanty Procedure 40 is relatively simple when the measures of size can
be written as small integers. More usually, however, the number of possible samples

which have to be considered is very large, and the selection procedure correspondingly
tedious.

The procedures can therefore be arranged in six groups: the Systematic
Procedures for which selection is particularly simple; then Jessen's Procedures 35
and 36, together with Sinha's Reduction Procedure 43; next Brewer's Procedure,
Durbin's Method I (Procedure 9), Durbin's Grouped Method (Procedure 10), the Rao-
Sampford Procedure 11, the Durbin-Sampford Procedure 12, the Durbin-Hanurav Procedure
17, Hanurav's Scheme B-A' 18 and the Hanurav-Vijayan Procedure 13 which are also
fairly easy to use; Jessen's Procedure 37, which involves trial and error; Narain's
Procedure 7, Fellegi's Procedure 13, the three Carroll-Hartley Procedures 14-16, and
Raj's Variance Minimization Proecdure 20, all of which need iterative algorithms; and
finally the Das-Mohanty Procedure 40 which in general involves the construction of

quite complicated sample space. This last procedure will not be mentioned further.

The Carroll-Hartley Whole Sample Procedure 16 is of course, less simple to use

for selection purposes than the corresponding draw-by-draw and rejective procedures.

Since it possesses no advantages on the basis of any of the other criteria used in
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this study, it will also be dropped from the discussion from this point on. Sinha's

Extension Procedure 42 is not appropriate for #n = 2

CASE 2: n > 2

In this situation the Systematic Procedures 1-3 and 48, Chromy's Procedure 50
s
and Jessen's Procedures 35-36 remain simple. Sinha's Extension Procedure 42 will
usually be simple for populations and samples of small size. His Reduction Procedure

43 (which gives the same solution) is generally somewhat less simple for n > 2

Of the remainder, Brewer's Procedure 8 and the Rao-Sampford Procedure 11 retain
the same kind of simplicity as for #n = 2 . The Carroll-Hartley Rejective Procedure
14 is again somewhat more convenient to use than its draw-by-draw equivalent Procedure
15. Iteration is required for working out the selection probabilities, both for these
for Fellegi's Procedure 13 and for Choudhry's Procedure 49. All the iterative
algorithms mentioned for » = 2 are available except those based on the geometric
properties of the solution. Choudhry's Procedure 49 requires only one set of working
probabilities to be calculated iteratively. There is some doubt as to whether the
iterative algorithms for Fellegi's Procedure 13 for #n > 2 converge (see Section
3.7). The approximate working probabilities of Hajek's Method I (Procedure 28) would
probably serve as useful entry points into the iterative algorithm for the Carroll-

Hartley Rejective Procedure 14.

The order of simplicity is therefore much the same as for # = 2 3 the
Systematic Procedures 1-3 and 48 with Jessen's Procedures 34-36, Chromy's Procedure 50
and Sinha's Procedure 42; next Brewer's Procedure 8 and the Rao-S8ampford Procedure 11
and finally the Carroll-Hartley Procedures 14-15, Fellegi's Procedure 13, and ,

Choudhry's Procedure 49 all of which require iteration.

3.5. SIMPLICITY IN VARIANCE ESTIMATION

This criterion is closely related to simplicity in selection. .This is because
the Sen-Yates-Grundy variance estimator contains the joint inclusion probabilities

Try and with some notable exceptions (Procedures 1-3 and 48 for all 7 Procedures
2
8 .
and 11 for n > 2 ) these follow readily from the same kinds of calculations as are
nheeded to carry out selection.

The Ordered Systematic Procedure is in a special position here. Although the

mr; can be simply enough calculated for any given population ordering, many of

them will be zero, and the Sen-Yates-Grundy variance estimator will be so biased as to

b . i s s
e meaningless. Consequently it is to all intents and purposes impossible to estimate

the variance this way.

Connor (1966) produced
P an exact formula for the Ty for the Random Systematic

Procedure 2. However the evaluation of this formula for any pair of units involves
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adding contributions from all possible combinations of units separating the two in the

pair. This can become tedious for large N .
tion of variance for the Random Systematic Procedure 2 more

Nevertheless Connor's formula does (at

present) make the estima

amenable to computer programming than it is for the other Systematic Procedures or

Chromy's Procedure 50.

CASE 1: n =2

For Sinha's Procedures 42 and 43 the ™, . are arbitrary and a method must be

adopted for specifying them. The Rao-Sampford Procedure 11 and the Durbin-Hanurav

e 17 involve appreciably more work in estimating variance than in s
is still reasonably

Procedur election.

For the Rao-Sampford Procedure 1l the formula for the Mrs
compact and involves no iteration. That for the Durbin-Hanurav Procedure 17 is a good

difficult to use, because the probabilities of selection change from draw to

deal more

draw. In this regard it is distinctly less simple to use than Brewer's Procedure

8, Durbin's Method I (Procedure 9),
rbin-Sampford Procedure 12, Hanurav's Scheme B-A' 18, and

Durbin's Grouped Method (Procedure 10), the Rao-

Sampford Procedure 11, the Du

the Hanurav-Vijayan Procedure 19. It is also easy to use Jessen's Procedures 35-36,

as only simple calculations are involved.

Durbin (1967) has suggested the use of a pandomization device in the estimation
of variance for Durbin's Grouped Method (Procedure 10) which makes it slightly more

simple to use than the others. Noting that the value of the coefficient [“1"2 1;—1]

is unity for most pairs of units (see Table 3.1), he suggested that it might be

dispensed with entirely by using the value ((yl/ﬂl)—(yQ/NQJ)Q as the estimator with

probability {ﬂlﬂ2ﬂ1§—l} whenever this value is less than unity, and with probability
one when it is equal to or greater than unity. If it exceeds unity for amy pair of
s is introduced, but it would appear to be small for most

population units, a bia
n=2, mo =0.04 0.08,

populations and is actually zero for the case N=9,

0.08, 0.18, 0.18, 0.24, 0.30, 0.40, 0.50 , as may be seen from an inspection of the

bottom left hand triangle in Table 3.1.

A glance at the other half of Table 3.1 suggests that the bias might be serious

if Durbin's suggestion were used for the Rao-Sampford Procedure 11, for in this case

16 out of the 36 values of [ﬂlﬂ2ﬂié-1] exceed unity. (This device also increases

the instability of the variance estimator slightly as will be noted in Section 3.7.)
The gain in simplicity therefore amounts to avoiding the calculation for some but not

all values of [[yl/ﬂl)—(yQ/sz])z . (The use of the above randomization device in

multistage sampling will be considered in Chapter 5.)
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To summarize: Durbin's Grouped Method (Procedure 10) particularly with
randomization device, is slightly easier to use than Brewer's Procedure 8, Durbin's
Method I (Procedure 9), the Rao-Sampford Procedure 11, the Durbin—Sampfor; Procedure
12, Hanurav's Scheme B-A' 18, and the Hanurav-Vijayan Procedure 19, more or less in
that order. The Durbin-Hanurav Procedure 17 is next most convenient. All the other
relevant procedures, that is Raj's Variance Minimization Procedure 20, Narain's
Procedure 7, the three Carroll-Hartley Procedures, Fellegi's Procedur; 13, and even
more the Random Systematic Procedure 2 and Grundy's Systematic Procedure ;, involve

considerable calculations which indicate the need for a computer

TABLE 3.1

5

gt
m. = 0.04, 0,08, 0.08, 0,18, 0.18, 0.2, 0.30, 0,40, 0.50

-1
Values of [ﬂIﬂ v ) for W=9,n=2

Values for Equivalence Class A

(Procedures 8, 9, 11, 12)

3 K 0.0 | o.08 | o.08 | 0.1

; " . .18 | 0.18 | o.24 | 0.30 | o.u0 [ o.50
=

9 0.04 - 1.380 | 1.380 | 1.

L | os | oo |~ | tisso | naes | 1a | saon | nams | oous | ooeun
& ~| 0.08 | 0.600 | 0.067 - 1.196 1:196 l.lOB 1'§M oo | oot
< 8| 0.18 | 1.000 | 1.000 | 1.000 - 1.077 0-998 o. o | orse | oo
2 § 0.18 | 1.000 | 1.000 | 1.000 | 0.800 .- ' oo | oree | oore
a &| o.2u | 1.000 | 1.000 | 1.000 0.200 0.2 B IOl I
8 0.30 | 1.000 | 1.000 1:000 1.ooo 1.022 1 A T e Lo
@ 0.40 | 1.000 | 1.000 | 1.000 . . o ) R
% 0.50 | 1.000 | 1.000 1.000 ?ZZZ ?ZZZ 000 | 025 ) o
3 . . . 1.000 | 0.250 | 0.111 -

CASE 2: n > 2
Setting aside the procedures considered at the start of the Section, and Sinha's
Procedur i ,
es 42 and 43 for which the w are unspecified, the choice narrows down to

IJ
Brewer's Procedure 8, the Rao-Sampford Procedure 11, the Durbin-Sampford Procedure 12
Fellegi's Procedure 13 and the Carroll-Hartley Rejective and Draw-by-Draw Procedures ’
14-15, and Choudhry's Procedure 4g. The Rao-Sampford Procedure 11 and the Durbin-
Sampford Procedure 12 do not involve iteration and are probably the simplest (though

not very simple) for calculating Try -
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Procedures 8, 13-15 and 49 involve iteration and require a computer. Choudhry's
Procedure 49 requires fewer calculations then the remainder of these.

Because of the general complexity of the variance estimation process (especially
with 7 > 2 ) and the relative instability of the Sen-Yates Grundy variance estimator,

even when the T . are chosen to optimize it, an alternative variance estimator which

does not depend on the T, will be presented in Section 3.7.

3.6. EFFICIENCY OF THE HORVITZ-THOMPSON ESTIMATOR

Although this might be expected to figure importantly in the comparisons, the
efficiency of the Horvitz-Thompson estimator varies so little in practice from one
selection procedure to another that it can to all intents and purposes be ignored.
Raj (1956b) produced Procedure 20 with a view to minimizing the variance of that

estimator, but did so using the assumption that the YI and ZI values were related

by the deterministic equation

Y, = o+ 82, (3.6.1)

where o and B were constant. The contribution to the variance from the BZI

terms is then zero and the variance of yéT is

2
V(g = o Vinig) > (3.6.2)
where néT is the Horvitz-Thompson estimator of ¥ , obtained by writing unity for
each YI in (1.4.5).

Raj (1956b) minimized V(nﬁT) by linear programming. This characteristically

pesults in an extreme solution in which one or more of the Try takes the value zero.

As alpeady noted, zero values of .. bias the Sen-Yates-Grundy variance estimator.

(If a way through this dilemma is sought by setting the relevant T, positive but

very small, the Sen-Yates-Grundy variance estimator is unbiased but highly unstable.]

Further, model (3.6.1) is only one of many possible derivations from the ideal

YI = SZI , and other models give different solutions to the problem of variance

minimization. In particular if the model is (1.8.5) the expected variance of yéT ,

given by Bayless and Rao (1970), is

v
BV () = o2z 121 (1—nI]n§Y'l , (3.6.3)
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which d
oes not depend on the Ty atall. Thus under (1.8.5) all exact selection
procedures yield equally efficient Horvitz-Thompson estimators.
A similar conclusion may be reached by comparing the asymptotic variance formulae
(1.8.1) and (1.8.2), The leading term in these variance formulae is of order N2

1
To order N they are identical at

N
r = n-1 1
V(yHTJ - Igl “I[_l - T 1TIJ ([YI/TTI)—(_Y/YL)J2 . (1.8.4)

Again the conclusion is that (except for very small populations) the choice of

selection procedure has only minimal influence on the efficiency of the Horvitz-
Thompson estimator.

There is, however, an exception here in the case of the Ordered Systematic
Procedure 1, which is not covered by any such asymptotic variance formulae. The

. ' . .
variance of Yyr using this procedure can depend critically on the particular

ordering chosen, though not if the YI follow the model (1.8,5).
Equations (3.6.3) for th i
[> e expected variance of yéT under the model (1.8.5), and

(1.8.2) £ i i
) for the asymptotic variance of yéT to order Nl , may be compared with the

corresponding expressions for the Hansen-Hurwitz estimator using multinomial sampling

(ppswr). These are

2 N
_,20 Ur) 2y-1
BV (yy) = 2 2 IZl [1 - 7JUIY , (3.6.4)
and
2
v Y
lyg) = T ugo - %
I HH Igl ItuI P s (3.6.5)

exactly.

In these expressions i i i
yol N is written for nPI , so that is the expected

¥r My
numb i
er of appearances of the Ith population unit in sample. (For without replace-

ment sampling t i i i
pling the meanings of L and U, are 1dentlcal.) The contribution of the

Tth s . .
unit to the expected variance is smaller for the yéT by the factor

K
1- _ I i e
( WI)/(l n] . This is very close to the extra factor [l - ﬂ:i-n ] which appears
n I
J

in (1.8.4) but not in (3.6.4), Both are of the order of (W¥-n)/(N-1) , the finite

Population correction factor for simple random sampling.

Rao and Bayless (1969) and Bayless and Rao (1970) conducted both empirical and
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e efficiency of the Horvitz-Thompson estimator. They

Procedures 11, 13, and 1t for n =33
dure

semi-empirical studies of th

compared Procedures 8, 13, and 14 for n = 2 3

and Procedures 11 and 1% for 7 = 4 . They found that with the exception of Proce

13 for n = 3 (which rated as slightly less efficient in the empirical comparison)

there were no appreciable differences in the performance of these procedures. The

e iterative algorithm for Procedure 13 failed to

yless and Rao (1970)).

exception would be explained if th

converge (see Footnotes 2 and 3 in Ba

3.7. UNBIASEDNESS AND STABILITY OF THE SEN-YATES-GRUNDY VARTIANCE ESTIMATOR

Any procedure which allows any of the T, . to take the value zero - and this

includes Procedures, 1, 2, 3, 20, 34, and 35 - can for that reason result in a

LIt has already been noted that the

y of the “IJ to take the value zero that

biased Sen-Yates-Grundy variance estimator.
Ordered Systematic Procedure 1 allows sO man

e estimator is meaningless.] ginha's Procedures 42 and 43

the Sen-Yates-Grundy varianc
are arbitrary provided only that they

provide a special case here, in that the Trg

constitute a feasible set.

Rao and Bayless (1969) and Bayless and Rao (1970) used their empirical and semi-

empirical populations to compare the stability of the Sen-Yates-Grundy variance

estimator for some of the pemaining procedures. The semi-empirical studies were based

on the model (1.8.5) with normally distributed error terms, under which the expected

variance of the Sen-Yates-Grundy variance estimator was taken to be

2 2 2
E*E{USYG(yI!IT) "E*V[yl.'rr] } = E*E{USYG(y}'{T)} - {E*V(yéT)} >

where
(3.7.1)

N o n.m. - ( 2
2 o Y g 17 ([ _2y-2_ 2y-2
Bl ) =80 /2 LY 't " ,
sYGVHT o [I J
J>I
and E*V(yéT] is given by (3.6.3), which is a function of the T, .
which differ quite considerably in the actual process of selection end up with the

same set {WIJ} for any given set {ﬂI} . The following equivalence classes were

recognised for n = 2 in Chapter 1.
Equivalence Class A, Procedures 8, 9, 11, 12,
Equivalence Class B, Procedures 13, 14, 15, 16, 49,

For the case n > 2 the only equivalence class known is:

Equivalence Class By, Procedures 1h, 15, 16.

In their 1969 paper, Rao and Bayless considered the case n = 2

Some procedures

comparing Procedures
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8 and 13 (in Equivalence Classes A and B respectively) and Procedure 17, Bayless and
Rao (1970) considered the case 7 = 3 , comparing Procedures 11, 13 and 14 and the
case 7 = 4 comparing Procedures 11 and 14 only (the last being in Equivalence Class
B1).

Their empirical findings were that for 7 = 2 the three procedures had about
equally stable variance estimators. Procedure 17 performed rather better for two of
the 20 natural populations, but worse in six of the seven artifical populations. For
n = 3 (and 4) the stabilities of the three (two) variance estimators were virtually

identical.

In their semi-empirical studies they found that, for 7n = 2 , Procedure 13
(Equivalence Class B) was consistently more stable than Procedure 8 (Equivalence Class
A) but that the gains were small. The stabilities of Procedures 13 and 17 were
essentially equal, but Procedure 13 was consistently more stable for y =1 .
Procedure 17 appeared to be consistently more stable than Procedures 8 and 13 for
Yy = 0.75.. For n =3 , Procedure 13 was found to be consistently less stable than
the other two, but there is some doubt as to whether the iterative algorithm for

Procedure 13 converged (see Section 3.6).

Brewer and Hanif (1969a) carried out similar semi-empirical studies for the case

N=14 = =
, B =2, "I = 0.2, 0.4, 0.6, 0.8 only. The results, shown in Table 3.2,

compare values

BBy W) TV i) VB () o

that is to say the relative expected variances of the Sen-Yates-Grundy variance
esti i
imator, for all the generally applicable exact procedures with the exception of

Sinha's Procedures 42-43 for which the mr; ave arbitrary

In Table 3.2 all the draw-by-draw and rejective procedures can be seen to
approximate the Optimization of Stability Procedure 33 for Y = 1 . The values of the

T
17 used to construct Table 3,2 together with some others are given in Table 3.3

Durbin's Grouped Method (Procedure 10) could not be compared with the other
procedures for so small population. Table 3.5 shows the comparison between
Equi
quivalence Class A and Procedure 10 both without and with the randomization device

mentioned in Section 3.4.

-+

Fo: = -
) r most of the range 0.50 = YyY=1, the Rao Sampford Procedure 12 (together
with i Vi Vi
the other procedures in the Equi alence Class A) has a more stable variance

estim than in 15 +h rocedur t
ator an Durb 's Gro ped Method (Procedure 10). The reason for this seems to
be that the val iv

ves of i g 1| for Equivalence Class A decrease with the T and

T .
s » particularly the larger of the pair, in much the same way as the values of this
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TABLE 3.2

Values of relative expected variances of Sen-Yates-Grundy

M. = 0.2, 0.4, 0.6, 0.8

variance estimators for N=4 , n=2,

I

Relative Expected Variances of Yeve (yéT]

i Class
Procedure or Equivalence oo o M
Optimization of Stability
(Procedure 33) for
6. 44 5.96 5.63
= 0.50 .
M = 0.75 6.58 5.86 5.33
z = 1.00 7.02 5,98 5.21
0.65 10.96
Random systematic 2% 10.35 1 oo
.55 .
Grundy's systematic 3 10.91 8 o
6.61 .
Equivalence Class A 8.17 o
6.22 .
Equivalence Class B 7.50
Narain 7 7.60 6.27 5.29
6.24 5.28
Durbin-Hanurav 17 7.53 e
6.33 .
Hanurav's Scheme B-A' 18 7.32 o
6.19 .
Hanurav-Vijayan 19 7.43

% TFor this example Jessen's Procedure 36 is equivalent to Procedure 2.

Values of joint probability of

TABLE 3.3

inclusion in sample of pairs of units for

N=4, n=2, Tp=0.2, 0.4 0.6, 0.8
—_—_—__——————_————'—_———~_—————1 Joint Probabilities of Inclusion
procedure or Equivalence Class PR T P P P P
J =2 J =3 J =4 J =3 J = b J o= U
optimization of Stability
(Procedure e 0.,0422 0.0588 0.0990 0.0990 0.2588 0.u422
o 0.0386 0.0559 0.1055 0.1055 0.2559 0.4386
z Z i:gg 0:0344 0.0535 | 0,1121 | 0.1121 0.2535 | 0.4344
Random systematic 2 0.0667 0.0667 0.0667 0.0667 0.2667 0.4667
Grundy's systematic 3 0.0333 | 0.0333 0.1333 | 0.1333 | 0.2333 0.4333
Equivalence Class A 0.0277 | 0.0535 | 0.1188 | 0.1188 0.2535 0.i§77
Equivalence Class B 0.0311 | 0.0530 | 0.1158 | 0,1158 0,2530 Oj 11
Narain 7 0.0306 0.0531 0.,1163 0.1163 0.2531 0.4306
Durbin-Hanurav 17 0.,0323 0.0505 0.1172 0,1172 0.2505 0.4323
Hanurav's Scheme B-A' 0. 04uUL 0.0444 0.1111 0.1111 0.2444 0. Lhby
Hanurav-Vijayan 19 0.0333 0.0500 0.1167 0.1167 0.2500 0.4333
% 0.0480 0.0987 0.0533 0.0533 0.2987 0.4480
e F size for step (l).

% With the population nits arranged in ascending order o
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TABLE 3.4
Values of relative expected variances of the Sen-Yates-Grundy variance estimator for
N=9, n=2, T;=0.04, 0,08, 0.08, 0.18, 0.18, 0,24, 0.30, 0.40, 0.50
assuming normality of the er
3 14
Related expected variance of USYG(yHT)
Procedure or Equivalence Class
Y = 0.50 Y = 0.75 Yy =1
Equivalence Class A 474 3.01 2.31
Durbin's Grouped Method (Procedure 10)
(without randomization device) .63 8.36 8.04
in'
Durbin's Gro?ped.Method.(Procedure 10) 474 3.46 3.16
(with randomization device)
TABLE 3.5
Values of WIJ for N =9, n=2;
™= 0.04, 0.08, 0.08, 0.18, 0.18, 0.24, 0.30, 0.40, 0.50
Values for Equivalence Class A
o Ty
g T 0.04 0.08 0.08 0.18 0.18 0.24 0.30 0.40 0.50
H I
=
3 0.0 - .0013 | .0013 .0032 | .0032 | ,0045 | .0059 | ,0086 .0120
 ~
g gl o.08 .0020 - .0027 . 0066 .0066 L0041 .0119 L0174 .0244
1]
© g 0.08 .0020 .0060 - .0066 .0066 .0091 .0119 L0174 0244
o)
=% 0.18 .0036 | .0072 | .0072 - ,0156 .0216 .0282 | .0210 .0572
A 0
f é 0.18 .0036 .0072 | .0072 | .0180 - .0216 | .0282 | .0410 .0572
=i
|~ o0.24 L0048 | .0096 ,0096 [ .0360 .0360 - .0390 | .0565 .0786
é 0.30 L0060 | .0120 | .0120 .0270 [ .0270 .0360 - .0733 | .1026
2 0.40 .0080 .0160 .0160 .0360 .0360 .0290 .0600 - L1447
3
3 0.50 .0100 .0200 | .0200 .0450 [ .ou50 | ,0600 | .1200 .1800 -
=

coefficient did in the earlier example, whereas for Durbin's Grouped Method (Procedure
10) they are fixed at unity for most pairs of units. This difference is shown up in
Table 3.5, in which for convenience the values for Equivalence Class A have been

entered above the main diagonal and those for Durbin's Grouped Method (Procedure 10) below it.

The “IJ used in the construction of Table 3.4 are shown in Table 3.5. The

-1 . .
values of the factor [nI"JHJJ'l] were given in Table 3.1.

Sinha's Procedures 42 and 43 are atypical in that the m,y ave not products of
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the selection process, but arbitrary inputs. One simple way of choosing a feasible

set of Ty as an input to Sinha's Procedures is to set
2, 2
Moo= AT B(nI+ﬂJ) + C(ﬂI+ﬂJ) R
where
N
2 2 2
A= (n]/[n -y ﬂJ] .
=1
N r (3.7.2)
N
2 2 2
5 =-[n 5 nJ]/ [n ) nJ]<N—2) ,
J=1 J=1
and
N
2
o= (1)) [n2 . ﬂJ](ZV—2) .
J=1
These Try will not always be non-negative, but for medium to large values of ¥

approach proportionality to ﬂIﬂJ . When this proportionality holds, all the factors

[ﬂ kg ﬂ‘l—l] are equal, and this corresponds to a reasonably, though not optimally,
I'J IJ

stable Sen-Yates-Crundy variance estimator. Departures from optimality can, however,
be serious when N is small, and for the case N =4 , n = 2,

ﬂI = 0.2, 0.4, 0.6, 0.8 the value of ﬂ12 is actually zero.

A more generally satisfactory set of values of Trs is given by the formula

a1 | 22} (X 2 fuu]/[N ﬂz%ﬂu]Jr
"t T ]“I“J + ["I“J]/ [Kgl “K] + L"I“J Kgl K TRt
© r P r N i
2
= (n-1) Y [ni n§ ] / YoMl - (3.7.3)
»=0 i=0 K=1

This summation converges rapidly even when one or two values of the “I are

close to unity, each term being less than half the preceding one. The resulting Trr

are necessarily positive, and appear to be close to the optimal values when Y = % .

For the case N =4, n=2, m = 0.2, 0.4, 0.6, 0.8 this formula yields

= = = = 0.u427
M, T 0.0M27 , Ty = 0.0862 , Ty, = Myg = 0.0911 , Ty, = 0.2662 , Ty =0

(ef. Table 3.3). However when two of the 7, are close to unity (3.7.3) may not

result in a feasible set of “IJ .

A third possible choice of mpy can be made as follows. Multiply each of the

given Tr values by 2/n . The scaled down values of L then sum to 2 and
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corresponding T can be calculated using the Brewer-Durbin-Sampford formula

IJ

(2.2.9)., If these are then multiplied up by n(n-1)/2 , the resulting nIJ are

always positive, but again in extreme cases may not constitute a feasible set.

It is of interest to compare the stability of the Sen-Yates-Grundy estimator for

sampling wpswor with that of the usual variance estimator for multinomial
sampling. For the latter, the coefficients of ((yl/ﬂl)-(y2/ﬂ2])2 are all unity.

(In this respect Durbin's Grouped Method (Procedure 10) represents an approach towards
multinomial sampling. In view of the explicit use of multinomial sampling as part of
this procedure, this result is not surprising.) Using the same assumptions as before,
the relative expected variances of the ordinary variance estimator for multinomial
sampling are, for this example, 3.98 for Yy =%, 2.78 for Yy = 3/4 and 2.57

for vy =1 . These small values are somewhat illusory, because the variance itself isg
much larger when sampling is with replacement. To get a more meaningful comparison,

the expected variance of the ordinary variance estimator may be divided by
{E*V(yé,r]}2 . This quotient will be veferred to as the comparison relative expected

variance (CREV) of the ordinary multinomial variance estimator. In this example the
CREV takes the values 5.13 for Yy =%, 3.93 for vy =3/4 and 3.91 for y=1.
Referring back to Table 3.5 it will be seen that all these values are higher than the
corresponding values for both the Rao-Sampford Procedure 11 and Durbin's Group Method
10.

For the earlier example (N =14 , n=2; T = 0.2, 0.4, 0.6, 0.8) the

relative expected variances of the ordinary variance estimator for multinomial sampling
were 3.8l for Yy =%, 3.39 for vy =3/4 and 3.29 for y =1 . The CREV's,
however, were 8.56 for Yy =%, 8.90 for y = 3/4 , and 10.06 for y =1 .
Comparing these values with those in Table 3.2 we find for this example, as for the
other, not only that the expected variance is smaller when the sample is drawn without
replacement but also that, provided a draw-by-draw or rejective procedure is used,
this smaller expected variance is absolutely (though not relatively) more accurately

estimated, This is particularly true for the larger values of Y .

Although in this comparison the Sen-Yates-Grundy variance estimator comes out
reasonably well, it is still unstable by comparison with some of the variance
estimators used with special estimators of total which will be encountered in Chapter
y,

In view of the difficulties encountered in attempting to evaluate the WIJ

(particularly for =»n > 2 ) and of the relative instability of the Sen-Yates-Grundy

variance estimator the following approximate variance estimator may be preferred;
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r

N N n
=2 - al "’Y'l} ) =(gtm)? s (3.7
onerliin) = 25 [ (2, TVAE 7)) & (Garnd- el

where 7y is chosen to be the best available 'guesstimate' of the parameter Y of

model (1.8.5). Fortunately, the value of (3.7.4) is not critically dependent on the
value of 7Y chosen.

The rationale behind this estimator is as follows. Under model (1.8.5),

¥
n Z 2 2 2y 2y-1 (3.7.5)
BEay L ((/m)-lyfp/m))™ = 0"/ F mp

This is the larger of the two terms in the expected variance of yéT given in

¥oo 8 oy
(3.6.3). The ratio of the smaller to the larger term is 1Z£ T / lgi L and

corresponds to the expression n/N found in the finite population correction for
equal probability sampling. When Y = % the ratio is n/N precisely, and although

it increases with Yy it does not do so rapidly. The manner in which the factor
¥ ¥ 2y-1 . . -
1 - Z ﬂ2Y / Z ﬂly— functions as a finite population correction 1s further
I
I=1 I=1

exhibited by remarking that for multinomial sampling the usual unbiased variance

estimator may be written

2
no |y, Yy
plyr) = 2oy E- 2 (8.7.6)
HH n-toia L
where 1. = nm, is the expected number of appearances in sample of the population unit
T 7

selected at the 4th sample draw and corresponds to the m of (3.7.4), When Y 1is

completely unknown, the assumption that Yy = % gives the conservative correction
factor (1-n/N) . For most populations the value of Y is found to lie between 0.6

and 0.8 , and the value 0.75 will usually be a reasonable 'guesstimate'.

3.8, ROTATABILITY

When a number of surveys are to be made at intervals using the same or nearly the
same questionnaire, there can be advantages in rotating the sample; that is, in
having a regular programme whereby new units are selected to replace old units that

have been in the sample for a specified number of surveys.

The advantage of rotation is that the estimate of total can be improved by using

information from past periods (Patterson, 1950). A partial overlap between the

previous and current samples is required to exploit this improvement. 1f, howeuer, the
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aim is to estimate the changes in total between surveys, it is theoretically best to
retain an identical sample. Nevertheless even in this case there are practical
advantages in rotation. Objections to keeping the sample unchanged include the

following.

(i) Respondents from the first few surveys may refuse to co-operate if

asked similar questions on too many successive occasions.

(ii) Respondents who took the trouble to give accurate answers in the
first few surveys may become careless. They may for instance
continue to give the same answers as before, even though their
situation has changed. Interviewers may also become careless in a

very similar fashion.

(iii) Respondents who reported candidly to a strange interviewer in the
first instance may be reluctant to admit a worsening of their
situation, especially to an interviewer who is steadily becoming a

more familiar figure.

(iv) Respondents who would remain in a given situation if not questioned
about it at regular intervals may be stimulated by this questioning

to take steps to change it.

These and other related phenomena are known collectively as sample fatigue. All
of them tend to diminish the representative character of the sample data. Hence it is
usual, in repeating surveys, to arrange that portions of the sample be replaced at
regular intervals by new sample units, so that none remains in the sample

indefinitely.

Rotation is more often important in multistage designs than in single-stage, but
can still be treated quite conveniently in terms of single-stage sampling. Fellegi
discusses the two possible alternmatives for multistage sampling; a third is mentioned

here also.

Alternative I is "the exhaustion of the P.S.U.'s (primary sampling units)". This
means that a selected unit is replaced when all its available final stage units
have been sampled. (In considering the time when the first rotation need be made, the
number of "available units" must be determined by a random mechanism. If all final
stage units are regarded as '"available", rotation intrgduces a time-dependent bias,

initially in favour of large higher stage units.)

Alternative II involves rotating a P.S.U. every rth survey, the P.S.U.'s
selected in the most recent 7 selections constituting the sample. Selected units

remain in the sample for a constant period regardless of their measures of size.

Alternative III is a very crude form of rotation (not mentioned by Fellegi) in
which the selected samples are retained in a certain number of strata, and reselected

in the remainder.
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Fellegi's Procedure 13 is particularly appropriate for Alternative II, since the
probability of selection of each population unit is proportional to size at every
draw. Alternative II may also be used with any other procedure applicable to n > 2
in one of two ways.

(a) If it is recognised beforehand that rotation will be necessary, a larger
sample than that immediately necessary can be selected, and the order of these sample
units randomized. (Randomizaticn is unnecessary if the procedure of selection is

The first % in this random order then constitutes the initial sample
(n+l)st , the second for the

symmetric.)
and rotation proceeds by dropping the first unit for the
(n+2)nd , and so on., When the last sample unit has been used, rotation can still

proceed in a limited sense by returning to the first unit dropped from the initial
sample.

(b) If the initial sample was already selected and used before the need for
rotation was recognised, the larger sample described under (a) must first be tested as
to whether it contains all the initial sample units. If not, further larger samples
must be selected until one is found which does contain all these units. The initial
sample is then taken out and its order randomized. The remaining units of the larger
sample are also put in random order. Rotation proceeds by dropping the first unit in
pandom order in the initial sample in favour of the first unit in random order in the
remainder, and so on. When the remaining units have been exhausted, rotation can only
proceed by returning to the First unit dropped from the initial sample.

A limit to the proportion of the population around which rotation is possible,
using Alternative II, is provided by the fact that no sample can be selected larger

than # , where n is the largest integer less than or equal to Z/Z .
max max max

Unless n is appreciably larger than 7 , this can be a serious limitation.

1f rotation of a self-weighting multistage sample is occuring at the lowest stage
of sampling, the minimum rate of rotation for the selected higher stage units is set
by the period taken to exhaust the smallest such unit selected. This further limits

the extent of rotation possible using Alternative II. With Alternative I, rotation
can occur around the entire population.

Alternative III is a very crude form of rotation, and does not even guarantee the

certain replacement of any sample unit. If the strata in which reselection is to take

place are selected randomly, an estimate of the movement in the estimand can be
obtained from the remainder. However since this involves the use of strdta to

represent other strata, this estimate is not likely to be at all accurate.

To sum up, rotatability depends on which alternatives can be used with which

methods. The Systematic Procedures 1-3 and 48 are the only ones for which Alternative I is

Alternative II can be used very easily with Fellegi's Procedure and the
what more difficulty with any other

possible.

Carroll-Hartley Procedures 14 and 15, and with some
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method valid for 7 > 2 ., Alternative III is the only possibility for any procedure
limited to n = 2 .

3.9. SUMMARY

In Tables 3.6 and 3.7 a summary of the properties of some procedures compared

in this Chapter is given for n = 2 and n > 2 respectively.
The principal conclusions which may be drawn are as follows:

(a) The Systematic Procedures 2-3 score highly on simplicity of selection
and ease of rotation, but relatively poorly on most other counts
L]

particularly those relating to variance estimation,

(b) Within Equivalence Class A, the Rao-Sampford Procedure 11 is
particularly good for #n > 2 or for rotation with .n =2, For
n = 2 and no rotation, a draw-by-draw method (Brewer's Procedure 8,
Durbin's Method I (Procedure 9) or the Durbin-Sampford (Procedure 12))
will probably be slightly more convenient.

(c) Durbin's Grouped Method I (Procedure 10) has a slight advantage over
the Equivalence Class A procedures for simplicity in variance
estimation, but at the cost of some stability in the variance

estimator.

(d) The Carroll-Hartley Rejective Procedure 14 is superior to the Rao-
Sampford Procedure 11 only in that it is unnecessary to resort to
randomization when using Alternative II for rotation. The Rao-
Sampford Procedure 11 is simpler both for selection and possibly for
variance estimation. Otherwise there is no difference of any

importance,

(e) Fellegi's Procedure 13 has the further advantage over the Rao-Sampford
Procedure 11 that oversampling is not required for rotation. However,
the iterative selection calculations are stated by Carroll and
Hartley to be less simple than theirs and may not converge for
n>2., ‘Choudhry's Procedure 49 has the advantage that fewer
calculations are required. The Rao-Sampford Erocedﬁre 11 remains the
simplest of the four for selection and possibly also for variance

estimation.

(f) The Hangrav—vijayan Procedure 19 is a reasonable alternative to
Equivalence Class A procedures for 7 = 2 . The same could perhaps be
said for Hanurav's Scheme B-A' 18 also, but the Durbin-Hanurav
Procedure 17 is decidedly less simple to handle both for selection and

for estimation of variance.



72

73

ATTeasueld 10U ST poylsu STY} SNSROSQ UMOP Xeadaq Aew 1T I POYISK S,UTqang UYiTM UOTIRIOX JOF posn ST II
*poposu dae SUTJISPIO WOPUBL PUBR

Surtduesasao ‘pesn sT IT

* z < u aoy orqeorrdde
SATIRPUILATY II

9ATIRUJSLTY FI

*peposu sT Suirduesasao ‘pesn ST II @ATIRUALITY II
*A3TTTQR3S S3T UT UOTIONpad TRUOTITPPe ATIYSTTS ® oq TTI# aaeyl pue
‘peseIquUn o SAEMTE 30U TTTM ﬁ.:m\d wwma ‘¢ soueTaea yo uoriewriss oyr AFTTdwrs o3 posn ST 9OTAID UOTIRZTUWOPURL SY3 FI
(I wnus d L Teriusnbss (&) oTqeTaeA (&) sohk - p Aqp 0§ Awmoayd
I
paarnbaa L LI I _ g
eI SUOTIBTNOTRD OU|dY]} JO TWOTIRTNUND * i. o spusdap * i uo spusdep st eh (pd) BUUTS
s3TUn g -~ § IO
peatnbeaa : £I I .ge
ell SUOT}RTNOTES Oou serdues a1qrssod | {*“u} uo spuedep|{ 1} uo spusdap - Jerm Zh (3r3) BYUTS
N JO UOTIEUTWexRs
oN JOJJS pUB TETJA}| JOAIS pUR TETJI) sTqeTaeA soh - g m L€ (n) usssep
oN UOT3BTNOTRO pojusUeInap oTqETARA sKemTe jo0u - M g9¢ (g) usssop
arduTs
UoT3BTNOTED STqeTE. < _ van
oN srduts pelusueanap TqeTdaea sAeMTe 30U Ay G¢ (Z) uesssp
Butuweadoad Butuweadoad 0Z UOT3IEZTIWTUTW
ON ; : aood ou - *s@m : T
JBSUTT JRSUTT souetaes s,[ey
BTNUIOT saTaTTTqeqoad _ _
OoN pasoTo erdurs Bupaom oTduTs unutido aesu sok p fiq ple1 uekelrTp-svanueq
eTNWIOF soT3TTIqRqoad i _
oN posoTo ordurs Supiaon s1duts unutido aesu sak pAqp 8T V-4 Aeanueyq
S9T1TTTqeqoad =
oN BTNUACT POSOTD Supiaon srdurs unutido aesu sok Lo LT Aednuey-urqang
{UOTIBI0L JoJ *E.i IHm 9AS ;poseTqun (Lue 3T)
v sseooad uoTr1oeTes ﬁ 3 o« ¢ v -
pesn oq II Jo I uoT}eTNOTED : ! sSSBTO adLg, saanpasodd
FO adanieN LHpy DAS
SATIRUIDITE URD({do] jususarnbay 30 A3TTIqR3S ( .3 @ sI |oousTearnbg

(penuTiuod) 9°g 91qERL

11 wyl TIo8TE wylTao3Te umutido aesu sok g g fox |ST KeT3aeH-TTOIIBD
4 SATIRISLT DATIRIDLT
#T AeTiaeq-TToaxe)
1 wy3TIo3TE wylTao3Te unutado Jesu sak g p Aqp 6 Aaypnoyd
SATIBADIT OUES SATIRADLT eT T9eTTd
oN BTmIoF seT31TIqRqoad unuwizdo aesu sak v p Aq plzT paogdureg-ugang
posoTo oTdurs Bupaom oTdurs
1T eTnuIos se13TTIqRqoad unuwtido aesu EETS v Loa 1T paozdueg-oed
€ posoTo oTdurs Buryuaom oTdUTS
eTnizog 6 ®anpsoodd ate, sok - p Aq p (pednoan) utqgang
°N pesotro oTdurs sntd Surdnous Tes 1
saT3TTTqeqoad
oN BTNUIOF TRUOT} TPUOD unwtido aesu sok v p Aq p 6 (I) urqang
h pesoto otdurs srduts
II BT seTarTTqeqoad unutido aesu sek v pAgp g Jdamedag
€ pesoTo o1dwrs Buryaom oTduys ;
oN ugy Ta08Te w3 Tao8Te unutido aesu sok - p Aqp L uTexeN
SATIRJIS]T SUWES SATIBADIT
otjeweisAs sntd
I umue d L UOT1eZ FUopuRd 9TqETaRA skemTe jou - 18Rs ¢ 31sfs s, fpunag
Tetaaed
oraewelshs snid skemTe 10U - 19As Z 1sAs wopu=y
1 wnuz d £ uoT1eZ TWOPURI STqETIEA 1= 3
: T ¢paseIqUN fue 31)
vwwmﬂwmumw MMMH Jo coﬁumﬁdoamo sse00ad U0T109T3S h“:mmv owmn ¢ SSBeTO odAL saanpsosoad
SATIRUJSLTR URD|AOF “E.mEmpﬂ:vwm Fo sumaen Jo A1TTIqR1S mam&owma sT | eousteATnDIT

Z =

9°¢ d714VL

u Jo3 saanpeoocad UwOTIOSTSS JO goriasdoad Jo Axeuums




75

4

“po
pPoposu aae Surdepao wopuea pue Surrduesasao ‘pesn ST IT ®AT1RUASITY II

€

*poposu st BurTdwesasao ‘pesn ST IT OATIRULSATY II
: 4
¢II unus d £ TeT3usnbes (&) °TqeTaea (&) sek - p Agp 05 A
woay)
1 Wyl Tao3TRe wyy TaosTe
¢ oATIEST SwES aATIBIS3T unurido aesu sok - phgp 6 Aaypnoyp
{UOT3IRl0a JOF *%.N._._._.
pasn sq sseooad UOT109 LHp 945 peSETqUR A
II 40 I{ ¥O UOTIEINOTED [1097es ﬁ \J a : ) o)
SATIRUJSITY UeD|a0F juswearnbey FO sanIEN Jo £1TTIqRaS ﬁBmB w»mn ST oocMMMMM b - SompeRead
1T [ Tabg

(penutiuod) /'¢ 9TqeL

syfun g 3o

paarnbeaa rI LI _ g
(11 SUOT1ETNOTED OU sotdues a1qIssod * i. uo spusdsp * i uo spuadep s'm ¢t (po¥) BYUTS
¥ JO UOT}PUTWERXS
saTun 7 - N 3O
paarnbaa : rI LI _ .g- -
¢II SuOTIETNOTED OU seTduwes arqrssod * 5. uo spuadep ﬁ i uo spusdep 8 @ ¢h (3xd) eyuts
: JO UOT1RUTWEX®
UOTIETNOTED - R o gg (g) uessap
oN oTdurs PERLENIES ok} 8TRTJIRA sfente 20U g-m s (z) uossap
wyzTao3dte wyltaocste 1 _ -
JII oATIRaB1T OlES SATIEASIT wnutido Jesu sok q p Aq p|sT AoT3aRH-TTOII®)
wy3TaosTe w3 tTaosTe 1 £ = o
211 sATIRdE1T SWES oATIRABIT unurido Jesu sok q Lou 4T AoTideq-TTOAIRD
wy3 Ta03 TR wy3Tae3Te
i1 wzvpm&op.n HwEmm 9ATIBA93T unupado. JesU sok - v Aq p eT 1891134
saT3TTTqeqpad _ -
¢II BTNUIOF POSOTD | gurygom odurs unurjdo aesu sok Laa 1T paojdueg-ow
saTSANORI mm..ﬁﬂ..ﬂmno.»m _
¢II po3eoTTdnoD Supsom sTduTs unutido aeau sk p Aiqg p g asmaug
oTarwelsAs snid
I unus d L UOT1eZTUOPURI STQETJIRA skemTe 30U - a8fis ¢ 3s£s s, Lpunay
Tetrzaed
oT3eWelSAS sntd _ £s WOPUE
1 wnua d L BASA— sTqeTaRA skemte 30U 48hs z 1sfs wopuey
{UOTIRIOX dOF {FLu} csanoad UOT10STOS LHz 98 ¢peseTqun (fue 31)
pesn oq II @0 I| FO uoT3eINOTED ° wﬁ:.w T ﬁ ¢ a Hon DAS sseTo adA], soanpesodd
SATIRUISITY URD|JdoF jususarnbay ¥ AEN Jo £3TTIqR2S ﬁ_w .3 a sy |oousrearnby

7 < u JoF saanpeooad uctiodIas JoO sot1aedoad Fo Axewmmng

L7¢ 9719VL



()

(n)

i)

76

The Jessen Procedures 35 and 36 are simple for selection but cannot be

rotated easily and score poorly on most other counts.

Sinha's Procedures 42 and 43 look particularly promising for moderate

values of 7 . Since the T,, are arbitrary they can be chosen to

minimize (or using expression (3.7.3) to come close to minimizing) the
variance of the Sen-Yates-Grundy variance estimator. For large values

of n the procedures become unmanageable.

Because the Systematic Procedures 2 and 3 are so convenient on all
counts other than variance estimation, the approximate variance

formula (3.7.4) which does not depend on the W, may be used to

remedy this deficiency.
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CHAPTER 4

SELECTION PROCEDURES USING SPECIAL ESTIMATORS

4.1 INTRODUCTION

In Chapter 3 a comparison was made of those selection procedures for which the
Horvitz-Thompson estimator possessed the ratio estimator property. It was mentioned,
however, in Section 1.7 that certain special estimators had also been devised for use
with particular selection procedures, and that in the context of these procedures they
also possessed the ratio estimator property. In this Chapter the performance of these
special estimators will be compared in the context of their appropriate selection

procedures; that is,
(i) Das's estimator with Procedure 4,
(ii) Raj's and Murthy's estimators with Procedure 4,
(iii) the Rao-Hartley-~Cochran (RHC) estimator with Procedure 25,
(iv) unbiased and ratio estimators for Poisson sampling with Procedure 27,

(v) unbiased and ratio estimators for Modified Poisson Sampling with

Procedure 38,

(vi) wunbiased and ratio estimators for Collocated Sampling with Procedure
39, and

(vii) Lahiri's estimator with Procedures u5-u46.



