Sampling procedures involving unequal probability selection

Jonnagadda Nalini Kanth Rao
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd
Part of the Statistics and Probability Commons

Recommended Citation

Rao, Jonnagadda Nalini Kanth, "Sampling procedures involving unequal probability selection " (1961). Retrospective Theses and Dissertations. 2415.
http://lib.dr.iastate.edu/rtd/2415

This dissertation has been Mic 61-2269 microfilmed exactly as received

RAO, Jonnagadda Nalini Kanth. SAMPLING PROCEDURES INVOLVING UNEQUAL PROBABILITY SELECTION.

Iowa State University of Science and Technology Ph.D., 1961
Mathematics

University Microfilms, Inc., Ann Arbor, Michigan

SAMPLING PROCEDURES INVOLVING UNEQUAL FROEABILITY SELECTION

by

Jonnagadàa Nalini Kanti Sao

A Dissertation Submitted to the Graduate Faculty in Partiel Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY
Major Subject: Statistics

Approvea:

Signature was redacted for privacy.
In Charge of major torix

Signature was redacted for privacy.
Head of isajor Departtient

Signature was redacted for privacy.
Dean かi Graadate Gollege

Io:a State University
Of Science ard Technology Ames, Iowa

1951

TABLE OF CONTENTS

Page
I. INTRODUCTION. 1
iI. REVIEW OF the literature. 6
III. A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY
SAMPLIG WITHOUT REPLACENENT 26
A. Description and Illustration of the Samplirg Frocedure. 27
B. Variance Formules for the Cases $n=z$, $N=3,4$, and 5 32
C. An Example for Eificiency Comparisons 39
IV. THE CASE $n=2$ AND n LARGE 43
A. Derivation of the Probabillties $P_{\text {ii }}$ to Orders $O\left(N^{-3}\right)$ and $O\left(N^{-4}\right)$. 44
B. Variance Formulas to Orders $O\left(N^{1}\right)$ and $O\left(N^{0}\right)$ 64
C. Estimation of the Variance. 66
D. An Example for Efficiency Comperisons 69
E. Comparisor miti the kethod of Revised Frobabilities of Yates ara Grundy 7.3
V. the general case ri \geq a $\mathrm{A}: \mathrm{d}$ i: large. 78
A. Derivation of the Frobabilities $P_{\text {ii }}$, to Orders O(i^{-3}) er.d O(E^{-4}) 78
E. Varience Formules to Orders $O\left(\mathbb{N}^{1}\right)$ anc $O\left(\mathrm{n}^{-}\right)$ 93
C. Estimetion of the Variarce. 95
D. Coirparison with the ketiod of Revised Frodabilities of Yates and Grundy 96
E. A Comperisor with Ratio Netiod of Estimation 99
VI. hiscelianiegis tofice mi: unequalPROEAEILITY SANPLING.102
A. A Ner: Samolire System for which the Yates erd Grundy Estimete of tine Varience is Always Positive 102
B. Two Problens in Unecual Procacility Sampling. 107

- -

Page
C. Efficiency of Stratirication. 113
D. A Stratified Unequal Probability Sampling Design 1EO
VII. LITERATUEE CITED. I2K
VIII. ACKNOWLEDGEENTS 1:5
IX. AFPERDIX. 126

I. INTRODUCTION

The use of sample surveys for the estimation of population characteristics is an inportant tool in modern social and economic planning. Since the idea of using this device is to save the expenditures involved in complete enumeretion or censuses of populations the question of the cost of such surveys and tife precision of estimates computed from them is of Ęeat importance. It hes therefore been of major concern to the theory and design of statistical sample surveys to develop methods whicn yleld estimetes of high precision at comparatively moderate cost.

The devices which are availacie for this purpose essentially fall into two groups: (e) jetiocis in wisich the mode of computing estimates (of say populstion mean or total) sre developed which have higher precision, or in other words, the developuent of estimators with smaller veriances. The so called "ratio ana regression estimetors" ere examples of these. The theory of ratio end regression metiocs of estimation hes ceen extensively developed in recent years and unciased ratio erá regression type estimetors are now availacle winch correct for bi=s in tie classical ratio ana regression estimators. (i) Kethods of improvirg the "desigr of the sample survey", i.e. the mode in wilch the sample anta ere collectea. In this category íall such devices as choice of sawpling uric, stretificatior, muliistage and multiphese
sampling and unequal probability sampling. The first two items do not present any difficulties as fer as theoretical aspects of estination etc. are concerned. wultistage and multiphase sampling have beer extensively dealt with in the literature. Ir this dissertation, $:$.e will be mainly concerned with the theury of sampling with unequal probebilities. Often, one uses some or all the devices mentioned in groups (a) or (c) simultanevusly in order to improve tiae precision of estimetors. For exanple, a stretified two stage ciesign witi the primeries selected with probecilities proportional to sizes is ε familiar design ir lerge scale sample surveys. Unequal probecility sampling involves selection of sampling units wita probecilities proportional to size of the supplementary veriacle wilch is correl: ted vith the cheracteristic for winicn the population total or mean is to ice estiLatec. For examole, total corr production on a farm is very linely correleted witn the supplementery veriable, totel acreage of the farm. The theory of unequal probecility sampling car be directly derived from the properties of the氏ultiromiel districution ard presents ro inherent difficuities provided the sampling units ere $\overline{\mathrm{c}} \mathrm{ra}$ w. with revlacezert. But, it is weil anown fron the theory of equal probacility saming that sampling with replacemert is less precise tifer sempling vitiout replecerer.t, the proportional reduction ir. verience ceirg equai to fraction of the population semplea. Tnerefore,
one naturally expects that similar geins in precision cen be made dy using unegual probability sampling without replacement instead of with replacement.

However, since the probability of drawing a sanipling unit does not remain constant with eaci draw when sampling without revlacement, evaluation of selection probabilties and variance formulas involves certain mathematical and computational difficulties and therefore this theory has not yet cecome populer with survey practitioners. Certain shortcomings of existing published literature on this theory can be listed as follows: l) Most of the writers deal almost exclusively with sample size of two only, and have very little to offer wrien sample size is greater than two, since the expressions for selection probacilities become unwieldy and extremely difficult to compute. \&) Some of the procedures proposed have the undesirable property that estimetes of the variance can take negative values. 3) Sampling without replacement is sometimes less efficiert than sampling with replacement particularl; when the aample size is greater tinar two. 4) These methoas do not have the desiracle property that the procacility of selecting a unit in the sample is proportional to size of the supplementary variable which is universally recognized es a technique yielding considerable reauction in the v riance of the estimators. To overcome this coritingency, methoas such as "revisea size measures" of the supplementary
variable are suggested winch ensure that this condition is satisfied approximetely. However, these methods become cumbersome when the sample size is greater than two and the population size is large, due to the computational difficuities involved in finding "revised size measures". These are soie of the main reasons why survey practitioners usually do not favor unequal probability sampling without replacement over sampling with replacement and hence unequal probability sampling with replacement is extensively used in large scale sample surveys.

In this dissertation, we prowose to develop on asymptotic tneory applicacle for any sample size and for large or medium sized populations wilch takes cere of at least all the contingencies mentioned above. ie adopt a simple sampling procedure of selecting units with unequal probabilities and without replacement well krown to survey practitioners which has ceer aberdoned due to mathematical difficulties in developing the theory. This procedure ensures that the probability of selecting a sampling unit in the sample is exactly proportional to size of the supplementary variacle. Compact expressiors for the variance and for the estimate of the Variance applicacle to large and medium sized populations are obtained which are simple to compute ana show that this procedure is always more precise tian unequel protability sampline with reclacement, and that estimates of the variance
are always positive. An important merit of this procedure is that it permits ready evaluation of selection probabilities and variance formulas for sample size greater than two, unlike the procedures availacle in the literature. We hope that these resul ts may stimulate the interest of survey practitioners in unequel probability sampling without replacement, ard help in designing efficient sample surveys.

II. REVIEN OF THE LITERATURE

Since ratio and regression methods of astimation are alternative ways of utilizing supplementary information, we shall begin with a crief review of the theory of ratio and regression estimation. Ratio and regression type.estimates have been extensively used in tine literature for utilizing supplementary informatior. The well krown ratio estimetor of the population total Y is

$$
\begin{equation*}
\hat{Y}_{R}=\frac{\bar{y}}{\bar{x}} \cdot X \tag{2.1}
\end{equation*}
$$

where \bar{y}, \bar{x} are the sample means and X is the population total for the supplementary variacle x. Bies in this estimator is $\operatorname{cov}\left(\frac{\bar{y}}{\bar{x}}, \bar{x}\right)$ which is of the order I / n where n is the sample size so that the inas is negligicle for large semples. Hartley and Ross (1954) have developed en unbiesed ratio type estimator which seems to compere favorably with \hat{Y}_{R} regarding efficiency, though the computatiors involved in using this unciased estimator are more cumiersome compared winin those ir. using tine estimator $\hat{\mathrm{Y}}_{\mathrm{R}}$.

The classical regression estimator is cased on a linear щоċel

$$
y_{i}=A+B x_{i}+e_{i}
$$

wnere $x_{i}{ }^{\prime s}$ are unspeciîied end ooserved without error and e_{i} and x_{1} are assumed to be independent and

$$
\begin{equation*}
E\left(e_{i} \mid x\right)=0 \quad E\left(e_{i}^{k} \mid x\right)=\sigma^{\dot{L}} . \tag{2.3}
\end{equation*}
$$

Under these assumptions the mininum variance unciased linear estimetor of Y is

$$
\begin{equation*}
\hat{Y}_{B}=N \bar{y}+b(\bar{X}-\bar{x}) \tag{2.4}
\end{equation*}
$$

where b is the sample regression coefficient.
However, it is not very reslistic to assume such a model in practice so that this estimator is generally biased. Micaey (1954, 1959) has discovered an ingerious ard simple procedure of constructing a large variety of unbiased ratio and regression type estimators and this procedure has been furtiner exploited by Williams (1958) to develop and investigate the properties of unbiased regression type estimators.

The possicility of using unequal probabilities for selecting the sampling units to increase the precision of estimates is first considered by Hansen and Hurwitz (194.3). Usirg a two stage stratified sampling design they select one first stafe unit from each stratum with probability proportional to numcer of seconc stacc units in a first stage unit. It is demonstrated that marked reduction in variance over sampling with equel procacilities car be octained by switchirg to unequal procecility sampling. However, since onily one first stage unit is selected from each stratull, no valid estimate of the verience can ce obtaired ana so aporoximate methods using collapsed strata are suggested for estimating the variance. To avoid this, it hes been a common practice if sample surveys to select two or more first stage
units with replacement and with p.p.s. (provaililities proportionai to size) of the x variacle, since the existing theory oI sampling with p.p.s. and without replecement presents certain difficulties as will be evident leter in the review. An important advantage of sampling with replacement is that an uncissed estimate of tine variance for each stratum is simply given by the mean square of estimeted totals of the selected first stage units in the stratum and does not depend on the metinod of selection of second stage units provided separate samples of second stage units are àrawn wher a first stage unit is selected twice or more. A full account of this theory is available in wany of the standara text books on sampling, e-g. Sukiatme (1954), and can be sumiiarized as follows for single stage sampling: Let p_{i} denote the probability of selecting $i^{\text {th }}$ unit in the iirst araw. Then, en estimate of the total Y is

$$
\begin{equation*}
\hat{Y}^{\prime}=n^{-1} \sum^{n} \frac{y_{1}}{p_{1}} \tag{2.5}
\end{equation*}
$$

the variance of the estimate is

$$
\begin{equation*}
v\left(\hat{Y}^{\prime}\right)=\sum^{n} n p_{i}\left(\frac{y_{i}}{n p_{i}}-\frac{Y}{n}\right)^{Z} \tag{2.6}
\end{equation*}
$$

anci an unciased estimete of the varience is

$$
\begin{equation*}
\nabla\left(\hat{Y}^{\prime}\right)=\frac{n}{n-I} \sum^{n}\left(\frac{y_{i}}{n p_{i}}-\frac{\hat{Y}^{\prime}}{n}\right)^{2} \tag{2.7}
\end{equation*}
$$

Miazuno (1きこO) hes extended Hansen and Hurwitz's theory
to sampling a comination of n units with probability proportional to some measure of size of the combination. It is interesting to note that this probability is equal to the totai procability of selecting the first unit with p.p.s. and the remaining ($n-1$) units with ecual probabilities and without replacement. Lehiri (1951) and Des Raj (19こ4) use Midzuno's procedure in constructing an unbissed ratio estimator by selecting tine n units with probabilities proportional to total measure of size of x for the n units. It should be noted that in Hartley aria Ross' method, the sampling procedure is not modified as is done by Lahiri and Des Raj, but the usual ratio estimators are modified so tinet a ratio type estimator is obtained that is unciased for the ususl simple randiu sampiing procedure. Madow (1949) hes considered systematic sampling of clusters with procecilities proportionei to size, cut no valia estimete of the variance can be octeined.

Winer sampling a firite populetion without replacenent, tre cless of ali unciesed linear estimators can ce seperetea into a number of succlesses of estimetors by the neture of coefiicients, or weights attached to the observations in the semple. Horvitz and Thompsos. (195ぇ) have aistinguisheá three succlesses oi estimators and Koop (1957) hes formulated a more general aiscussion of the possicle succlesses erd hes investigated sone properties of the estimetors ir each
subclass. We shall give a brief review of Koop's formulation
 linear estimators. Let T_{i} denote an estimator in class 1. Then, T_{1} has weights cased on the order of appearance of the units in the sample, T_{z} on the presence or absence of a given unit in the sample, T_{3} on the set of units composing tine sample, T_{4} on the apperrance of a given unit at a given draw, T_{5} on the given unit and the particuler sample in which it appears, T_{6} on the set of units appearing in a specific order, and T_{7} or the unft, the order of its araw and the particular sample in which it appears. Minimum variance unciased linear estimators are octained in each succless using Lagrenge's multipliers. However, the weights so octeined depend on the unknown y's. Tu avoia this, Koop ottains simulated minimuk variance unciased linear estimators cy using the relation $y=c x$ where c is a constant.

He feel that this simulation basea or the exact relation $y=c x$ is not too realistic in practice anc may give a comEletely faise picture if this relationship aoes not hold. Also, certain systems of linear simultaneous ecuations heve to ce solved ir order to ootain these veights which become very cumicersome when is fairly large. Koop states thet with the nelp of electronic computers these calculations can be performed easily. However, in uncerdeveloped countries access to electronic computers is restricted, and most of
the data have to be analyzed on desk calculators. The need for sample surveys in plannirg economic development is consideracle in underdeveloped countries, so that these results have limited use and in any case simplicity of computations is considered as one of the important factors in choosing a samping procedure.

Godamce (1955) has snown that it is not possible to construct a sampling procedure and associated untiased linear estimator which is uniformly best for all populations. The efficiency comparisons between the seven subclasses depend on the kind of procability system used except that the variarice of T_{6} is greater than the $v=r i a n c e ~ o f ~ T_{3}$. Estiuators belonging to the first three succlesses are considered in detail in the literature, though Koop hes investigated some properties of estimators in the rewaining four succlasses and not many useful results have been octained regarding their applicacility. Lehiri's (1951) unciasea retio estimetor beiongs to subclass 3, and estimate of its variance cen assume negative values.

Horvitz and Thompsor (195a) deal with linesr estimetors belonging to succlass c. Their estimator of the total $¥$ is

$$
\hat{y}=\sum_{i=1}^{n} \frac{y_{i}}{P_{i}}
$$

where F_{i} is the procacility for $i^{\text {th }}$ unit to ce in the sample. Tris is the oniy unciased estimetor possible in succlass \mathcal{E} ard
hence the best estimator provided the weights in the linear estimators are assumed to be independent of $\mathrm{y}^{\prime} \mathrm{s}$. Koop's (1957) minimum variance unbiased linear estimator in this subclass has weights which depend on $y^{\prime} s$. In this dissertation, ::e will ce mainly concerned with the estimator \hat{Y} since the sampling procedure adopted is appropriete to this estimator. The variance of \hat{Y} is given by

$$
V(\hat{Y})=\sum^{N} \frac{y_{j}^{\grave{i}}}{P_{j}}+\varepsilon \sum_{i<i \prime}^{N} \frac{P_{i i} \prime}{P_{i} P_{i \prime}} y_{i} y_{i},-Y^{2}
$$

where $F_{i 1}$, denotes the probability for the $i^{\text {th }}$ and the $1^{\text {th }}$ unit to be both in tine sample.

Now, when the P_{j} are exactly proportional to the y_{j}, the variance of \hat{Y} is zero which suggests tiat by maiking the P_{j} proportional to the x_{j}, consideracle reduction in the veriance of \hat{Y} will result if the X_{j} are approximetely proportional to the y_{j}. So, the main probleii is the evaluation of $P_{i j}$ and nerce $V(\hat{Y})$ when consiaering sampling procedures which setisfy this "cesired optimality" concition, namely,

$$
\begin{equation*}
P_{i}=(n-I)^{-1} \sum_{i \prime \neq 1}^{N} P_{i i^{\prime}}=n p_{i} \tag{亡.10}
\end{equation*}
$$

where $\underline{p}_{1}=x_{i} / X$. Since we ere mainly concerned with this prociem in this dissertation, we shall discuss in detail the available methods and their limitetions to defi with this proclem after reviewing some core literature or estimators in
unequal probability sampling without replacement.
Horvitz and Thompson's (195\%) untiased estimate of the variance of \hat{Y} is

$$
v_{i T}(\hat{Y})=\sum^{n} \frac{1-P_{j}}{P_{j}} y_{j}^{z}+\sum_{i \neq i^{\prime}}^{n} \frac{P_{i i^{\prime}}-P_{i} F_{i^{\prime}}}{F_{i} P_{1^{\prime}} P_{i 1^{\prime}}} y_{i^{\prime}} y_{i} .(2.11)
$$

This estimate of the variance can assume negetive values. So, Yates and Grunày (1953) have proposea an alternative estimate of the variance which is beileved to be less ofter negative. Their estimate ox the veriance is

$$
\begin{equation*}
v_{Y G}(\hat{Y})=\sum_{i \prime \prime}^{n} \frac{P_{i} P_{i \prime}-F_{i i^{\prime}}}{P_{i i^{\prime}}}\left(\frac{y_{i}}{F_{i}}-\frac{y_{i \prime}}{P_{i}{ }^{\prime}}\right)^{\mathcal{L}} \tag{2.12}
\end{equation*}
$$

Since this is a weighted sum of squeres unlike (2.11), it hes some desirable features thougn it is possicle to construct examples to show that (2.1 c) can ce negetive ($\mathrm{e} \cdot \mathrm{g}$. Des Raj, 1953a). It is shown by Sen (195.j) and Des Rej (1956a) that (K.la) is always positive st least for the followirg two importart sampling systems: (a) The first unit is selected with p.p.s. ana the remaining ($n-1$) units ere selected initn equai procacilities ana witnout replacement. This is due to inidzuno (1950). (c) The first unit is selected with Zッ. the sample size being two. This is due to Jorvitz ena Thompsor (195i).
ine srall leter in Chepier VI, section A, identify a rew

14

sampling system with sample size greater than two, for which the Yates and Grundy estimate of the veriance is always positive. The expressions for probabilities P_{i} and $P_{i j}$, are quite simple for systems (a) and (b) and for the new system so that these systems may be useful. It will ce of interest to iaentily more useful sampling systeas for which the yates and Grundy estimete of the variance is always positive. AnOther inportant property of the Yates and Grundy estimate of tne variance will ce demonstretea in Chapter IV, section C. It will be shown for the case of samole size tho that, iI there exists a sampling procedure without replacement satisfying the conaitions (2.10) ana is such thet the veriance of \hat{Y} given by ($z .9$) is smaller than the v eriance of \hat{Y}^{\prime} when sampling with replacement, ramely (c. \mathbf{b}), ther the Yates and Grunay estimate of the veriance is always positive. This is a useful result since ke are interested in orly trose samoling systems for which sampling without replacemert is more precise ther saming with replacemer.t. Ir this coinection, one [ray rote Durbir.'s (1953) comment that the $v=r i a r c e ~ o f ~ \hat{Y}$ need rot always ce smaller than the variarce of $\hat{\underline{Y}}^{\prime}$ and it is easy tu fina ceses in winch the cortrary is true.

Since the Yates and Grunãy estinete of veriance cer take negative values, Des Raj (1956a) hes corsiderea a set of estimators belonging to suiscless 1 with veights iesed on the oraer of auperrace of the units, winile tie estimates oi the
veriance of these estinators are always positive. murthy (1957) has shown tinet to any ordered estimator there exists an unordered estimator which has smaller variance than the former, and so by unordering Des Raj estimators, unordered estimetors with saaller variance than the former are obtained. However, for the case of sample size two only, it is shown that tne estimate of varience of the "unordered estimetor" is always positive. Mickey (1954, 1959) independertly while dealirg uainly with unbiased ratio and regression type estimators has developed exactly the same estimators considered by Des Raj and kurthy. Nickey's efficiency comperisons between these estimetors and Horvitz and Thompson's estimetor \hat{Y} of succlass z inaicate approximate equality of efficiency.

Returnine now to the discussion of $k e$ thods thet ensure Tie conditions (2.10), namely, the probabilities P_{i} proportional to the x_{i}, and the valuation of $F_{i i}$, and $V(\hat{Y})$ therefrof, Horvitz ara Thompsun (195\%) sugeest two methocis that satisfy (c.10) approximetely. The first metiod uses midzuro's proceaure for which

$$
\begin{equation*}
P_{i}=\frac{n-n}{i j-1} p_{i}^{i}+\frac{n-1}{i n-1} \tag{c.13}
\end{equation*}
$$

aici

$$
\begin{equation*}
z_{i i}=\frac{r-1}{i-1}\left[\frac{\ddot{i}-n}{i-2}\left(p_{i}^{*}+p_{i}^{*}\right)+\frac{n-k}{i-2}\right] \tag{え.14}
\end{equation*}
$$

where p_{i}^{*} are the revisea procecilities such thet $F_{i}=n p_{i}$. Solvirfe (c.13) for $\mathrm{p}_{\mathrm{i}}^{*}$,

$$
\begin{equation*}
p_{1}^{*}=\frac{\pi}{N-}-\frac{1}{n}\left(n p_{1}\right)-\frac{n}{N}-\frac{1}{n} . \tag{2.15}
\end{equation*}
$$

However, this method is severely restricted since for $p_{i}<\frac{(n-1)}{(N-1) n}, p_{i}^{i+}$ becomes negative. Also, since only one unit is drawn with pos.s. ana the remaining ($n-1$) units are drawr with equal probabilities, this method may not ce as efficient as a procedure where all the n units are selected witi unequal probabilities. The second method for sample size two is based on the assumption that sampling without replacement is not muci different from sampling with replacement. Then the p_{i}^{*} are octained by solving the quadratic

$$
\begin{equation*}
p_{i}^{*}-p_{i}^{*}+p_{i}=0 \tag{2.16}
\end{equation*}
$$

Moreover, tinis methoc creaks down if p_{i} is greater than 0.25 since roots of (2.16) become inaginary.

Yates and Grundy (1953) have suggested a more setisfactory procedure of octaining revisea probaiilities, iased on iteration using Horvitz anc Thompson's procedure of selecting the first unit with p.p.s., the secora unit miti p.p.s. of the remaining units and so on. Though tie iteration process is applicaile for any sample size, it becomes extremely cumbersome when sample size is greater than two. For sample size two,

$$
F_{i}=p_{i}^{*}+p_{i}^{*} \sum_{j=i}^{i} \frac{p_{j}^{\#}}{I-p_{j}^{*}}
$$

end

$$
p_{i i}:=p_{i}^{*} p_{i}^{*}:\left(\frac{1}{1-p_{i}^{*}}+\frac{1}{1}-p_{i}^{\#}\right)
$$

where the p_{i}^{*} are such that $p_{i}=\dot{c} p_{i}$. The p_{i}^{*} are obtained irom (z.16) iy iteretion, and the authors think that one iteration should be adequate in most of the copulations normally encountered. However, this procedure becomes cumbersome when \mathbb{N} is fairly large. Narain (1951) suggests a graphical numerical methoa for solving (2.16) which is also ratiner complicated.

Des Raj (1906b) argues that though tine acove procedures satisfy the conditions (i.l0) approximately, the $P_{i i}$, so obtained may not be optimuk. He therefore employs conditions ($\sim \cdot 10$) as a set of K equations for the $\frac{1}{幺} N(K-I)$ protabil-
 variance of \hat{y} given $\dot{b}_{j}(z .9)$ subject to (z.10). This leads to a "linear programing problem" for the $\frac{1}{2} N(N-1)$ positive $P_{\text {ii' }}$ satisfying (z.10). Since the "ocjective function" (the variance) involves the unkrown y_{i}, these are replaced by the known x_{i} assuming that

$$
\begin{equation*}
y_{i}=A+B x_{i} \tag{2.18}
\end{equation*}
$$

exactly. There are several limitations of this method.
Computations become extreaely cumbersome when n is greater than two ariolor for large N. Also, as illustreted by Des Raj himself, tne u ethod is quite sensitive to the assumption of linear mociei, eric ir the mociel is not satisfied corsidereble
loss in efficiency can result by using these optimuni proba0ilities. Moreover, iI it is assumed that the y_{1} of the population satisfy the linear model (2.18) exactly with unknown A and B, tinen, clearly the regression estimator hes zero variance and ever. if an error term is introduced into this Inear, model the regression type estimator would still be the "best" estimator so that it is of little interest to consider other estimators under such assumptions. It may be noted that Des Iaj^{\prime} 's procedure remains unchanged even if an error term e_{i} with

$$
E\left(e_{i} \mid x\right)=0 \quad \text { and } \quad \operatorname{Cov}\left(e_{i} e_{j} \mid x\right)=0
$$

is introduced in tine model (2.18), provided tine "objective function" is not the variance of \hat{Y} but is the expectation of the variarce of \hat{Y} under the assumptions (2.19).

Instead of finaing the revised probabilities p_{i}^{*} wilch ensure that condions (2.10) are satisfiea, one would like to have a sampling procedure with the original probabilities p_{i} for which concitions ($\approx .10$) are satisfied. There is e simple sampling procedure well krown to survey prectitioners having this property, and is mentioned for example in coodmen and Kish (1950). In tinis procedure, tine 1 : units in the population ere listed in a rendom order ard their measures of size are cumulatea and a systemeitic selection of n elements from a rardom atart is ther made on the cumulatior so that coridi-
tions (a.l0) are satisfied exactly. Horvitz and Thompson (195z) mention this procedure but say "This selection is easily performed, but there does not appear to be any simple way to determine tine protabilities $\mathrm{P}_{11}{ }^{\prime} . "$

In this dissertation, we propose to determine the probabilities $P_{i i}$ for this sampling procedure explicitly in teris of the P_{1}. In Chapter III, expressions for $P_{i 1}$ will be given for the cases $n=i$ and $N=3,4$ and 5. As N becomes large, the exact evaluation of $P_{i 1}$ ' becomes cumbersome, so we sinall develop an asymptotic theory in Cnapter IV for the case $n=z$ and in Chapter V for the case or general sample size n. Compact expressions for the probabilities $P_{i i}$ and the variance of $\hat{-}$ will be octained applicacle to large and medium sized populations. An important feature of this sampling proceaure is that it lenas itself to the cese of general sample size n unlike tine procedures previously mentioned. For example, expressions for P_{1} and $P_{i 1}$ for Yorvitz and Thompsor procedure of arawing first unit with p.p.s., second unit with p-p.s. of the remeining units and so on, becoue unimeldy and not manageacle. The only procedure winch seems to give simple expressions is iidzuno's procedure of drawing the first unit with p.p.s. and the remeining ($n-1$) units with equal procabilities and without replacement. Ser (I955) has proposed a metiod to deal with the case $n>z$. Assuming n is a multiple of a, he sugeests to araw the first two units
cy Horvits and Thompson procedure, replace the two units, and then craw the next two units by the same procedure and so on. This procedure gives simple expressions for P_{1} and $P_{i 1}$. . However, since each pair of units is replaced before the next pair is drawn, there will be an overlap of units and so this procedure is not as precise as selectinç all the n units without replacement. In Chapter V, section D, we prove an interesting result showing that tine $P_{i i}, ~ v a l u e s ~ a t t e l n e d$ tnrougn Yates and Grundy iteration procedure and through the sampling procedure mentioned by Goodmer, and Kish as described before, are exactly the same to order $O\left(N^{-3}\right)$ so that $V(\hat{\underline{v}})$ is the same for both the procedures to order $O\left(N^{I}\right)$. assuming that P_{i} is order $O\left(N^{-1}\right)$ which indicates that both procedures have practicaliy the same efficiercy for large N .

Since the strict application of available methoas of unequal pronability sampling without replacement involves corsideracle computations, some authors on grounds of practicaiility have suggested certain methods whici retain the advantage of unecual procacility sempling without replacement but easier to apply in practice anc involve a slight loss of exactness. Yates (1945) suggests using the vsriance in unecuai proiacility sampling vitin replecement with the usual finite population correction factor for simple randou sampling attached to it, as an approximetion for the $v=r i a n c e$ in unequal probaíility samiling without replacenert. Yates and

Grundy (1953) assuming that variation in the quantities y_{i} / F_{i} is of random nature unassociated with the P_{i}, obtain the following simple expression for the variance of \hat{y} from (z.9) using the relation

$$
\begin{gather*}
\sum_{i \neq 1}^{N} P_{i i^{\prime}}=n(n-1): \\
V_{\text {Appr }}(\hat{Y})=n\left(1-n^{-1} \sum P_{i}^{2}\right) V\left(\frac{y_{1}}{p_{1}}\right)
\end{gather*}
$$

where $V\left(y_{i} / p_{1}\right)$ is the veriance of the quantities y_{i} / p_{i}. Durbin (195.j) has suggested two ag:roximete metiods to obtain simple expressions for the estimate of the variance of \hat{Y}.

Stevens (1958) has a method of sampling without replecement if the values of x are or can be grouped into groups of units having the same measure of size, x. Ther, the procedure is to select n groups witi replacement ana with probacilities proportional to total size of the groups, e.g. if in the $i^{\text {th }}$ group there are $\dot{r i}_{i}$ units each oi size x_{i}, then the total size of the group is $\lambda_{i} x_{i}$. If the Eroup i is ciosen t_{i} times, select without replacement t_{i} units witit equel probability and without replacement from this group. Stevens derives formulas for the variance etc. at length using tinis procedure. It is of interest to note thet these formulas can be octained as particular cases rom a kell Erown two stage sampling procedure (Suahatme, 1954) in wich the first stage units are selected with p.p.s. and with replecenent ard if the $i^{\text {th }}$ first
stage unit is selected t_{i} times, $m_{1} t_{1}$ secondaries are selected with equal probacility and without replacement from it. To obtain Steven's results, one simply has to identify the groups as first stage units, the units in a group or second stage units ard put $m_{1}=1$ in Sukhetme's formulas.

There are several other interesting problems in unequal proiacility sampling without replacement. It is of interest tu estiante the variance in simple random sampling from a samuie drawn witi unequal procabilities in order to estimate the gain in efficiency of unequal probacility sampling over sinple random sampling. In most of the sample surveys we are usually interested in estimating the mears or totals of several cinaracteristics. If the sample is selected with p.p.s. of x, it may of ter happen that x is not highly correlated vith all the characteristics of interest. For some of the cheracteristics y the correlation between y and x may be quite small so that usirg the usual estimators in unequal probability sampling may give lerge veriances for the estimates of these characteristics. In such circumstarces, one wuld like to seve the situation witin the help of alternative estimators that heve smaller veriances. Another important prociea is the estination of the gain in efficiercy due to stratification for unequal procacility sampling without replacement. Efficiercy of stratificetion hes been consiaered by Cochrari (195.3) for simple rardom sampling end by Suinetme
(1954) for unequal procacility sampling with replacenent. In Chapter VI, sections B ard C, we consider these problems. It is or importance to maise efficiency comperisons between unequal probability samiling and other methods of utilizing supplementary information, e.g. ratio and regression wethods of estimation, stratification. Since in practice, no functionai form of the distribution followed by the data is assumed, it is difficult to meke neaningful comparisons. So, Cochrar (1953) assuming the codel

$$
\begin{equation*}
y_{i}=Y p_{i}+e_{i} \tag{Z1}
\end{equation*}
$$

with

$$
\left.E\left(e_{i} \mid x\right)=0 \quad \text { and } \quad E\left(e_{i}^{\dot{c}} \mid x\right)=a p_{i}^{E}, \quad E>0, a>0 \quad \text { (z. } 22\right)
$$

has shown that the veriance in p.p.s. samiling with replacement is smaller than the variance of the ratio estimate $\hat{\mathrm{Y}}_{\mathrm{R}}$ (for large samples) without tie finite jopulation correction factor, if $g>1$. It is also retaraed thet in practice g usualiy iles betweer 1 ara z so thet the p.p.s. estimate is gererally more precise. Aiso, it is noted that if it costs wore to octain azta from a larger urit ther from a sweller ofe, the comparison is biesed in fevor of p.p.s. semplirg, whici tenās to concentrate on the larger units. Said (1955) has made extersive investigations on efficiency comparisons between unequal probebility sampling, retio and regression metcoads of estimation an stratificetion, under certein specific relationsifips cetweer y ard x ard assumirg x hes a

Pearsun's Type III distribution. It is hard to know how good intese assumptions sre in practice, and so we trink that these results have limited use. Des Raj (1958) has suggested using Cochran's iaea of regarding the finite population as drawn at random from an infinite super-population with certain properties, so that the results obtained apply to the average of all finite populations that can be drawn from tise infinite porulation. He makes certain efficiency comparison using this concept. Zarkovic (1960) expands the verience in p.p.s. sampling with replacement by Taylor's expansion neglecting terms with po:ers inghér than secona, and comperes it with tse variance of ratio and regression estimetes. Since we oictain compact expressions for the variance of $\hat{\underline{v}}$ in unequal procacility samplirg without replacement, we shail make comparisors in Chapter V, section E, with the variance of the ratio estimate with tne finite population correction fector includeã.

Finaliy, mention should be made of the criticism on the logic of unequal procecility sempline. It is worth quoting Weicull (1960, p. 84) ir tinis correction. He says:

The methoa of sauplirg with varying procabilities ir salivie survey theory is cased on a criterion of iinnimizing the expected veriarce, e criterion which is not appropriete winer only a single sample is crawn. The supposed reduction of the viriance in the estimates is illusory end hes no real significance. Intutively tisis is fairly clear. If it is innown that sone units contain more informetion or from other points of view are more desiracle to sample - than some otiner units, there is no reason
to let the actual selection depend on a random rnccesure.

If this iuplies that units with high weight should be sampled and units with low weight ignored, then obviously no valid estimate of the variance car be found. However, these sentiments can de incorporeted in a procability design with stretification and sampling witi unequal probabilities within each or some of the strata. Such a desigr is described in Chapter VI, section D.

III. A SIMPIE PROCEDURE OF UNEQUAL FROBABILITY SAMFLNG WITHOUT REPLACEMENT

The problem is to draw a samole of n units without replacement from a finite population of n units such that the probability P_{1} for the $1^{\text {th }}$ unit to be in the sample is proportional to $p_{1}=x_{1} / X$ and $\sum^{N} p_{i}=1$, i.e.

$$
\begin{equation*}
P_{1}=\operatorname{Pr} .\left(i^{\text {th }} \text { unit in the sample }\right)=c p_{i} \tag{3.1}
\end{equation*}
$$

where c is a constant. We now prove the following theorem: Theorem 3.1. If there is a sampling procedure which satisfies equation (3.1), tion $c=n$ and $n p_{i} \leq 1$.
froof. Let a_{i} denote the "indicator veriable" such that

$$
a_{i}= \begin{cases}1 & \text { if } i^{\text {th }} \text { unit is in the sample } \tag{3.2}\\ 0 & \text { if } i^{\text {th }} \text { unit is not in the sample. }\end{cases}
$$

Then

$$
\begin{equation*}
E\left(a_{i}\right)=1 \cdot \operatorname{Pr} \cdot\left(a_{i}=I\right)=P_{i}=c p_{i} \tag{3.3}
\end{equation*}
$$

Since tine n units in the sample are dravin vithout repleceaent, exactly n of the a_{1} taice the value l ard the remaining ($n-n$) of the a_{i} tace the value 0 so that

$$
\begin{equation*}
\sum_{i}^{K} a_{i}=r_{1} . \tag{3.4}
\end{equation*}
$$

Tacirg expectaitors of (3.4) end using (3.3) we find

$$
\begin{equation*}
r=\sum^{i N} E\left(a_{i}\right)=c \sum^{N} p_{i}=c \tag{3.5}
\end{equation*}
$$

so that $c=r a r a \bar{a}$ aince the probabilities F_{i} cannot be greater thar. 1, it immediately follows that

$$
\begin{equation*}
p_{i}=n p_{i} \leqslant 1 . \tag{3.6}
\end{equation*}
$$

We shall now describe the sampling procedure adopted in this dissertation which has been mentioned by Goodman and Kish (1900), and which satisfies (3.6). So, to apply this sampling procedure we have to contine to those p_{1} for which $n p_{1} \leqslant 1$. If the p_{i} for some of the units in the populetion do not satisfy this condition, one can include these units automaticaliy in the sample or sucdivice each of these units into two or more sucuitits such thet the p_{1} corresponding to the subunits satisfy this conditions.

A. Description anc Illustration of the Sempling Procedure

The sampling procedure can be descriced in two steps as follows:

Step 1. Arrange tine \mathbb{N} units in a random order and àenote (without loss of generality) by $j=1, i, \ldots, N$ this rencioc order, and by

$$
\begin{equation*}
\pi_{j}=\sum_{i=1}^{j}\left(n p_{i}\right), \quad T_{0}=0 \tag{3.7}
\end{equation*}
$$

the cumulative totals of the $n p_{i}$ in that order.
Step $\dot{\text { K }}$. Select a "randou start", i.e. select a "uniform variate" d with $0 \leqslant d<1$. Then the n selected units are those wnose index j satisfies

$$
\begin{equation*}
\pi_{j-I} \leqslant d+k<\pi_{j} \tag{3.8}
\end{equation*}
$$

for some integer is cetween C anc $(n-I)$. Since each $n p_{i} \leqslant l$,
every one of the n integers $k=0,1, \ldots,(n-1)$ will select a didierent unit j.

Though it is known thet (3.6) is satisfied by this sampling procedure, nu formal proof seems to have been given In the Iiterature. Theorem 3.2 below gives a proof to this erfect.

Theorem 3.E. For the acove sampling procedure the probability of selecting the $j^{\text {th }}$ unit in the sample, P_{j}, is equal to $n p_{j}$.
Proof. Consider a particular arrangement of the N units in an ordered sequence and single out a particuler unit j in that sequence. Let I denote the largest integer witn $I \leqslant T_{j-I}$. Now if $T_{j}-I \leqslant I$, irom (3.8) it immedietely follows tinat unit j is selected if $T_{j-1}-I \leqslant \bar{a}<T_{j}-I$ for $k=I$. If, or the other hani, $T_{j}-I>I$, the unit j is selected if $\mathbb{T}_{j-1}-I \leqslant \bar{a}<I$ for $k=I$ or in $0 \leqslant d<T_{j}-I-I$ for $k=I+1$. Since \bar{a} is a unifora veriate $:$ ee see that in Case I: $T_{j}-I \leq I$.

$$
P_{j}=\operatorname{Fr} \cdot\left(\pi_{j-1}-I \leqslant \bar{a}<\pi_{j}-I\right)=\pi_{j}-\pi_{j-1}=n_{j}(3.0)
$$

ara in

Case $\mathrm{E}: \quad \pi_{j}-I>1$

$$
\begin{align*}
F_{j} & =\operatorname{Pr} \cdot\left(\mathbb{T}_{j-I}-I \leq \bar{a}<I\right)+\operatorname{Pr} \cdot\left(0 \leq d<\mathbb{T}_{j}-I-I\right) \\
& =\left(I-\mathbb{T}_{j-1}+I\right)+\left(\mathbb{T}_{j}-I-I\right)=n_{j} . \tag{3.10}
\end{align*}
$$

Therefore in either case ke have $F_{j}=n \equiv j$. It mey ce noted that the rancomizetion of the f units ir step 1 is not reces-
sary to prove Theoreni 3.z. However, this is required to octain compact variance rormules for the estimate \hat{Y} using an asylup totic theory as will be evident in Chapters IV and V.

1. A cyclical arialogue to the sampling orocedure

iie consider a cyclical analogue to the sampling procedure which is more convenient to use from the point of view of mathematical treatment and is stochasticaliy equivalent to tne original sampling proceaure. Steps 1 and 2 are modified as foliows:

Siep 1'. Arrange the N units in a random order, denote by $j=1, k, \ldots, N$ this random order and form (as before) the cumulative totals T_{j} given cy (3.7). Since $\sum^{N}\left(n p_{j}\right)=n$, consider a circle with circumference of n or of radius $n / \Sigma \pi$ ard then mark oft on the perimeter of the circle arcs of lengths P_{j} in clociswise direction sterting at the top. Step $\&^{\prime}$. Select a uniform arc swith $0 \leqslant s<n$. Then the r selected units are those whose incilces j sotisfy

$$
\begin{equation*}
\mathbb{T}_{j-1} \leqslant s+k<\mathbb{T}_{j} \tag{3.11}
\end{equation*}
$$

fur sowe integer k cetweer $-(n-1)$ ana ($n-1)$. Only n of tine (an - Ij integers k will actually select the n different unīs. Tneoreu J. \quad holás here cecause we know with certainty that ore of the arcs T_{j} will fall within the range 0 to 1 ara this may be identiilea with the veriate din step 2.

z. Illustration of the sampling procedure

To demonstrate the actual methoa of selecting the units by the presert sampling procedure, we take the population of ¿O blocks in Ames, Ioka, considered by Horvitz and Thompson (195\%). Ne have chosen this example here because we will be making eificiency comparisons later in Chepter IV, section D, using the same deta. The veriate y denotes the number of householas on a clock and the variate x cenotes the eye estimeted number of householas on a clocis. The dete ere given celow in Tacle 1 era the population totals are $Y=434$ and $X=394$. It is not necessary to compute the quantities $p_{i}=x_{i} / X$ and $p_{i}=n p_{i}$ in order to use the sampling procedure, since cy scaling ail computetions up by the factor X / n we have to compute orly the cumulative to tels of X_{i} instead of tine cumulative totals of P_{i}. Then select E rencon. integer (start) betweer I end X / n say D anc use (.j. B) es

$$
\begin{equation*}
\sum_{i=1}^{j-i} x_{i} \leq D+\frac{X}{n} \cdot k<\sum_{i=1}^{j} x_{i} \tag{3.12}
\end{equation*}
$$

to select the n units.
Suppose a semile of size $n=3$ units is to ce are:n and
 (approx.) is 45 . Ther., ie iust finc the lines (j) where the coluar $\sum_{i=1}^{j} x_{i}$ passes through the leveis $D=45$ (for $k=0$),

Blocis	No. of households	Eye estimated no. of nouseholás	$\begin{gathered} \text { Cumulative } \\ \text { sumi } \end{gathered}$	$\begin{gathered} \text { Start }=45 \\ \text { Step }=X / r=131 \end{gathered}$
j	Y^{\prime}	x_{j}	$\sum_{i=1}^{j} x_{i}$	
1	19	18	18	
2	9	9	Σ^{7}	
3	17	14	41	
4	14	12	53	$\mathrm{L}=0, \mathrm{D}=45$
0	c1	< 4	77	
6	L	25	10\%	
7	6^{7}	c3	125	
8	35	<4	149	
9	<0	17	166	
10	15	14	180	$\underline{K}=1, \quad I+1.31=176$
11	18	18	198	
1\%	37	40	238	
13	1\%	12	<50	
14	47	30	280	
10	27	27	307	$\Sigma=\dot{L}, ~ D+\dot{C} \dot{\Sigma}=307$
16	25	26	3.33	
17	25	21	354	
18	13	9	. 363	
19	IS	19	38ic	
$\therefore 0$	IL	IL	394	
Total	434	. 394		

$D+131=176($ ron $k=1)$ and $D+202=307$ (for $k=2$).
Frou lable 1 , it is seen that the units $j=4$, 10 and le are selected in the sample.

B. Variance Formulas for the Cases
 $$
n=\alpha, 1=3,4 \text { ar.a } 5
$$

To innce the variance of \hat{y} in teris of P_{j} arci y_{j}, one has to evaluate $P_{i j}, \operatorname{explicitly}$ in terks of P_{j} anc then suicstituve in (z.9), namely,

$$
\begin{equation*}
V(\hat{Y})=\sum^{N} \frac{y_{j}^{\dot{j}}}{F_{j}}+\alpha \sum_{i<i}^{N} \frac{F_{i i^{\prime}}}{\mathcal{F}_{i} F_{i 1}} \cdot y_{i} y_{11}-Y^{2} . \tag{3.13}
\end{equation*}
$$

To Iind an estimete of the variance of $\hat{\forall}$, we sucstitute the value of $P_{i j 1}$ in tie Yates ara Grundy estinste of the variance, nemeiy,

$$
\begin{equation*}
v_{Y_{G}}(\hat{i})=\sum_{i<1^{\prime}}^{n} \frac{F_{i} P_{i}{ }^{\prime}-P_{i i^{\prime}}}{P_{i i^{\prime}}}\left(\frac{y_{i}}{\tilde{E}_{i}}-\frac{y_{i}{ }^{\prime}}{P_{i}{ }^{\prime}}\right)^{z} . \tag{3.14}
\end{equation*}
$$

i. The cese $n=\dot{2}=3$

$$
\begin{align*}
& \text { Since thare Ere only three unios in the populetion, } \\
& F_{i i^{\prime}}=1-\operatorname{Pr} .\left(i^{\prime \prime}\right. \text { iri the scrinle) } \tag{3.15}
\end{align*}
$$

wrere i" is whe rearinire unit ir tiee poouletion. Thus,

$$
\begin{equation*}
P_{i i}=I-F_{i n}=P_{i}+P_{i},-I \tag{3.16}
\end{equation*}
$$

since

$$
\begin{equation*}
\bar{F}_{i}+F_{i} \prime+\bar{F}_{i} \prime \prime=z \tag{3.17}
\end{equation*}
$$

rrou (3.1c) it foliows thet $E_{i j}>0$ oxee, ir tie obvious
case $P_{i \prime}=1$. Suistituting $P_{1 i}$ fron (3.13) in (3.13), we finà

$$
\begin{equation*}
\because(\hat{Y})=\sum_{i<1}^{3}\left(1-F_{i}\right)\left(1-P_{i},\right)\left(\frac{y_{1}}{p_{i}}-\frac{y_{1^{\prime}}}{\left.p_{1}\right)^{z}}\right)^{z} \tag{3.18}
\end{equation*}
$$

Similarly frou (3.16) ard (3.14) we obtain

$$
\begin{equation*}
v_{Y G}(\hat{Y})=\frac{\left(1-P_{i}\right)\left(1-P_{i \prime}\right)}{P_{i}+P_{i}-1}\left(\frac{y_{i}}{P_{i}}-\frac{y_{i}{ }^{\prime}}{P_{i}{ }^{\prime}}\right)^{Z} \tag{3.19}
\end{equation*}
$$

wiole is nornegative sirce $F_{1}+P_{i} \prime \geqslant 1$ ard $P_{j} \leqslant I$. It is interestine to note that (3.16) is true for the more general case $n=N-1, N=1$, since

$$
\begin{aligned}
P_{i i^{\prime}} & =\sum_{j \neq i, i^{\prime}}^{N}\left[\begin{array}{l}
I-F r \cdot(j \text { in the sample })
\end{array}\right] \\
& =(N-z)-\sum_{j \neq i, i^{\prime}}^{N} P_{j} \\
& =(N-i)-(i-1)-P_{i}-P_{i^{\prime}}=P_{i}+P_{i}(-1 .
\end{aligned}
$$

In iact, in this special case, it is easy to evaluete $P_{i j} . . . \frac{m}{}$, the procability of incluāing r units i, j, \ldots, , f, since

$$
\begin{align*}
F_{i j \ldots} & =\sum_{s \neq(i, j, \ldots, m)}^{K}[1-\operatorname{Pr} .(s \text { in the seingle })] \\
& =(i-r)-\left[(n-I)-F_{i}-P_{j} \ldots-F_{m}\right] \\
& =P_{i}+F_{j}+\ldots+F_{\text {mi }}-r+I . \tag{3.20}
\end{align*}
$$

Towever, this case mey not ine of much practicsl importarce.
2. The case $\mathrm{n}=2, \mathrm{~N}=4$

Without loss of generality, let us assume that

$$
\begin{equation*}
P_{1} \geqslant P_{1^{\prime}} \quad \text { and } \quad P_{1 \prime \prime} \geqslant P_{1} u \tag{3.21}
\end{equation*}
$$

where $i^{\prime \prime}$ and $i^{" 1}$ denote the remaining two units in the population. In order to evalurte $P_{1 i}$ we have to distinguish tine following two cases of the randonization results:

Case 1. The units i and i^{\prime} are adjacent.
Case a. The unios i and i^{\prime} are separated by one unit.
Now, for case 1 there are 16 possicle configurations of the F_{j} on the circle and 8 possicle configurations for case \dot{c}. Tne probaijlity $P_{i i l}^{\prime}$ that the units 1 ara i^{\prime} are the sampled urits in case 1 for a typicel conifguretion, say, first two arcs irom the top correspond to P_{i} ard $F_{i}+P_{i}$ respectively, is

$$
\begin{align*}
P_{i i^{\prime}}^{\prime} & =\operatorname{Pr} \cdot\left(0 \leqslant \mathrm{~d}<P_{i} ; P_{i} \leqslant d+1<P_{i}+P_{i}\right) \\
& =\left\{\begin{array}{cl}
P_{i}+F_{i} \prime-I & \text { if } \quad P_{i}+P_{i} \prime \geqslant 1 \\
0 & \text { if } \quad P_{i}+P_{i} \prime<1
\end{array}\right. \tag{z2}
\end{align*}
$$

where $\bar{\alpha}$ is the unifiorm $v \in r i a t e$ with $0 \leqslant \bar{d}<l$. All the reiainirg conifigurations have the same $F_{i i}^{\prime}$. The probability $F_{\text {ii' }}^{\prime \prime}$ that the unios i a.d i^{\prime} are the sampled units in case \hat{Z} for e typical corfiguratio., say, first three arcs froz the top correspond to $P_{i}, F_{i}+P_{i} \| \operatorname{ari} F_{i}+P_{i} \prime \prime+F_{i}$, respectively, is

$$
\begin{align*}
F_{i 1^{\prime}}^{\prime \prime} & =\operatorname{Pr} \cdot\left(0 \leqslant d<P_{i} ; P_{i}+P_{i} \prime \leqslant d+1<P_{i}+P_{1} \prime \prime+P_{1} \prime\right) \\
& =\left\{\begin{array}{cl}
P_{i}+P_{1} \prime+P_{i \prime \prime}-1 & \text { if } \quad P_{i}+P_{i} \prime \prime \leqslant 1 \\
P_{1^{\prime}} & \text { if } P_{i}+P_{1^{\prime \prime}}>1
\end{array}\right. \tag{3.23}
\end{align*}
$$

using conditions (3.il). All the remaining configurations have tine saie $P_{i i 1}^{\prime \prime}$. Therefore the overail procability $F_{i j}$ is Eiver. by

$$
\begin{align*}
P_{i j} & =\frac{16}{z 4} P_{i i^{\prime}}^{\prime}+\frac{\frac{8}{24} P_{i i 1}^{\prime \prime}}{} \\
& =\frac{2}{3} F_{i i 1}^{\prime}+\frac{1}{3} P_{i i 1}^{\prime \prime} \tag{3.24}
\end{align*}
$$

where $F_{\text {i1 }}^{\prime}$, and $P_{i 1}^{\prime \prime}$, are given by (3.2E) and (3.k3) respectively.

The substitutio: of $P_{\text {ij }}$ f frow (3.24) in (3.1.3) yielas the variance of \hat{Y}. It way be rotea that $P_{1 i},>0$ except in the ocvious case $P_{i " \prime}=1$. However, if the F_{j} are arrenged systematically, $P_{i i}$ cer: ce zero even if $P_{i} "<1$.

3. The case $n=2, n=5$

Let the numicering of the units before randouizetion be $1, \dot{c}, \dot{3}, 4$ and 5 anc̄ let $i=1$ enċ $i^{\prime}=\alpha$ and $P_{I} \geqslant P_{\dot{z}}$ without loss of generality. Again we distinguisin the two cases:
Case 1. The units 1 arci ε are adjacent.
Gase \&. The units I and z are separated iy one unit.
There are 60 possicle configunations for case 1 ara 60 for case α. The procacility $F_{i c}^{\prime}$ that the units I and c are the samilea units in cese 1 for a typical contiguretion is

$$
P_{I ̇}^{\prime}=\left\{\begin{array}{ccc}
P_{1}+P_{\Sigma}-1 & \text { if } & P_{1}+P_{i} \geqslant 1 \tag{.3=85}\\
0 & \text { if } & P_{1}+P_{Z}<1
\end{array}\right.
$$

All the remaining configurations have the same P^{\prime} ' . Now in case \dot{L}, we have to distinguisi the following three sub-cases each with <0 possicle configurations, in order to evaluate the probability tiat the units 1 and \approx are the sempled units: Case ($\varepsilon \varepsilon$). P_{4} ard P_{5} are adjacert and separated from P_{3} by P_{I} and P_{E}.
Case (αb). P_{3} and F_{5} are adjacent and separated from P_{4} by F_{1} and F_{i}.
Case (2c). P_{3} and P_{4} ere adjacent anc separated from P_{5} by P_{1} anc P_{i}.
In case (ia) if $P_{3} \leqslant P_{4}+P_{5}$, the procability $P_{l \dot{z}}^{\prime \prime}(a)$ thet the units 1 anã \dot{a} ere the sampleã urits for a typical configuration is

$$
P_{I ;}^{u}(a)=\left\{\begin{array}{cll}
0 & \text { if } & P_{1}+P_{2}+P_{3}<1 \\
P_{1}+P_{z}+P_{3}-1 & \text { if } & P_{1}+P_{3} \leqslant 1 \tag{3.26}\\
& & P_{I}+F_{i}+P_{3} \geqslant 1 \\
P_{i} & \text { if } \quad & P_{1}+P_{3}>1
\end{array}\right.
$$

fonever, if $P_{3} \geqslant P_{4}+P_{5}$ ther

$$
P_{I \alpha}^{\prime \prime}(a)=\left\{\begin{array}{cll}
F_{1}+F_{i}+P_{4}+F_{5}-1 & \text { if } & F_{I}+F_{4}+E_{5} \leqslant 1 \tag{3.27}\\
P_{\dot{L}} & \text { if } & P_{1}+F_{4}+P_{5}>1
\end{array}\right.
$$

All tine remainine confieuretions in cese ($\alpha \equiv$) have the same $\mathrm{F}_{12}^{\prime \prime}(\mathrm{a})$. Expressions aralogous to $(3 . \alpha 6)$ Enc (.j. $\overline{\mathrm{C}}$) hola for
$P_{1 \alpha}^{\prime \prime}(b)$ and $P_{12}^{\prime \prime}(c)$. Therefore the overall procability P_{12} is

$$
\begin{align*}
& =\frac{1}{\dot{E}} F_{1 \dot{K}}^{\prime}+\frac{1}{6} P_{1 \dot{K}}^{\prime \prime}(\varepsilon)+\frac{1}{6} F_{1 \dot{K}}^{\prime \prime}(0)+\frac{1}{6} P_{1 \dot{K}}^{\prime \prime}(c) \text {. } \tag{3.亡8}
\end{align*}
$$

Agairi, it is obvious that $P_{12}=0$ if $P_{3}=1$ or $P_{4}=1$ or $P_{5}=l$, but in tiis case it is interesting to note that $P_{\text {lí }}$ can also be zero if witi all $P_{j}<1$ the following conditions are satisfied:

$$
\begin{equation*}
P_{I}+P_{\dot{K}}+P_{t}<l(t=3,4 \text { and } 0) . \tag{3.29}
\end{equation*}
$$

This contradicts a statement mace by Thompsor (195z), p. 58 , to the effect that $P_{1 \varepsilon}>0$ if all $F_{i}<1$ and renaojization is used. The followirg example illustrstes the computations anc shows that $\mathrm{F}_{\mathrm{I}_{k}}=0$.

It is now evident that the exact evaluation of $P_{i 1}$, becones cumbersowe as increases, and in any case the resultís名 formules are too cumolicated to yielā a compact formula ror $V(\hat{Y})$. Therefore, an asymptotic theory for the present saiming procedure is developed ir Chapters IV ar.e V which yielas cumpect iurmules for $V(\hat{Y})$ epplicecle to moderately leree populatiors.

4. Example

Therefore $P_{1 \dot{L}}^{\prime}=0$ and $P_{1 k}^{\prime \prime}(a)=P_{12}^{\prime \prime}(b)=P_{1 \dot{L}}^{\prime \prime}(c)=0$ and $P_{1 z}=$ 0. Let us illustrate the computation of P_{13} where $P_{3}=$ $0.55>P_{1}=0.6$. How

$$
\begin{aligned}
& P_{13}^{1}=0 \text { since } F_{1}+P_{3}=0.75<1 \\
& F_{13}^{\prime \prime}(a)=0 \text { since } P_{4}+F_{5}=0.95>P_{2}=0.80 \\
& \text { and } P_{1}+P_{3}+P_{i}=0.90<1 \\
& P_{13}^{\prime \prime}(6)=P_{1}=0.20 \text { since } P_{\mathcal{L}}+P_{5}=0.70>P_{4}=0.55 \\
& \text { and } P_{3}+P_{4}=1.10>1 \\
& F_{13}^{\mu}(c)=P_{I}=0.20 \text { since } P_{i C}+P_{4}=0.75>P_{5}=0.50 \\
& \text { and } P_{3}+P_{5}=1.05>1 \text {. }
\end{aligned}
$$

Therefore

$$
P_{13}=\frac{1}{2}(0)+\frac{1}{6}(0)+\frac{1}{6}(0.20)+\frac{1}{6}(0.20)=\frac{0.40}{\varepsilon} .
$$

Similar calculations lead to the following table of $P_{i j}$, values. f check is provided on the calculations by noting

Table a. Pill values for the above example

$i i^{1}$	1	κ	3	4	5	Total $=P_{1}$
1	-	0	$\frac{0.40}{6}$	$\frac{0.40}{6}$	$\frac{0.40}{6}$	0.20
2	0	-	$\frac{.40}{6}$	$\frac{0.40}{6}$	$\frac{0.40}{6}$	0.20
3	$\frac{0.40}{6}$	$\frac{0.40}{6}$	--	$\frac{1.40}{6}$	$\frac{1.10}{6}$	0.55
4	$\frac{0.40}{6}$	$\frac{0.40}{6}$	$\frac{1.40}{6}$	-	$\frac{1.10}{6}$	0.55
5	$\frac{0.40}{6}$	$\frac{0.40}{6}$	$\frac{1.10}{6}$	$\frac{1.10}{6}$	-	0.50

that the margiral totals P_{i} in Tacle Z agree with the given va_ues or fi.

C. An Example for Efficiency Comparisons

To coupare the efficiency of the present sempling procedure with both the procedures of Yetes end Grundy of finding the revised procabilities and that of Des Raj (1956.) winici consists of finding the optimum $P_{i 1}$, under the assumption of a Inear model, we consider the case $n=2, K=4$ and use the three populations examined by these.authors. Yates and Grundy who introduce these data for purposes of illustretion state that these populetions have beer delicerateiy chosen to represert situations ifore extreme thar those normally encountered in practice. The tinree populations (all of size $\because=4$) have the same set of four pj values vilin airferert sets of y_{j} values attached to them enc are given in Tacle 3 celow.

Table 3. Three populations of size $\mathbb{N}=4$

Urit number	Pj	Population A y_{j}	Populetion B y_{J}	$\begin{gathered} \text { Fopulation C } \\ ¥_{j} \end{gathered}$
1	0.1	0.0	0.6	0.2
\mathcal{E}	$0 \cdot i$	1.i	1.4	0.6
3	0.3	c. 1	1.8	0.9
4	0.4	3.6	2. 0	0.8

Tacle 4 below gives the values of $\mathrm{P}_{\text {ii }}$ ' for the above three sampling procedures. Tables 4.1 and $4 . \dot{a}$ are tanen from Des Raj and Table 4.3 is computed using (3.24).

The variance of \hat{Y} for the three sampling procedures and the three populations are given in Tacle 5 below using the $F_{i 1}$, values of Tacle 4 and equation (3.13), the formula for

Fable 4. Values of $P_{1 i}$ for populations in Tacle 3

i	i'	1	\dot{z}	3	4
4.1. Yates and Grundy procedure					
1		--	0.03\%	0.059	0.11 .3
\dot{L}		0.03%	--	$0.18 \dot{L}$	$0 .<46$
3		0.059	0.1ええ	--	0.458
4		0.11 .3	0.245	0.4% S	--
4.i Des $\mathrm{Kaj}^{\text {j optinum procedure }}$					
1		--	0.0	0.0	0.2
$\dot{\sim}$		0.0	--	0.2	0.2
3		0.0	C. 2	--	0.4
4		0.0	0.2	0.4	--
4.3 Present procedure					
1		--	0.067	0.087	0.067
$\dot{\sim}$		0.067	--	0.067	0.267
3		0.057	0.067	--	0.467
4		0.067	0.257	0.467	--

Tacle 5. Comparative eificiency of four sampling procedures

Procedure	$\frac{\text { Population }}{\text { Var }}$ Eff.		$\frac{\text { Population B }}{\text { Var. }} \frac{\text { Eff. }}{\text { Th }}$		$\frac{\text { Populetion } C}{\text { Var. }} \frac{\text { Eff. }}{\text { Var }}$	
1. Des Raj	0.200	100.0	0.200	100.0	0.100	100.0
c. Yates and Grundy	0.329	61.9	0.269	74.3	0.057	175.4
3. Present procedure	0.367	54.5	0.367	54.5	0.033	333.3
4. With replacement	0.500	40.0	0.500	40.0	$0.1<5$	80.0

$V(\hat{Y})$. ioreover the values of the variance of \hat{Y}^{\prime} for sampling with replacement using equation ($\quad .6$) are shown in Table 5 for comparison.

For populations A and B, the linear model a-sumption seeus to ce fairiy well satisfied since from Table 5 it is seer thet Des Raj optinum procedure yields the smallest variance. For population C, the model does not seem to be appropriete since it is seer thet consideracle loss in efficiency results ior Des Raj procecure. Also it is seen from Tacle 5 that the variances of Yates ard Grunay procedure and tine present proceaure are approximetely of the same size. In iact, in Chapter IV, section E, it is proved thet Yates era Grundy procecure and the present procedure heve the same asymptotic efficiency, $1 . \underline{e}$. the formulas for $V(\hat{Y})$ agree to order $i l^{l}$. For the presert (artificial) populations these
results for "large \mathbb{N} " do not, of course, apply. However, these asymptotic results are illustrated in a later example
of a population of size $N=20$, in Chapter IV, section D.

IV. THE CASE $n=2$ AND N LARGE

The difference between sampling with and without replacement gradually disappears as N tends to infinity, so that the expected gain in precision through sampling without replacement will become negligible. Now, for sampling with replacement with probabilities p_{1}, we have frow the properties of the multinomial aistribution

$$
\begin{equation*}
P_{i i^{\prime}}=n(n-1) p_{i} p_{i} \prime=\frac{(n-1)}{n} p_{i} P_{i^{\prime}} \tag{4.1}
\end{equation*}
$$

with $P_{i}=n p_{i}$, so that if P_{i} is essumed to ce of order $O\left(n^{-1}\right), P_{i i}$, will be of order $O\left(N^{-2}\right)$. Ir. sempling without replecement this will be the leadng term, and hence in order to supply formulas for moderately large populations N, we nave to evaluate the next lower order teras, nawely terms of $O\left(N^{-3}\right)$. These teras will recresent the gair in precision due to the so called finite gopulation correction. The variance of the estimate \hat{Y} for sampling with replacement is of $0\left(K^{\mathcal{L}}\right)$, anc so in sampling without reclacement, the next lower orier terms $O\left(N^{l}\right)$ winich represent the reduction in veriance accomplished cy sampling without replacemert, have to be evaluated. This is equivelent to evaluating $P_{i i}$, to $O\left(N^{-3}\right)$ and substitutirg it in the variance formula for \hat{Y}. So, ::e eveluate here for our sampling procedure, $F_{i i}$ to $O\left(N^{-3}\right)$ ard nence $V(\hat{Y})$ to $O\left(H^{1}\right)$, assuming F_{i} is $O\left(N^{-1}\right)$. Also, for the cenefit of swaller size popuiations, we evaluate here, $F_{i i}$, to $O\left(r^{-4}\right)$
and nence $V(\hat{Y})$ to $O\left(N^{0}\right)$.
As pointed out earlier, the present sampling procedure ledes itself for the sample size $n>z$ unlike the procedures previously puclished. We discuss the case $n=\mathbb{Z}$ in this chapter in detail, and consider the case $n>2$ in the next chapter. The methods of attack for the case $n>\mathcal{L}$ are similar to those for the case $\mathrm{n}=\dot{\&}$. However, the case $\mathrm{n}>\boldsymbol{2}$ presents certain new features other then those encountered ror the case $n=\dot{z}$.
A. Derivation of the Procabilities $F_{i i}$ to Oriers $O\left(N^{-3}\right)$ anc $O\left(N^{-4}\right)$

The total number of arrangesents of the li units on the circle, namely N!, can ce aivided into (in - l) groups accorāinge as to whether there are $v=0,1, \ldots$, ($1:-i$) units "cetween" P_{i} ar.a P_{i}, where "cetween" means that there are v urits wer proceedine frofl F_{i} to P_{i} in clockwise direction.
 groups so that the procacility for each of these arrarigements
 Let us consiàer no: tne contrioution to $P_{1 i}$ from a perticular group witn v unics cetween F_{i} and P_{i}. For the unit i to be ir the samie, ke know froiu our sampling procedure, the i..éurlities

$$
\begin{equation*}
\pi_{i-1} \leqslant s+x<T_{i} \tag{x}
\end{equation*}
$$

nust be satisiifed where k may de any integer cetween -l and I and s is a unitoru arc with $0 \leqslant s<\dot{c}$. This means thet s must lie within one of the following ranges each of length P_{i}. Tine first range is $\pi_{i-1} \leqslant s<T_{i}$ and the other range is displacea frou the acove range cy a unit arc, i.e., $\mathbb{T}_{1-1}-1$ $\leqslant s<T_{i}-1$ if $\mathbb{T}_{i-1} \geqslant 1$ and $T_{i-1}+1 \leqslant s<T_{i}+1$ if $\mathbb{T}_{i} \leqslant 1$. So, to evaluate $P_{i 1}$, we have to add tire contributions to $P_{i i} \prime$ from the first rarge, say $P_{i i}^{\prime}$, ard from the second rarige, say $P_{i j}^{\prime \prime}$. These two ranges give iaentical contrioutions to $P_{i i}$ since in both ceses tre lengtin of the range for s is equel to P_{i}.

Let us consiaer now tre evaluation of $F_{i i \prime}^{\prime}$. Since the uniforf veriate s lies inside the range

$$
\begin{equation*}
\pi_{i-1} \leqslant s<\pi_{i} \tag{4.3}
\end{equation*}
$$

a positive contrioution to $F_{i i}^{\prime}$ can be made urly if the variate $s+I$ also lies on the arc covered $b y P_{i}:$. This means that if we aenote by $T v$ to total length of the v arcs P_{j} which lie "cetweer" the arcs P_{i} arcia P_{i} ", the irequalities

$$
\begin{equation*}
\pi_{i}+T_{v} \leqslant s+I<\pi_{i}+T_{v}+P_{i} \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
I+t-P_{i}-P_{i},<T_{V} \leqslant I+t-P_{i} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
t=s-\pi_{i-1}=s+F_{i}-\pi_{i} \tag{4.6}
\end{equation*}
$$

must ce satisfiea. Since the urifore veriate t lies inside ine range

$$
\begin{equation*}
0 \leqslant t<p_{i} \tag{4.7}
\end{equation*}
$$

and has ar ordinate density of $1 / \approx$ like the variate s, the integrated contricution to $P_{i i}^{\prime}$, is given by

$$
\begin{aligned}
\int_{0}^{P_{i}} & \frac{1}{z} \operatorname{Pr} \cdot\left(1+t-P_{i}-P_{i} \prime<T_{v} \leqslant 1+t-P_{i}\right) d t \\
& =\frac{1}{2} \int_{0}^{P_{i}}\left[F_{v}\left(1+t-P_{i}\right)-F_{v}\left(I+t-P_{i}-P_{i},\right)\right] d t
\end{aligned}
$$

where $F_{V}(T)$ denotes the cumulative distribution function of the total $\left(T_{v}\right)$ of v values of the F_{j}. Since the units are ranciouized prior to curving the sample, T_{v} represents the total of v values of the P, sampled without replacement and
 P_{j} excluding ta specific pair P_{i} ard P_{i}. Therefore, noting that $\sum_{i}^{N} P_{j}=\dot{c}$ we find that

$$
\begin{align*}
& E\left(T_{v}\right)=v\left(\dot{E}-P_{i}-P_{i}\right) /(N-\dot{L}) \\
& \operatorname{Var} \cdot\left(T_{v}\right)=v\left(1-\frac{v}{Z-\dot{Z}}\right) S_{i i}^{\dot{L}} \tag{4.9}
\end{align*}
$$

where

$$
\begin{aligned}
& S_{i j}^{i}:=(\therefore-3)^{-1} \sum_{j \neq\left(i, i^{\prime}\right)}^{i}\left[P_{j}-\frac{\left(i-P_{i}-P_{i}\right)}{(\dot{i}-\dot{L})}\right]^{\dot{z}}
\end{aligned}
$$

Tais inporteit aspect of the renaorizetion or tie units prior to drawing the sample will row be used to develop an asymp-
totic theory for the evaluation or $P_{11^{\prime}}{ }^{\prime}$.
Adaing now the two (identical) contributions to $P_{i 1}^{\prime}$ and $P_{i j}^{\prime \prime}$ frow (4.8) ana sumbing over v we oítain

$$
\begin{gather*}
P_{i i^{\prime}}=(N-I)^{-1} \sum_{v=0}^{N-i} \int_{0}^{P_{i}}\left[F_{v}\left(I+t-P_{i}\right)\right. \\
\left.-F_{V}\left(I+t-P_{i}-P_{i}\right)\right] d t \tag{4.11}
\end{gather*}
$$

where the lactor ($n-1)^{-1}$ represerts the (constent) probacility $0 i$ a randow errangement of the \because arcs P_{j} in which exactly v urits lie "between" P_{i} and P_{1}. It may be noted trat the value of $F_{i j}$ given \dot{E} (4.11) is exact. $\because e$ row find an approximation to (4.II) cy expanaing F_{v} in an Edseworth series of which the cumulative normal integral is the leading terif, in order to obtain usacie results. In tie literature, this proolef oi expressing e cumulative distribution function Dy an Edewortin series is considered only ror saipling without reviacement from ar. infinite population (or for sampliag with replacement from a finite population). However, the present proilei involves sampline nitiout replecement froii a finite population. To deal :ith this, : literature on tine woments of e sample total or mear in semplirg without replacemert are ecual probacility iros a firite population.

Let $i=1$ ara $i^{\prime}=\dot{w i t h o u t ~ l o s s ~ o f e r e r a l i t y . ~ F r o m ~}$ the inversion theorein for the chrracteristic function of the
cumulative distribution function $F(x)$ of a statistical variate x we have (e.g. Kendall and Stuart (1958, p. 158)

$$
\begin{equation*}
F(x)=\exp \cdot\left\{\sum_{i=3}^{\infty} D^{i} \frac{k_{1}}{i!}(-1)^{i}\right\} F(x) \tag{4.12}
\end{equation*}
$$

where $P(x)$ denotes the normal cumulative distribution

$$
\begin{equation*}
P(x)=(i \pi)^{-\frac{1}{\hbar}} \int_{-\infty}^{x} \exp \cdot\left(-\frac{1}{\dot{i}} y^{z}\right) d y \tag{4.13}
\end{equation*}
$$

D^{i} is the $i^{\text {th }}$ order derivetive w.r.i. x. end k_{i} are the stanảaized cumulants. In our case the formula (4.1i) is appliea to the stancaraized variate

$$
\begin{equation*}
z_{v}=\frac{T_{v}-v\left(\dot{L}-P_{1}-P_{\varepsilon}\right)(i-\alpha)^{-1}}{S_{1 z}\left[v\left(1-\frac{v}{\vdots-\dot{L}}\right)\right]^{\frac{1}{z}}} \tag{4.14}
\end{equation*}
$$

in place of x so thet $F(x)$ is the ficite proportion $\bar{F}_{\mathrm{V}}(z)$ say, of values z_{v} with $z_{v} \leq z$. This function is therefore a step function with a finite numcer of ciscontinuities winich do not
 equal to $F_{\nabla}(z)$ for elcost ell values of z_{v} whereas et tine poinis of aiscontiruity the r.r.s. of (4.1z) is equal to
 p. 97. \because e therefore nave irom ($4.1 i=$),

$$
\begin{equation*}
F_{V}(z)=F(z)-\frac{k_{3}}{6} D^{-3} F(z)+\equiv(v) \tag{4.15}
\end{equation*}
$$

winere

$$
R(v)=\exp \cdot\left\{\sum_{i=3}^{\infty} D^{i} \frac{k_{1}}{i!}(-1)^{i}\right\} D(z)-\left\{1-\frac{x_{3}}{6} n^{3}\right\} n(z) \quad\{1,2 \in)
$$

and k_{i} are the cumulants of z_{v}. The remainder terai $R(v)$ is a double infinite series each term involving a power product of the cumulants k_{i} and an associated high order derivative $D^{r_{P}}(z)$, the tern with the least order $\dot{\text { differential being }}$ $\frac{k_{4}}{4!} D^{4} P(z)$. Using Wishart's (195z) results, the cumulant k_{3} of z_{v} in terms of the stanurdized cumularit $\mathrm{K}_{3} 3$ of the finite population of F_{j}, is giver by

$$
\begin{equation*}
k_{3}=\left[v^{-\frac{1}{z}}\left(1-\frac{v}{i-2}\right)^{\frac{1}{\hbar}}-\frac{v^{\frac{1}{z}}}{N-\frac{2}{2}} \cdot\left(1-\frac{v}{i-2}\right)^{-\frac{1}{2}}\right] K_{3} \tag{4.17}
\end{equation*}
$$

Sucstitutirg now (4.15) in (4.11) we obtain

$$
\begin{align*}
& F_{1 z}=(X-1)^{-1} \sum_{V=0}^{N-\alpha} \int_{0}^{P_{1}}\left\{F\left(z_{1}\right)-P\left(z_{z}\right)\right. \\
& \left.-\frac{1}{\delta} k_{3}\left[p^{(3)}\left(z_{1}\right)-p^{(3)}\left(z_{\varepsilon}\right)\right]\right\} \overline{a t}+\rho \tag{4.15}
\end{align*}
$$

where

$$
\rho=(i-1)^{-1} \sum_{v=0}^{N i-i} \int_{0}^{P_{1}}\left[G\left(z_{1}\right)-R\left(z_{i}\right)\right] d t
$$

and k_{3} is given by (4.17) and $P^{(r)}(z)$ denotes the $r^{\text {th }}$ order derivative of $p(z)$.

We now apply the Euler-kacleurin formula

$$
\begin{align*}
\int_{a}^{b} g^{(I)}(t) d t=g(b) & -g(a)=(b-a) g^{(1)}\left(\frac{a+b}{z}\right) \\
& +\frac{(c-a)^{3}}{\dot{c}} g^{(3)}\left(\frac{a+\dot{c}}{z}\right)+\frac{(b-a)^{5}}{19 \dot{Z}} g^{(5)}(\bar{t})
\end{align*}
$$

here given for a general function $g(x)$ satisfying the require continuity conditions and $\overline{\mathrm{t}}$ is such that $a \leq \overline{\mathrm{t}} \leq \mathrm{b}$. Applying this formula first to the differences $P\left(z_{1}\right)-P\left(z_{2}\right)$ ara $\bar{F}^{(3)}\left(z_{1}\right)-P^{(3)}\left(z_{\kappa}\right)$ in (4.18), we fir ea

$$
\begin{align*}
& P_{l \dot{L}}=(N-1)^{-1} \sum_{v=0}^{l i-\xi} \int_{0}^{\overline{F_{I}}}\left[\frac{P_{\dot{\varepsilon}}}{S_{I \alpha}} \nabla_{I}^{-\frac{1}{\bar{z}}}{ }_{P}(I)\left(\frac{z_{I}+z_{\dot{\varepsilon}}}{\dot{z}}\right)\right. \\
& +\frac{P_{\dot{c}}^{3}}{\dot{k} \mathrm{~S}_{1 \dot{K}}^{3}} \mathrm{v}_{1}^{-\frac{3}{z}} P^{(3)}\left(\frac{z_{1}+z_{\dot{\varepsilon}}}{\dot{z}}\right) \\
& \left.-\frac{k_{3}}{6} \frac{F_{\dot{L}}}{S_{I \dot{L}}} v_{l}^{-\frac{1}{2}} F^{(4)}\left(\frac{z_{1}+z_{k}}{k}\right)+\omega(t)\right] \dot{\alpha} t+\rho
\end{align*}
$$

where

$$
\begin{equation*}
v_{1}=v\left(1-\frac{v}{i-\dot{\alpha}}\right) \tag{4.6.5}
\end{equation*}
$$

and $\omega(t)$ represents the aggregate of the rewaincer terms In the application of (4.2l). Now integrating (4. 42) over t again using (4.icl), we ootain retainirg only the relevant terms,

$$
\begin{aligned}
& P_{I \alpha}=(N-1)^{-1} \int_{0}^{N-\alpha}\left[\frac{H_{1} P_{2}}{S_{1 \alpha}} v_{1}^{-\frac{1}{2}} p(1)\left(v_{\alpha}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{\Sigma_{3}}{6} \frac{P_{1} P_{i}}{S_{I \dot{L}}} v_{1}^{-\frac{1}{2}}{ }_{P}^{(4)}\left(v_{\mathcal{L}}\right)\right] d v+\rho+\omega+\rho^{\prime}
\end{align*}
$$

winere
ρ is given iy (4. 20), ω denotes the aggregoted remairaer terms in tine application of (4.cl) on (4.in) and ρ^{\prime} is the remainaer term arising frow the approximation of \sum_{v} by $\int a v$. Since we are interested in finding $P_{1<}$ to $O\left(N^{-4}\right)$, only those terks ir. the evaluation of ($4 . .24$) thet contribute to $O\left(N^{-4}\right)$ or to lerger orders íe.e. $O\left(N^{-3}\right)$ ara $O\left(N^{-\alpha}\right)$, are to be retained. そe now evaluete the terms in (4.24) one by ore. The first terif is

$$
\begin{equation*}
A=(N-1)^{-1} \cdot \frac{E_{L}}{S_{I \alpha}} \int_{0}^{N-i} v_{I}^{\frac{I}{z}} F^{i i j}\left(v_{L}\right) d v \tag{4.26}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }_{F}(I)\left(v_{z}\right)=(\varepsilon \pi)^{-\frac{1}{\Sigma}} e^{-\frac{1}{\Sigma} v^{\dot{L}}} \tag{4.27}
\end{equation*}
$$

maxing the transformation

$$
\begin{equation*}
u=v-\frac{1}{2}(N-\infty) \tag{4.z8}
\end{equation*}
$$

axà expanding the exponential in (4.え7) as well as $\nabla_{1}^{-\frac{1}{\Sigma}}$ where v_{1} is fiver by $(4,03)$, we find

$$
\begin{align*}
& A=\frac{(N-\dot{1})}{(N-1)} \frac{P_{1} F_{z}}{\left(z-P_{I}-P_{i}\right)}(z \pi)^{-\frac{1}{\dot{\alpha}}} \int_{-h}^{h} e^{-\frac{1}{\varepsilon_{2}} p^{2}} \\
& \text { - } \exp \left\{-\frac{1}{\dot{L}} n^{-\epsilon_{p}}{ }^{4}-\frac{1}{\Sigma} \dot{n}^{-4} p^{6}+\text { higher terms }\right\} \\
& x\left(1+\frac{1}{2} n^{-i} p^{2}+\frac{3}{8} n^{-4} p^{4}+\text { higher terms }\right) d p \tag{4.29}
\end{align*}
$$

where

$$
\dot{I}=\left(\dot{L}-P_{I}-P_{i}(\dot{L}-\dot{ })^{-\frac{1}{i}} S_{I z}^{-1}\right.
$$

and the veriacie of integration is changed to

$$
\begin{equation*}
p=c \operatorname{un}(\because-a)^{-1} \tag{4.31}
\end{equation*}
$$

 plying by the series in () ara simplifying, we obtain

$$
\begin{align*}
& \text { - }\left[1+\frac{1}{2} h^{-2}\left(p^{2}-p^{4}\right)+\frac{1}{8} h^{-4}\left(3 p^{4}-6 p^{6}+p^{8}\right)\right. \\
& + \text { nigher ierus dp]. } \tag{4.32}
\end{align*}
$$

Since F_{1} is $O\left(N^{-1}\right), S_{1 \%}$ is $O\left(N^{-1}\right)$ so that $\operatorname{Iron}(4.30)$, h is $O\left(N^{\frac{1}{z}}\right)$. Therefore, we car. replace tine irtegration liuits in ($4 \cdot . j a$) by $-\infty$ and $+\infty$ apart frod errurs winica are $O\left(e^{-V_{n}} \varepsilon^{\varepsilon}\right)$. Usirg now tine standardized normal moments

$$
\begin{equation*}
\mu_{i c}=1, \mu_{4}=3, \mu_{0}=15 \text { anc } \mu_{8}=105 \tag{4.33}
\end{equation*}
$$

we Insd fron (4..3\%) to $O\left(N^{-4}\right)$

$$
\begin{equation*}
A=\frac{(i-\dot{1})}{(h-I)} \frac{\bar{F}_{I} F_{i}}{\left(\dot{L}-F_{I}-P_{i}\right)}\left(1-h^{-i}+3 h^{-4}\right) \tag{4.34}
\end{equation*}
$$

The secona tera is

$$
\begin{equation*}
\bar{i}=(i,-1)^{-1} \cdot \frac{P_{1} P_{\dot{\alpha}}^{3}}{\alpha 4 S_{I}^{3}} \int_{0}^{1 i-\dot{2}} v_{1}^{-\frac{3}{2}} p^{(3)}\left(v_{i}\right) d v \tag{4.35}
\end{equation*}
$$

where

$$
\begin{equation*}
F^{(3)}\left(v_{\dot{L}}\right)=(\dot{\Sigma} \pi)^{-\frac{1}{\Sigma}} e^{-\frac{1}{\mathcal{L}} v_{\dot{\Sigma}}^{\dot{L}}}\left(v_{\dot{L}}^{\dot{L}}-1\right) \tag{4.36}
\end{equation*}
$$

By a sinilar arcument, using the transformations u ana p giver by (4.cE) ex.a (4.3I), ena experaing the exporeritial
 plying out the resulting series, we fir d after simplification

$$
\begin{align*}
\hat{D}=(N & -1)^{-1} \cdot \frac{P_{1} P^{3} S_{1}^{-\varepsilon}}{6\left(z-P_{1}-P_{\dot{L}}\right)} \cdot(\dot{\alpha} \pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} p^{2}} \\
& \cdot\left[\left(p^{2}-1\right)-\frac{1}{2}\left(p^{6}-6 p^{4}+3 p^{\varepsilon}\right) n^{-2}\right. \\
& + \text { higher terms }] d p . \tag{4.37}
\end{align*}
$$

Using the stanasrdized no rial moments (4.33), it is seen from (4.37) that B is zero to $O\left(N^{-4}\right)$ and hence E does not contribute to $P_{l i}$ to $O\left(N^{-4}\right)$. Similarly, we find the the next term

$$
\begin{equation*}
c=(a-1)^{-1} \cdot \frac{P_{1}^{3} P_{c}}{\alpha 4 S_{1 \Sigma}} \int_{0}^{i-\alpha} v_{1}^{-\frac{1}{亡}} p(3)\left(v_{i}\right) d v \tag{4.38}
\end{equation*}
$$

is reaucea to

$$
\begin{align*}
& 0=\frac{(N-\alpha)}{(i-1)} \cdot \frac{F_{I}^{3} F_{\dot{L}}}{\alpha 4\left(\dot{L}-F_{I}-P_{i}\right)} \cdot(\dot{1} \pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} p^{\varepsilon}} \\
& \cdot\left[\left(p^{2}-1\right)-\frac{1}{\dot{\alpha}}\left(p^{6}-4 p^{4}+p^{\dot{\alpha}}\right) h^{-i}\right. \\
& + \text { higher terais]dp. } \tag{4.39}
\end{align*}
$$

The evaluation of the terms retained in (4.39) yields

$$
\begin{equation*}
C=-\frac{(N-\alpha)}{(N-I)} \cdot \frac{{ }_{Y}^{3} P_{\dot{\alpha}}}{1 i\left(i-\frac{F_{1}}{F_{1}}-\bar{F}_{\alpha}\right)} \cdot n^{-i} \tag{4.40}
\end{equation*}
$$

which is $O\left(\mathrm{iv}^{-5}\right)$, so that C does not contribute to P_{12} to $O\left(N^{-4}\right)$. The next term is

$$
\begin{equation*}
D=-(i i-1)^{-1} \cdot \frac{F_{1} P_{\xi}}{6 S_{1}} \int_{0}^{N-i} k_{3} v_{1}^{-\frac{1}{2}}{ }_{F}^{(4)}\left(v_{2}\right) d v \tag{4.4I}
\end{equation*}
$$

where

$$
\begin{equation*}
P^{(4)}\left(v_{\dot{z}}\right)=(\Sigma \pi)^{-\frac{1}{亡}} e^{-\frac{1}{\dot{\kappa}} v_{\tilde{L}}^{\alpha}}\left(3 v_{\varepsilon}-v_{\dot{\alpha}}^{3}\right) \tag{c}
\end{equation*}
$$

and k_{3} is a function of v given by (4.17). Now using the same transformations u and p, expanding the quantities $v_{I}^{-\frac{1}{2}},\left(v_{\dot{L}}^{3}-3 v_{c}\right)$ ard k_{3} er.cं the exponential in ($4.4 \dot{c}$) in terms of p ard multiplying out the resulting series, we find after corsicieracle simplification.

$$
\begin{align*}
& \cdot\left[\frac{1}{z^{2}} h^{-1}\left(\underline{p}^{4}-3 p^{\dot{c}}\right)+\frac{1}{4} h^{-3}\left(6 \underline{p}^{6}-9 \underline{p}^{4}-p^{\varepsilon}\right)\right. \\
& + \text { higher terms]dp. } \tag{4.4.3}
\end{align*}
$$

Using the standardized normal moments (4.33), the evaluation of the terms retained ir (4.4.3) yields

$$
D=-\frac{\dot{L}(L-\alpha)}{(X-L)} \cdot \frac{\bar{F}_{1} F_{\varepsilon} K_{3}}{\left(\dot{L}-P_{1}-F_{\alpha}\right)} \cdot h^{-3}(\because-\alpha)^{-\frac{1}{2}}
$$

$$
\begin{equation*}
=-\frac{\dot{z}(1-\dot{1})^{\dot{L}}}{(1-1)} \cdot \frac{P_{1} F_{i} K_{3} S_{l \dot{L}}^{3}}{\left(\dot{L}-P_{1}-P_{\dot{\alpha}}\right)^{4}} \tag{1.45}
\end{equation*}
$$

whicin is $O\left(N^{-4}\right)$ since

$$
\begin{equation*}
\mathrm{K}_{3} \mathrm{~S}_{1 i}^{3}=\left(1-\dot{)^{3}}\right)^{-1} \sum_{3}^{N}\left(\mathrm{P}_{j}-\frac{z-P_{1}-P_{2}}{\Gamma-\tilde{Z}}\right)^{3} \tag{4.46}
\end{equation*}
$$

is $O\left(N^{-3}\right)$. ie shall presently show that the remainder terms ρ, ω and ρ^{\prime} do not contribute to $P_{I \alpha}$ to $O\left(r^{-4}\right)$, so that adaing the expressiors A and $D(s$ arce B ara C re zero to $O\left(N^{-4}\right)$)given by (4.34) and (4.44), we obtain for the probacility P_{l}, an approximation to $\mathrm{O}\left(\mathbb{N}^{-4}\right)$ given by

where in is giver by (4.30) and K_{3} by (4.46). Since the lest two terus in (4.47) are $O\left(N^{-4}\right)$, :e ootain to $O\left(i^{-3}\right)$ the simpirifed expression

$$
F_{I \alpha}=\frac{(\therefore-\dot{\alpha})}{(i-1)} \frac{F_{1} P_{i}}{\left(\dot{L}-P_{1}-P_{i}\right)}\left(I-h^{-\dot{c}}\right) .
$$

Let us no: consider the remairajer terms ρ, ω and ρ^{\prime}. The remainder term ω represents the aggregeted reazinder teris in aptlying the Euler-keclaurin. formula (4.ikl) to the dirferences $F\left(z_{\text {I }}\right)-F\left(z_{\kappa}\right)$ ard $P^{(3)}\left(z_{1}\right)-P^{(3)}\left(z_{\dot{\Sigma}}\right)$ in (4.18). The rellainder teri. in the applicetion of (4.icl) to the differ-
fence $P\left(z_{I}\right)-I\left(z_{K}\right) 10 \frac{\left(z_{1}-z_{K}\right)^{5}}{19 Z_{0}} \bar{F}^{5}\left[z_{I}+\theta\left(z_{K}-z_{1}\right)\right]$
with $0 \leq \theta \leq 1$. Therefore, the contribution to P_{12} from this remainder terms, say ω_{1}, is

$$
\begin{equation*}
\omega_{1}=\frac{(N-1)^{-1}}{19 \approx 0} \sum_{v=0}^{N-\kappa} \int_{0}^{F_{1}}\left(z_{1}-z_{2}\right)^{5} p^{(5)}\left[z_{1}+\theta\left(z_{2}-z_{1}\right)\right] d t \tag{4.49}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{1}-z_{i}=P_{\dot{K}} S_{1 \dot{L}}^{-1} v^{-\frac{1}{\dot{\Sigma}}}\left(1-\frac{\nabla}{i-L}\right)^{-\frac{1}{\Sigma}} . \tag{4.50}
\end{equation*}
$$

Now consider the first teri in the application of (4.61) to integrate (4.49) over t, say ω_{i}, ie.,

$$
\begin{align*}
& \dot{F}^{(5)}\left[v_{\dot{c}}+\theta^{\prime} F_{\dot{c}} S_{l_{k}}^{-1} v^{-\frac{1}{2}}\left(1-\frac{\nabla}{i-\dot{z}}\right)^{-\frac{1}{2}}\right] \tag{4.51}
\end{align*}
$$

With $-\frac{1}{2} \leq \theta^{\prime} \leq \frac{1}{\bar{z}}$. waisire the trersforations u ard o given by (4.0.) and (4.jl) arid proceeding as before, we fire after simplification

$$
\begin{align*}
& \cdot\left[1+0\left(p^{k_{h}-I}\right)\right] \times\left[\bar{F}^{(b)}(p)+O\left(n^{-\frac{1}{\Sigma}}\right)\right]^{-\infty} \bar{p}
\end{align*}
$$

where c is a constant.

Since $\int_{-\infty}^{\infty} p^{(5)}(p) d p$ is zero, he rini iron (4.5~) that ω_{α} is at lesst of orcier $u\left(x^{-4 \frac{1}{\alpha}}\right)$, so thet it does not contricute to $P_{l i}$ to $O\left(i^{-4}\right)$: Sinilar arguments ap:ly to the differnices $p^{(3)}\left(z_{1}\right)-p^{(3)}\left(z_{c}\right)$ as well as the reapinder teris erising frow applyine (4.al) 1ri integretine (4.18) over t so that the aggregated remaincer terk ω does nct contribute to $P_{I \alpha}$ to $O\left(N^{-4}\right)$.

Consiaer now the reiainier term ρ^{\prime} arising from the
 Euler-iacleurin formule:

$$
\begin{aligned}
& \sum_{v=0}^{i-i} f(v)-\int_{0}^{i j-i} f(v) d v=\frac{1}{\dot{i}} f(0)+\frac{I}{\dot{i}} f(n-z) \\
& +\sum_{s=1}^{m-1} \frac{B z s}{(i s)!}\left\{f^{(i s-1)}(N-\alpha)-f^{(i s-1)}(0)\right\}
\end{aligned}
$$

Were bics are the Bernoulli numbers and $f^{(r)}$ is the $r^{\text {th }}$ derivative w.r.t. v of any oi the interrand functiors involved ir. (4.a4) ara $0 \leq \theta_{i j} \leq 1$ minile $z m$, the orcer of the rewaircier terw ir. (4.53) is et our aissonel, it is seer thet ρ^{\prime} involves the terminal differentifls of the integrencs at

zero since v_{z} cecones infinite ard the integrands involve the term $e^{-\frac{1}{2} v_{i}^{2}}$. Now consider the remainder term in (4.53). At $v=(N-2) \theta_{N}$, from $(4 \cdot 25)$,

$$
\begin{equation*}
v_{\varepsilon}=\left(1-\frac{P_{1}+P_{\dot{\alpha}}}{\alpha}\right)\left(1-\alpha \theta_{N}\right)\left[\theta_{N}\left(1-\theta_{N}\right)\right]^{-\frac{1}{2}} s_{1}^{-\frac{1}{2}}(N-z)^{-\frac{1}{2}} \tag{4.54}
\end{equation*}
$$

Fe now separate the values of θ_{N} between 0 ard into two groups. In the first group, θ_{N} is equal to $1 / \mathrm{L}$ or the leadire tern of the difference between θ_{N} and I / Σ is proportional to $\mathbb{N}^{-r_{K}}$ with $r_{N}>0$. IRe remaining values or θ_{N} fell in the second group. It is easily seen from (4.54) that for the values of θ_{i} in the second group ∇_{i} is $O\left(N^{6}\right)$ with $s>0$ since $S_{l \&}^{-1}$ is $O\left(N^{1}\right)$, ard the argument to be used for the remainder terf in case (b) below also applies to the values of θ_{N} ir this group. Now from (4.54), for values of θ_{N} in the first group either v_{i} is zero or is $O\left(N^{\frac{1}{2}-r_{N}}\right)$. So, we now distinguish the two cases (a) $r_{i} \geq 1 / \Sigma$ ard (b) $r_{N}<1 / i$. Consider first the case (a). In terms of tie variable u where u is giver by (4. 48),

$$
\begin{aligned}
& \nabla_{\dot{\alpha}}=c u r \sin \cdot(i-\dot{\alpha})^{-\frac{3}{\alpha}} S_{I \dot{L}}^{-1} u\left[1-\left[\frac{\delta u}{i-\dot{\alpha}}\right]^{\dot{\alpha}}\right]^{-\frac{1}{\Sigma}} \\
& =\operatorname{corst} \cdot(N-z)^{-\frac{I}{i}} S_{l i}^{-1} \sum_{i=0}^{\infty}\binom{-\frac{1}{i}}{i}(-I)^{i}\left(\frac{\sum u}{\equiv i-\dot{i}}\right)^{c i+i} \text {. }
\end{aligned}
$$

Therefore, by repeated ailferentiation of (4.50), we have for the largest vaiue of $|u|$,

$$
\begin{equation*}
\frac{d^{t} v_{\dot{K}}}{d v^{t}}=\frac{d^{t} v_{\dot{L}}}{d u^{t}}=0\left(N^{\frac{1}{2}-t}\right) \tag{4.56}
\end{equation*}
$$

The repected differentiation of the function involving $\mathbf{v}_{\mathcal{E}}$ only in the integrand of (4.z4), say $g\left(v_{\mathcal{E}}\right)$, is nori seen to have a leading term of the form $\frac{d^{t} g}{d v_{\tilde{Z}}^{t}} \cdot\left(\frac{d v_{\mathcal{Z}}}{d u}\right)^{t}$ which is of order $O\left(N^{-\frac{1}{2} t}\right.$; . Therefore, from the Leitritz formule of differentiation $O I$ a product it is evident thet every integrend function in (4.24) which is seen to ce of the type $v_{1}^{-b} g\left(\nabla_{i}\right)$, $\mathrm{b}>0$, is $\mathrm{O}\left(\mathrm{N}^{-k}\right)$ with $k>4$ provided $\mathrm{k} \pi$ is tenen sufficiently large.

In case (c), tine remeinàer term goes dowr as $O\left(e^{-b N^{s}} \cdot n^{2}\right)$ where $s=1-\dot{k} r_{N}>0$ and hence siualler than $0\left(r^{-4}\right)$. So, the remainder term ρ^{\prime} does not contricuice to $P_{\text {I\% }}$ to $O\left(N^{-4}\right)$. Finaliy consider the remainder term ρ giver by (4. 20). From (4.17) it is seen thet the sum of the exponents of the power products in v and \therefore in the formuie for k_{J} is equal to $-1 / \varepsilon$. Now ir. the p-scale, $v=\frac{i-k}{\alpha}\left(1+n^{-1} p\right)=0$ with $c=$ $\frac{(k-c)}{\alpha i}\left(1+h^{-1} \rho\right)$. So, k_{3} is order $O\left(N^{-\frac{1}{\alpha}}\right)$ in the p-scele since $q=\frac{1}{\Sigma^{2}}+O\left(氵^{-\frac{1}{\Sigma}}\right)$ in the p-scale cecause h^{-1} is $O\left(N^{-\frac{1}{\Sigma}}\right)$. Che Apyendix in Cnapter IX gives a heuristic argumert to show that the sum of the exporents of the power products in v ond N
in the formula for k_{r} is equal to $\left(-\frac{r}{2}+1\right)$, i.e. k_{r} is $O\left(N^{-\frac{n}{i}+1}\right)$ with $v=q N$ and this is actually verified up to $r=8$. Now, in the remainder term ρ, k_{4} and k_{3}^{2} are the largest order terins, i.e. $O\left(N^{-1}\right)$ with $v=q N$. An analysis similar to that of the k_{3} terms shows that the terus witi k_{4} and $k_{3}^{\dot{k}}$ are of smaller order than $O\left(N^{-4}\right)$ ana so do not contribute to $\mathrm{F}_{\mathrm{I}} \mathrm{E}$ to $\mathrm{O}\left(\mathrm{N}^{-4}\right)$. Note rrom (4.44) that the term with k_{3} contributes to $P_{\text {l\& }}$ only terms of order $O\left(N^{-4}\right)$ end smaller. Since all the remaining terms in ρ involve the higher order cumulants and their powers whica are of smaller order than $O\left(N^{-l}\right)$ with $V=q N$, it follows the the terws in ρ do not contricute to $P_{1<}$ to $O\left(N^{-4}\right)$. We shall not discuss here the inversion of the double sumbation in (4.16) and its convergence.

Independently of the acove argument that the rearinder terms ρ, ω and ρ^{\prime} do not contribute to F_{12} to $O\left(N^{-4}\right)$, the foilowing two checks provide aciditional evioence thet all the terius of $O\left(1^{-4}\right)$ ara larger ere ircludea in (4.47). The first creck is the speciel case when ali procabilities P_{i} are equal to α / \mathbb{N} so thet $S_{1 K}=0$ and $h^{-1}=0$. This checic tests only the leadire teri of (4.47) since $h^{-1}=0$ so thet the coefficients of the rewaining terms in (4.47) are not effected cy this checia. In this case, $P_{\text {IE }}$ given $c y(4.47$) reduces to
 to be in a sample of size α. A more searcinine check which
takes account of all the terms in (4.47) is provided by testing the order to which the equation

$$
\begin{equation*}
\sum_{i^{\prime} \neq i}^{N} P_{i i^{\prime}}=(n-I) P_{i} \tag{4.57}
\end{equation*}
$$

which in our case $n=\dot{z}$ reduces to

$$
\begin{equation*}
\sum_{i^{\prime} \neq 1}^{N} P_{i 1^{\prime}}=P_{i} \tag{4.58}
\end{equation*}
$$

is satisfied. We now show that (4.58) is in fact satisfied to an order $(1,-1) O\left(N^{-4}\right)=O\left(N^{-3}\right)$ if (4.47) is substituted in (4.58) which confirms that (4.47) is correct to $O\left(N^{-4}\right)$. Using the formula (4.30) for h and (4.43) for $\mathrm{K}_{3},(4.47$) can be written ir the form

$$
\begin{align*}
& +\frac{1}{\because-j}+\frac{3}{(\therefore-j)^{z}}-\frac{4}{(1 .-2)^{2}}-\frac{2 \sum F_{\mathrm{L}}^{3}}{\left(z-P_{i}-P_{i}\right)^{3}} \\
& \left.+\frac{6 \sum P_{t}^{z}}{(i-\alpha)\left(\alpha-P_{i}-P_{i}\right)^{2}}\right] \tag{4.59}
\end{align*}
$$

Will: to $O\left(r^{-4}\right)$, reduces to

$$
\begin{align*}
& +\frac{3 P_{i} P_{1^{\prime}}\left(\sum P_{t}^{z}\right)^{z}}{\left(z-P_{i}-P_{i^{\prime}}\right)^{5}}-\frac{\alpha P_{1} P_{1}, \sum P_{t}^{3}}{\left(z-P_{i}-P_{i}\right)^{4}} \tag{4.60}
\end{align*}
$$

where the suuscripts 1 and α are replaced by i and i^{\prime} respectively. Expanding all aenominators in (4.60) binomially, retaininie all terms tu $O\left(N^{-4}\right)$, we ifia after simplication

$$
\begin{align*}
& +\frac{1}{8}\left(\dot{d} F_{i}^{3} F_{i^{\prime}}+\alpha F_{i} F_{i^{\prime}}^{3}+\alpha F_{i}^{2} F_{i}{ }^{2}\right) \\
& -\frac{3}{16}\left(P_{i}^{\dot{q}} P_{i} 1+F_{1} P_{i}^{\dot{q}}\right) \sum P_{t}^{\dot{\alpha}}+\frac{3}{3 \dot{z}}\left(\sum P_{t}^{\dot{\alpha}}\right) \mathcal{E}_{F_{i}} P_{i} \\
& -\frac{1}{8} P_{i} F_{i}, \sum P_{t}^{3} . \tag{4.6I}
\end{align*}
$$

Sumbiry (4.6I) row over i' irom 1 to \dot{A} exceptirg i' = i and noting that $\sum P_{t}=\alpha$, : e octain to $0\left(n^{-3}\right)$,

$$
\begin{align*}
& \text { ii } \\
& \sum_{i^{\prime} \neq i} P_{i i^{\prime}}=\frac{1}{\dot{z}} P_{i}\left(\dot{z}-P_{i}\right)+\frac{1}{4} P_{i}^{z}\left(z-P_{i}\right)+\frac{1}{4} P_{i}\left(\sum F_{t}^{\dot{z}}-F_{i}^{z}\right) \\
& +\frac{1}{z} P_{i}^{3}-\frac{1}{\delta} F_{i}^{\dot{z}} \sum P_{t}^{\dot{z}}-\frac{1}{\varepsilon} P_{i}\left(z-P_{i}\right) \sum P_{t}^{z} \tag{C}
\end{align*}
$$

whica reauces to P_{i} therecy proviaing the desired chec:
B. Variance Formulas to Orders $O\left(N^{1}\right)$ ard $O\left(N^{0}\right)$

Substituting for $P_{i 1}$, from (4.6I) in the variance formula for \hat{Y}, namely,

$$
\begin{equation*}
V(\hat{y})=\sum^{N} \frac{y_{j}^{k}}{P_{j}}+\sum_{i \neq i}^{N} \frac{P_{i i^{\prime}}}{F_{i} P_{i^{\prime}}} y_{i} y_{i \prime}-Y^{\dot{\alpha}} \tag{4.6.3}
\end{equation*}
$$

we find

$$
\begin{align*}
& V(\hat{Y})=\sum \frac{y_{j}^{\dot{L}}}{P_{j}}+\frac{I}{\dot{\Sigma}} \sum_{i \neq 1^{\prime}} y_{i} y_{i}{ }^{\prime}+\frac{1}{4} \sum_{i \neq \dot{j}^{\prime}}\left(F_{i}+P_{i^{\prime}}\right) y_{i^{\prime}} y_{i^{\prime}} \\
& -\frac{1}{8}\left(\sum P_{t}^{\dot{\alpha}}\right)\left(\sum_{i \neq i} y_{i} y_{i}\right) \\
& -\frac{3}{16}\left(\sum P_{t}^{k}\right)\left[\sum_{i \neq 1^{\prime}}\left(P_{i}+P_{i^{\prime}}\right) y_{i^{\prime}} y_{i^{\prime}}\right] \\
& +\frac{1}{4} \sum_{i \neq i^{\prime}}\left(F_{i}^{2}+P_{i}^{\mathcal{E}}\right) y_{i} y_{i} \prime+\frac{1}{4} \sum_{i \neq i^{\prime}}\left(F_{i} y_{i}\right)\left(F_{i}, y_{i} \prime\right) \\
& +\frac{3}{3 \dot{i}}\left(\sum P_{t}^{\dot{\dot{c}}}\right)^{\varepsilon}\left(\sum_{i \neq i^{\prime}} y_{i} y_{i},\right) \\
& -\frac{1}{8}\left(\sum p_{t}^{3}\right)\left(\sum_{i \neq i} y_{i} y_{i} 1\right)-Y^{\dot{E}} . \tag{4.64}
\end{align*}
$$

Retairir.g terms to $O\left(1_{0}^{0}\right)$, (4.64) reduces to

$$
\begin{aligned}
& -\frac{1}{2} \sum P_{j} y_{j}^{\dot{L}}+\frac{1}{8}\left(\sum P_{t}^{\dot{L}}\right)\left(\sum y_{j}^{\dot{z}}\right)-\frac{3}{E}\left(\sum P_{i}^{2}\right)\left(\sum P_{j} y_{j}\right) Y \\
& +\frac{1}{\Sigma} Y\left(\sum P_{j}^{\dot{L}} \bar{y}_{j}\right)+\frac{3}{3 \dot{z}}\left(\sum P_{t}^{\dot{E}}\right)^{\dot{z}} Y^{2}-\frac{1}{8} Y^{\dot{2}}\left(\sum P_{t}^{3}\right) \\
& +\frac{1}{4}\left(\sum \sum_{j} \bar{y}_{j}\right)^{\dot{\Sigma}}
\end{aligned}
$$

$$
\begin{align*}
& =\sum^{N} F_{j}\left(I-\frac{I}{i} P_{j}\right)\left(\frac{y_{j}}{F_{j}}-\frac{Y}{i}\right)^{i}-\frac{1}{i} \sum^{N}\left(E_{j}^{3}-\frac{I}{4} D_{j}^{\varepsilon} \sum_{i} E_{i}^{i}\right. \\
& \cdot\left(\frac{y_{j}}{P_{j}}-\frac{Y}{z}\right)^{z}+\frac{l}{4}\left(\sum P_{j} y_{j}-\frac{l}{z} Y \sum P_{t}^{Z}\right)^{\dot{z}} . \tag{4.66}
\end{align*}
$$

OL the other hand, if terms only to $O\left(N^{I}\right)$ are retained,

$$
\begin{align*}
V(\hat{Y}) & =\sum \frac{y_{j}^{\dot{j}}}{P_{j}}-\frac{1}{\dot{z}} Y^{2}-\frac{1}{2} \sum y_{j}^{\dot{L}}+\frac{1}{2} Y \sum P_{j} y_{j}-\frac{1}{8}\left(\sum P_{t}^{2}\right) Y^{2} \\
& =\sum P_{j}\left(1-\frac{1}{2} P_{j}\right)\left(\frac{y_{j}}{P_{j}}-\frac{Y}{2}\right)^{2} .
\end{align*}
$$

The variance of the estimete of the total Y in sampling with replacement is

$$
\begin{equation*}
V\left(\hat{Y}^{\prime}\right)=\sum^{N} F_{j}\left(\frac{y_{j}}{P_{j}}-\frac{Y}{2}\right)^{z} \tag{4.68}
\end{equation*}
$$

Equation (4.67) which is correct to $O\left(N^{I}\right)$ compared with (4.68) shows the characteristic reduction in the variance through the "finite population corrections" (I - $\frac{1}{2} F_{j}$). Hence, the present sampling procedure without replacement yields e smaller variance asymptotically fur tie estimate of the total thar sampling with replacement. For the special case $0 \dot{i}$ equal procecilities $F_{i}=\frac{2}{N},(4.63)$ to $0\left(N^{0}\right)$ reduces to the familiar variance formula for the estimate of the total in safipline with equal probability and without replacement, i.․‥,

$$
\begin{equation*}
V(\hat{Y})=\frac{N^{2}}{B(\hat{N}-I j} \cdot\left(1-\frac{2}{i V}\right) \sum^{N}\left(y_{j}-\frac{Y}{i N}\right)^{2} \tag{4.69}
\end{equation*}
$$

C. Estimation of the Variance

The method is to substitute for $P_{i \pm}$ in the Yates and Grundy estimate of the variance, which for $n=\Sigma$ is

$$
\begin{equation*}
\nabla_{Y G}(\hat{Y})=\frac{P_{i} P_{1^{\prime}}-P_{i i^{\prime}}}{P_{1^{\prime}}}\left(\frac{y_{1}}{P_{i}}-\frac{y_{1^{\prime}}}{P_{1^{\prime}}}\right)^{2} \tag{4.70}
\end{equation*}
$$

From (4.61) to $O\left(N^{-3}\right)$,

$$
\begin{equation*}
P_{i i} \prime=\frac{1}{2} P_{i} P_{i} \prime\left[1+\frac{1}{2}\left(P_{i}+P_{i}\right)-\frac{\sum P_{t}^{\alpha}}{4}\right] \tag{4.71}
\end{equation*}
$$

Therefore, substituting for $P_{i i}$, from (4.7I) in (4.70), we find to $O\left(N^{l}\right)$,

$$
\begin{equation*}
\nabla_{Y G}(\hat{Y})=\frac{\left(1-\frac{P_{i}+P_{i^{\prime}}}{\tilde{L}}+\frac{\sum P_{t}^{2}}{4}\right)}{\left(1+\frac{P_{i}+F_{i \prime}}{\dot{L}}-\frac{\sum F_{t}^{2}}{4}\right)} \cdot\left(\frac{y_{i}}{F_{i}}-\frac{y_{i \prime}}{P_{i^{\prime}}}\right)^{2} . \tag{4.72}
\end{equation*}
$$

Exparding the denominetor binomially and retaining terms to $o\left(n^{1}\right)$,

$$
\nabla_{Y G}(\hat{Y})=\left(1-P_{i}-P_{i} \prime+\frac{\sum P_{t}^{2}}{2}\right)\left(\frac{y_{i}}{P_{i}}-\frac{y_{i}^{\prime}}{P_{i}^{\prime}}\right)^{\mathcal{E}} \cdot(4.73)
$$

For the special case of equal probecilities $P_{i}=\frac{\bar{k}}{\mathrm{~K}}, ~(4.73)$ to $O\left(N^{1}\right)$ agrees with the familier formula for the estimete of the variance in equal probability sampling without replacement, i.e.,

$$
\begin{equation*}
v(\hat{y})=\frac{n^{2}}{2}\left(1-\frac{2}{i}\right) \sum^{\dot{z}}\left(y_{j}-\bar{y}\right)^{2} \tag{4.74}
\end{equation*}
$$

where \bar{y} is the saiple mean of the two units 1 and 1^{1}. To finã $v_{Y G}(\hat{Y})$ to $O\left(N^{0}\right)$, substituting for $P_{i 1}$ in (4.70) from (4.61) which is correct to $O\left(N^{-4}\right)$, and expanaing the denominator binomially and retainirg ternis to $O\left(N^{\circ}\right)$, we obtain after slmplification

$$
\begin{align*}
\nabla_{Y G}(\hat{Y})=[I & -\left(P_{i}+P_{i^{\prime}}\right)+\frac{1}{\Sigma} \Sigma P_{t}^{2}-\frac{1}{2}\left(P_{i}^{2}+P_{i 1}^{2}\right) \\
& -\frac{1}{4}\left(\Sigma P_{t}^{2}\right)^{2}+\frac{1}{4}\left(P_{i}+P_{i \prime}\right) \Sigma P_{t}^{2} \\
& \left.+\frac{1}{z} \Sigma P_{t}^{3}\right]\left(\frac{y_{i}}{P_{1}}-\frac{y_{1}{ }^{\prime}}{P_{i \prime}}\right)^{2} \tag{4.75}
\end{align*}
$$

which agrees to $O\left(N^{0}\right)$ with (4.74) when all $P_{1}=\frac{\bar{\alpha}}{\mathbb{N}}$.
In this connection, it is worthwile to point out an inportant aspect of the Yates ard Grundy estimete of the variance for the case $n=c$. Frow (4.6.3) and (4.68), it cen be easily shown that a necessery condition for $V(\hat{Y})$ to be swaller then $V\left(\hat{Y}^{\prime}\right)$ is

$$
\begin{equation*}
P_{i j} \leq F_{i} F_{1} \text {. } \tag{4.76}
\end{equation*}
$$

For general safiele size n, this conation is

$$
\begin{equation*}
F_{i i} \leqslant \frac{k(n-1)}{r_{1}} F_{1^{\prime}} P_{i}, \tag{4.77}
\end{equation*}
$$

This conaition is given 0 Vi larair (1951). Therefore, it inuediately foilows from (4.76) ard (4.70) that tie Yates and Grundy estimate of the verience is alweys positive if a
sampling procedure without replacement for which $P_{i}=n p_{i}$ is more efiliciert than sampling with replacement, and $n=2$. That is, if there is a sampling procedure without replacement for which the variance is smaller than the variance in sampling with replacement independent of the y_{i}, which is the case we are interested in, ther the Yates and Grundy estimete of the variance is always positive. It may be noted that this result is true only for the case $n=2$, since conditions (4.77) are not sufficient to show that

$$
\begin{equation*}
v_{Y G}(\hat{Y})=\sum_{i^{\prime}>1}^{n} \frac{P_{i} P_{i} \prime-P_{i i^{\prime}}}{P_{i i^{\prime}}}\left(\frac{y_{i}}{P_{i}}-\frac{y_{i \prime}}{P_{i \prime}^{\prime}}\right)^{\mathcal{Z}} \tag{4.78}
\end{equation*}
$$

is always positive. (4.78) is positive if conditions (4.76) for ail i and $i^{\prime}\left(i \neq i^{\prime}\right)$ are satisfied. However, conditions (4.77) do not imply (4.76) except when $n=\varepsilon$.

For our particular sampling procedure, condition (4.76) is ir fact satisfiea to $O\left(5^{-3}\right)$ sirce from (4.71),

$$
\begin{equation*}
F_{i} F_{i^{\prime}}-P_{i i} \prime=\frac{F_{i} P_{i}}{\dot{L}}\left[I-\frac{P_{i}+P_{i \prime}}{L}+\frac{\sum P_{t}^{\mathcal{L}}}{4}\right] \tag{4.79}
\end{equation*}
$$

waich is greater than zero sirce $\frac{F_{i}+P_{i}}{\mathcal{L}} \leq I$. This fact could of course heve been inferred from (4.57) which shows that $V(\hat{Y})$ is shalier thar. $V\left(\hat{Y}^{\prime}\right)$ so that (4.76) wouid heve followed as a necessary conaition.

D. An Example for Efficiency Comparisons

We use the data given in Table 1, Chapter III, which are taken Irom Horvitz and Thompson (195\%). The population here consists of $\mathbb{N}=亡 0$ olocics in Anes, Iowa, and y_{j} and x_{j} denote respectively the actual number of households and "eyeestimated" numcer of households in the $j^{\text {th }}$ block. $(j=1$ to 20). The probability P_{j} for the $j^{\text {th }}$ unit to be in a sample of size α is taiken proportional to the "eye-estimatea" number of householas x_{j}, i.e. $P_{j}=2 x_{j} / \sum_{j=1}^{c 0} x_{j}$. In Table 5 below, the evaluations of the variance of the estimeted total for the present sampling procedure ard for different sampling systems considered in tine literature are given. These efiliciency comparisors ignore cost.

Sempling systems \dot{z} to 10 corresponc to different methods of utilizing supviementary irformetion x_{j}, and sampling system I is equal probability sampling without utilizirg supplesentary information. It is eviaert from Tacle 6, that all tiese methocis of utilizing x_{j} are vastly superior to system 1 . Tine $=$ stimator α is the bell known retio estimetor in equel procacility sampline enã here the cias of tiais estimator which equals l. If is neglected. In system 3 , the $\bar{z} 0$ ilocks are aitvidea into two strsta according to the mezsure of size x_{j}, the ten largest ielone to stretum I end the reciaining ten ceione to straturi k, aria X_{t} derotes tine stretum totai of X_{j}. Since only one unit is drawn with p.p.s. from each stretum, no

Taiole 6. Variances of various estimators of the total of
the $y_{ \pm}$for the pooulation given in Table 1

Sampling system	Metinod of selection	Form of the estimator	Varience of the estimator ef	relative efficiency
1.	Equal protability without replacement	Ny	16,219	100
え.	"	$\frac{\sum_{\dot{L}}^{\dot{L}} y_{j}}{\sum x_{j}} \cdot x$	3,280	497
3.	Stratifiea; one uni with p.y.s. from each of i streta	$\sum^{2} \frac{y_{t}}{x_{t}} \cdot x_{t}$	3,934	412
4.	Lahiri: Unciesed ratio estimator	$\frac{\left(\sum y_{j}\right)_{E}}{\left(\sum x_{j}\right)_{\mathcal{E}}} \cdot x$	3,579	453
5.	Horvitz anc Thompson (method 1)	$\sum \frac{y_{j}}{P_{j}}$	3,095	524
6.	Horvitz and Tnompson (sethod is)	"	3,075	527
7.	inicxey, oraered estinetor	\bar{u}	3,055	5.31
8.	mickey, unordered estimator	u^{*}	$\begin{aligned} & j, 026<V\left(u^{i+}\right) \\ & <3,038 \end{aligned}$	$\text { i) } \begin{gathered} 534<E \\ <536 \end{gathered}$
9.	F.j.s. with replecement	$\sum \frac{\dot{z}}{y_{j}}{ }_{j}$	3, 241	500

Table 6. (Continued)

$\begin{aligned} & \text { Sampling } \\ & \text { system } \end{aligned}$	Method of selection	Form of the estimator	Variance of the estimator	$\%$ relative ef ficiency
10.	Present procedure			
(a)	$O\left(N^{I}\right)$	$\sum^{2} \frac{y_{j}}{P_{j}}$	3,0\%5	536
(c)	$O\left(N^{0}\right)$	"	3,007	539

valid estimate of the variance can be found for system 3. In system 4 , the two units are selected rith probevility proportional to the sum of the measures for the two units, i.e. ($\left.\sum x_{j}\right)_{\mathcal{L}} / X$ where ()$_{\mathcal{L}}$ denotes a set of \mathcal{L} units. The estimator 4 belongs to class 3 according to the clessification of the estimators in Chapter II. Sampling systems 5 and E and their li山itations heve been descriced in Chapter II. The estimator 7 belores to class 1. From Nickey (1959),

$$
\begin{equation*}
\bar{u}=\frac{1}{\dot{z}}\left(\frac{y_{1}}{p_{1}}+\frac{y_{\dot{E}}}{p_{\dot{L}}}\right)+\frac{p_{1}}{\dot{z}}\left(\frac{y_{1}}{p_{1}}-\frac{y_{\dot{\dot{c}}}}{p_{\dot{2}}}\right) \tag{4.80}
\end{equation*}
$$

Tae estimetor 8 , u^{*}, octained by unordering \bar{u} is

$$
\begin{equation*}
\left.u^{*}=\frac{1}{\dot{z}}\left(\frac{y_{1}}{p_{1}}+\frac{y_{\dot{L}}}{p_{\dot{L}}}\right)+\frac{p_{1}-p_{\dot{\mathcal{L}}}}{\dot{\Sigma}\left(\mathcal{L}-p_{1}-p_{\mathcal{L}}\right.}\right)\left(\frac{y_{1}}{p_{1}}-\frac{y_{\mathcal{L}}}{p_{\dot{E}}}\right) \tag{4.81}
\end{equation*}
$$

The variance for the first six sybtems are taxen from Horvitz ana Thompsor (195\%) ard the veriance for the estimators 7 and 8 are taken from wickey (1955). For tie estimete 8, only
bounds on the variance are available. The variance for systems 9, $10 a$ and 106 is computed from the formulas (4.68), (4.67) ana (4.66) respectively. Systens 5 to 10 have approximately the same variance in magnitude where systems 5,6 and 10 belong to elass 2 , and systems $?$ and 8 belong to cless 1 . This may indicate the approximete equality of efficiency of estimators in classes 1 and z (a discussion on this aspect is given in Micisey, 1959). Incidentally, our samplirg procedure 10 hes the smallest veriance compred to we other systems 1 to 9 , though the gain in efficiency is comparatively small. Also, there is a gain in efficiency of acout 7% ($\Sigma 34 / 3 \approx 41$) through sampling without replacement as compared to sampling with replacement (lob vs. 9). Finally, it is of interest to exhicit the nature of convergence of epproximations $O\left(N^{l}\right)$ and $O\left(N^{O}\right)$ to $V(\hat{Y})$, by regaraing the variance iormula (4.68) for sampling with replacemert as ar approximation to $O\left(N^{2}\right)$ as set out in Table 7 below.

Hacle 7. Approximations to the veriance of \hat{Y}

Oraer of approximation	Formule used	$V(\hat{Y})$	Difference
$O\left(N^{2}\right)$	Eq. (4.68)	3,241	216
$0\left(N^{2}\right)$	Eq. (4.67)	3,025	18
$O\left(N^{0}\right)$	Ec. (4.63)	3,007	

The convergence in this example appears to be quite satisfactory although the population size $(\mathbb{N}=\mathcal{Z})$ is much smaller than those usually encountered in survey work. This iridicates that in most of the practicel situetions, the variance formula (4.67) to $O\left(N^{1}\right)$ which is feirly simple to compute, should be satisfactory.
E. Comparison with the Method of Revised Proiabilities of Yates and Grundy

The iteration procedure of Yates and Grundy (1953) to octain revisea probabilities which ensure tiat $P_{j}=n p_{j}$, has been descriced in Chapter II. It is proved here that, for the case $n=\dot{L}$, the $P_{1 i \prime}$ values attained through the Yates and Grundy procedure and tinrough the present sampling proceaure are exactly the same to $O\left(N^{-3}\right)$, but not to $O\left(N^{-4}\right)$ so that $V(\hat{Y})$ is the same for both the procedures to $O\left(N^{I}\right)$ but not to $O\left(N^{0}\right)$. Since the teras of $O\left(N^{1}\right)$ are tine importert terus contricutirg to ine gain in precision of sampling without replacement over sampling with replacement for moderately laree iv, tinis result shows thet both the procedures heve practically the same efificiency. However, with our procedure there is no reed to compute the revised probacilities which involves heavy computation as N increases.

Now from (4.71), the probebility of selecilrg units i aria i' for our procedure to $O\left(N^{-3}\right)$ is

$$
P_{11}=\alpha p_{1} p_{1} 1+c\left(p_{i}^{\dot{j}} p_{i 1}+p_{i} p_{i}^{k}\right)-\alpha p_{i} p_{1}+\sum p_{i}^{2} \quad\{\Delta=\varepsilon 2\}
$$

sirce $P_{i}=\alpha p_{i}$. For the Yates ard Grundy procedure, the procability of selectire units i and i^{\prime}, say $P_{i j}^{(a), ~ i s ~ g i v e n ~ b y ~}$

$$
\begin{equation*}
F_{i 1}^{(a)}=\frac{p_{i}^{*} p_{i}^{*}}{1-p_{i}^{*}}+\frac{p_{i}^{*} p_{i}^{*}}{1-p_{i}^{*}} \tag{4.83}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}=p_{i}^{*}+p_{i}^{*} \sum_{j \neq 1}^{N} \frac{p_{j}^{*}}{1-p_{j}^{*}}=\varepsilon p_{i} \tag{4.84}
\end{equation*}
$$

where p_{i}^{*} are the revised probacilities vilici ensure that $F_{i}=<p_{i}$. Now, exparding (4.84) cinomially, we octain to $o\left(\pi^{-2}\right)$,

$$
\begin{equation*}
F_{i}=p_{i}^{*}\left[\dot{z}+\left(\sum p_{t}^{* \mathcal{L}}-p_{i}^{*}\right)\right]=\dot{\alpha} p_{i} \tag{4.85}
\end{equation*}
$$

or

$$
\begin{align*}
& p_{i}^{*}=p_{1}\left[1+\frac{\left(\sum p_{t}^{* 2}-p_{i}^{*}\right)}{2}\right]^{-1} \\
& =p_{i}\left[1-\frac{\left(\sum p_{t}^{* \dot{\Sigma}}-p_{i}^{*}\right)}{\varepsilon}\right] \text { to } O\left(n^{-\dot{z}}\right) \\
& =p_{i}\left[1-\frac{\left(\sum p_{t}^{\alpha}-p_{i}\right)}{\dot{L}}\right] i=O\left(N^{-i}\right) \tag{4.86}
\end{align*}
$$

since

$$
\begin{equation*}
p_{i}^{*}=p_{i}\left[1+\text { terins of } O\left(n^{-1}\right)\right] \tag{4.87}
\end{equation*}
$$

Further, expenai:.g (4.83) cinomially, we oictein to $O\left(n^{-3}\right)$,

$$
p_{i i}^{(a)}=p_{i}^{*} p_{i}^{*},\left(I+p_{i}^{*}\right)+p_{i}^{*} p_{i}^{*},\left(I+p_{i}^{*}\right)
$$

Suicstitutire for p_{i}^{*} fron (4.86) ir. (4.88), $\because e$ ína to $O\left(5^{-3}\right)$,

$$
\begin{equation*}
p_{i 1^{\prime}}^{(a)}=\alpha p_{i} p_{1} 1+z\left(p_{i}^{2} p_{1} 1+p_{i} p_{i}^{2}\right)-z p_{i} p_{i} \mid \sum p_{t}^{c} \tag{4.89}
\end{equation*}
$$

which is exactly the same as (4.8i). Now let us examine the comparison of these formulas to $O\left(\mathbb{N}^{-4}\right)$. Frow (4.31), we obtain. to $O\left(N^{-4}\right)$,

$$
\begin{align*}
& +4\left(p_{i}^{3} p_{i 1}+p_{i} p_{i 1}^{3}\right)+4 p_{i}^{2} p_{i 1}^{2} \\
& -6\left(p_{i}^{2} p_{i 1}+p_{i} p_{i}^{2}\right) \sum p_{t}^{2}+6 p_{i} p_{i}\left(\sum p_{t}^{2}\right)^{2} \\
& -4 p_{i} p_{i}, \sum p_{t}^{3} \tag{4.90}
\end{align*}
$$

since $P_{i}=\delta p_{i}$. On the other hand, for tine Yates and Grundy procedure, we may write to $O\left(N^{-3}\right)$,

$$
\begin{align*}
F_{i} & =p_{i}^{*}+p_{i}^{*} \sum_{j \neq i}^{N} p_{j}^{*}\left(1+p_{j}^{*}+p_{j}^{* \dot{\alpha}}\right) \\
& =p_{i}^{*}\left[\dot{z}+\sum p_{t}^{* \dot{\alpha}}+\sum p_{t}^{* 3}-p_{i}^{*}-p_{i}^{* \dot{\alpha}}\right]=\dot{\varepsilon} p_{i} \tag{4.91}
\end{align*}
$$

so tinct

$$
\begin{align*}
& p_{i}^{*}=p_{i}\left[I+\frac{\left(\sum p_{t}^{* \dot{\alpha}}+\sum p_{t}^{* 3}-p_{i}^{*}-p_{i}^{* 2}\right)}{\alpha}\right]^{-1} \\
& =p_{i}\left[1-\frac{\left(-\sum p_{t}^{* 2}+\sum p_{t}^{* 3}-p_{i}^{*}-p_{i}^{*{ }_{2}^{2}}\right)}{\tilde{2}}\right. \\
& \left.+\frac{\left(\sum p_{t}^{*}\right)^{\dot{\alpha}}+p_{i}^{* \dot{2}}-\varepsilon p_{1}^{*} \sum p_{t}^{* \dot{\alpha}}}{4}\right] \tag{C}
\end{align*}
$$

to $O\left(N^{-3}\right)$. Now substituting the value of p_{i}^{*} to $O\left(N_{i}^{-\dot{z}}\right.$ from (4.86) in rains. of (4 .Oz), Fe fin a after sicolificetion, to
$O\left(N^{-3}\right)$ that
$p_{i}^{*}=p_{1}\left[1+\frac{j\left(\sum p_{t}^{2}\right)^{2}-2 \sum p_{t}^{2}+2 p_{i}+4 p_{i}^{2}-3 \nu_{1} \Sigma p_{t}^{i}-4 \sum p_{t}^{3}}{4}\right]$.

Noreover, we obtain from (4.83) to $O\left(N^{-4}\right)$,

$$
\begin{equation*}
\bar{p}_{i i}^{(a)}=p_{i}^{*} p_{i}^{*}\left(1+p_{i}^{*}+p_{i}^{* 2}\right)+p_{i}^{*} p_{i}^{*}\left(1+p_{i}^{*}+p_{i}^{*}\right) . \tag{4.94}
\end{equation*}
$$

Finally, suostituting the p_{i}^{*} given by (4.93) in (4.94), we octain after simplification, ana to $O\left(N^{-4}\right)$ that

$$
\begin{align*}
& p_{i i^{\prime}}^{(a)}=\alpha p_{i} p_{i}{ }^{\prime}+z\left(p_{i}^{z} p_{i} \prime+p_{i} p_{i}^{2}\right)-\alpha p_{i} p_{i} \sum^{2} p_{i}^{2} \\
& +4\left(p_{i}^{3} p_{i} 1+p_{i} p_{i}^{3}\right)+\frac{3}{2} p_{i}^{2} p_{i}^{2},-\frac{7}{2}\left(p_{i}^{2} p_{i},+p_{i} p_{i}^{2}\right) \sum p_{t}^{2} \\
& +\frac{7}{\Sigma} p_{i} p_{i}\left(\sum p_{t}^{2}\right)^{2}-4 p_{i} p_{i} \cdot \sum p_{t}^{3} . \tag{4.95}
\end{align*}
$$

Comparing now (4.90) witc (4.95) it is seen thet $P_{\text {iij }}$ 'end $P_{i j}^{(a)}$ aiffer in tinree terws waich are $O\left(N^{-4}\right)$. For the special case oi equal procacilities $P_{i}=\frac{\mathcal{E}}{i}$ or $p_{i}=\frac{I}{N}$, the probability $P_{i i}^{(a)}$ line $P_{i i}$, recuces to $\alpha / N(N-I)$ which is the probability for selecting urits i aič i' ir the equal procacility case, the sample size being two. The check (4.58) which was used
 has beer verified that

$$
\begin{equation*}
\sum_{i^{\prime} \neq i}^{i} p_{i i}(\hat{z})=F_{i}=\varepsilon p_{i} \tag{4.95}
\end{equation*}
$$

Now, using the values of $P_{i j}^{(a)}$ in (4.9i) enc proceeding exactly as in section B, it is found that the variance of $\hat{\hat{Y}}$ to $O\left(N^{\circ}\right)$ is

$$
\begin{align*}
& V_{1}(\hat{Y})=\sum^{N} P_{j}\left(1-\frac{P_{j}}{z}\right)\left(\frac{y_{j}}{P_{j}}-\frac{Y}{\dot{z}}\right)^{\tilde{Z}}-\frac{1}{\dot{z}} \sum^{N}\left(P_{j}^{3}-\frac{p_{j}^{2} \sum P_{t}^{2}}{4}\right) \\
& \cdot\left(\frac{y_{j}}{F_{j}}-\frac{Y}{2}\right)^{\dot{z}}+\frac{3}{32}\left(\sum P_{t} y_{t}\right)^{2}+\frac{3}{128}\left(\sum F_{t}^{\dot{L}}\right)^{Z} \underline{q}^{2} \\
& +\frac{1}{64}\left(\sum P_{t}^{\dot{Z}}\right)\left(\sum P_{t} Y_{t}\right) Y \text {. } \tag{4.97}
\end{align*}
$$

On the other hand, for our sampling procedure, from (4.66)

$$
\begin{align*}
& V(\hat{Y})=\sum^{N} P_{j}\left(I-\frac{F_{j}}{2}\right)\left(\frac{y_{j}}{P_{j}}-\frac{Y}{z}\right)^{\dot{L}}-\frac{1}{\Sigma} \sum^{N}\left(F_{j}^{3}-\frac{\sum_{j}^{E} \sum P_{t}^{E}}{4}\right) \\
& \cdot\left(\frac{y_{j}}{P_{j}}-\frac{Y}{\dot{c}}\right)^{\dot{c}}+\frac{1}{4}\left(\sum F_{t} y_{t}\right)^{\dot{z}}+\frac{1}{16}\left(\sum P_{t}^{\dot{z}}\right)^{2} \mathcal{Y}^{\dot{L}} \\
& -\frac{1}{4}\left(\sum P_{t}^{\dot{E}}\right)\left(\sum P_{t} y_{t}\right) Y \tag{4.98}
\end{align*}
$$

to $O\left(N^{0}\right)$. Equations (4.97) ara (4.98) aitifer ir their last three terms which are $O\left(N^{0}\right)$, en it is not quite cleo winch variance is smaller and this may append on the structure of tine F_{j} and y_{j} values.

V. THE GENERAL CASE $n \geq 2$ AND N LARGE

Since the methods to be employed for $n>2$ are similar to those used for $n=k$, we shall briefly describe these metnods but concentrate on the new features that are not encountered in the case $n=2$.
A. Derivation of the Procabilities $P_{i j}$ to Orders
$O\left(N^{-3}\right)$ and $O\left(N^{-4}\right)$

As before, the total numieer of arrangements $::!$ can be dividea into (5 - I) groups according as to whether there are $v=0,1, \ldots,(1.2)$ units "between" F_{i} and P_{i}. . There are $\mathbb{N} \times(N-2)$! arrangements in each of these (N - I) groups so that ail of these arrangements are represented with equal procability $\frac{1}{\ldots-1}$ Consiaer now the contribution to $P_{i i}$ from a particular group witi v units cetween P_{i} and P_{i}. For the $i^{\text {th }}$ unit to be ir tine sample, we know from our semplirg procedure, the irequalities

$$
\begin{equation*}
\pi_{i-1} \leq s+k<\pi_{i} \tag{5.1}
\end{equation*}
$$

must be satisfiea where x may be eny integen betkeen $-(\mathrm{n}-\mathrm{l}$) aid ($n-1$) and s is a uniform veriete wita $0 \leq s<r_{i}$. This uears thet s must be witinin one of the following ranges each oi length P_{i}. The iirst of these is $T_{i-1} \leq s<T_{i}$ and the ouner ranges are aisplaced from the ebove range in the anticlockrise ärection \dot{c}_{j} I or $\dot{\alpha} \ldots$ or ($n-1$) eccorßing as $\pi_{\text {i-1 }} \geq 1$ or $\pi_{i-1} \geq \dot{c} \cdot$ or $T_{i-1} \geq(n-1)$ or in the
clockwise direction according as $\pi_{1} \leq 1$ or $\pi_{1} \leq \& \ldots$ or $\pi_{1} \leq(n-1)$ respectively. All these ranges make coritribulions to $P_{i 1}$ identical to that from the range $\pi_{1-1} \leq s \leq T_{i}$ since the length of the range of s is equal to P_{1} in ail the cases. Therefore, we have to evaluate only the contribution to $P_{1 i}$, from the first range $\mathbb{T}_{i-1} \leqslant s<T_{i}$, say $P_{i 1}^{\prime}$, those from the remaining ($n-1$) ranges being identical.

A positive contribution to $P_{i 1}^{\prime}$, can only be made if both $T_{i-1} \leq s<T_{i}$ and one of the following $(n-1)$ inequalities is satisfied at the same time:

Inequality (1). $T_{i}+T_{v} \leq s+I<T_{i}+T_{v}+P_{i}$,
Inequality (C) $. \pi_{i}+T_{v} \leq s+z<T_{i}+T_{v}+P_{i}$
Inequality (j) $. \quad T_{i}+T_{v} \leq s+j<T_{i}+T_{v}+P_{i}$
Inequality $(n-1) \cdot T_{i}+T_{v} \leq s+(n-1)<T_{i}+T_{V}+F_{i}$,
where T_{v} is the total length of the v arcs wish lie "between" F_{i} and P_{1} in clockwise direction. This means that we consiaer the probability that the given $i^{\text {th }}$ unit is drawn for $k=0$ and $i^{\text {th }}$ unit is arawn for either $k=1$ or $k=2 \ldots$ or $\mathrm{E}=(\mathrm{n}-1)$. Making the transformation

$$
\begin{equation*}
\mathrm{t}=\mathrm{s}-\pi_{i-1}=\mathrm{s}+\mathrm{P}_{i}-\pi_{i} \tag{5.3}
\end{equation*}
$$

so that tine first range is

$$
\begin{equation*}
0 \leq t<P_{i} \tag{5.4}
\end{equation*}
$$

where t is a uniforif variate with ordinate density $1 / r$ like s,
equations (u.t) can be written as

$$
\begin{aligned}
& \text { Inequality (I). } 1+t-P_{i}-P_{i}<T_{v} \leq l+t-P_{1}
\end{aligned}
$$

$$
\begin{align*}
& \text { Inequality (} \mathrm{j} \text {) } \cdot \mathrm{j}+\mathrm{t}-\mathrm{P}_{1}-\mathrm{F}_{\mathrm{i}^{\prime}}<\mathrm{T}_{\mathrm{v}} \leq \mathrm{j}+\mathrm{t}-\mathrm{P}_{1} \\
& \text { Inequality }(n-1) \cdot(n-1)+t-P_{1}-P_{1}\left(<T_{v} \leq\right. \\
& (n-1)+t-P_{i} . \tag{5.5}
\end{align*}
$$

Therefore, the integrated contribution to $P_{i i}^{\prime}$ from inequelity (j) is

$$
\frac{1}{n} \int_{0}^{P_{i}} \operatorname{Pr} \cdot\left(j+t-P_{i}-P_{i},<T_{v} \leq j+t-P_{i}\right) d t \text {. (5.6) }
$$

If the $i^{\text {th }}$ unit is arawn for is $=j$, then from irequality (j) of ($\overline{0} \cdot \dot{C}$), it is seen thet v raness from ($j-i$) to (I: $-n+j$ - 1) since $1^{\text {th }}$ unit is arawn for $k=0$ ard eech $P_{r} \leq I$. Therefore, suming over the appropriste ranges of v for these (n - I) $\bar{c} i f f e r e r i t ~ c a s e s, ~ \varepsilon n \bar{\alpha}$ wultiplyirg cy the constant procacility $I /(N-I)$, the total integrated contribution +o $F_{\text {ii }}^{\prime}$ is seer to be

$$
\begin{gathered}
P_{i j}^{\prime}=\frac{I}{n(i-1)}\left\{\sum _ { v = 0 } ^ { i - n } \int _ { 0 } ^ { P _ { i } } \operatorname { P r } \cdot \left[1+t-P_{i}-P_{i},<T_{v} \leq\right.\right. \\
\left.I+t-P_{i}\right] d t+\cdots
\end{gathered}
$$

$$
\begin{align*}
& \left.+t-p_{i}\right] d t+\ldots \\
& +\sum_{V=n-i}^{N-i} \int_{0}^{P_{1}} \operatorname{Pr} \cdot\left[(n-1)+t-P_{i}-P_{1} \mid<T_{v} \leq\right. \\
& \left.\left.(r-I)+t-P_{i}\right] d t\right\} . \tag{5.7}
\end{align*}
$$

Adding now the contributions to $P_{i 1}$, frow all the remaining ($x-1$) ranges which are identical with (5.7), ie fine the total contribution to $F_{i i^{\prime}}$ as

$$
\begin{align*}
& P_{i i}=(N-I)^{-1}\left\{\sum _ { v = 0 } ^ { N - n } \int _ { 0 } ^ { P _ { i } } \left[F_{v}\left(1+t-P_{i}\right)\right.\right. \\
& \left.-F_{v}\left(I+t-P_{i}-P_{i} 1\right)\right] d t+\cdots \\
& +\sum_{V=\pi}^{i-r_{i}+m} \int_{0}^{P_{i}}\left[F_{v}\left(m+1+t-P_{i}\right)\right. \\
& \left.-\bar{F}_{\nabla}\left(\pi+1+t-P_{i}-P_{i r}\right)\right]=t+\ldots \\
& +\sum_{v=r i-i}^{i-i} \int_{0}^{P_{i}}\left[F_{v}\left(r-1+t-P_{i}\right)\right. \\
& \left.\left.-F_{v}\left(r-I+t-F_{i}-F_{i}\right)\right] d t\right\} . \tag{5.8}
\end{align*}
$$

where $F_{V}(T)$ denotes the cumulative distribution function of the total (T_{V}) oi the v velues P_{r} As before

$$
\begin{align*}
& E\left(T_{V}\right)=\frac{v\left(\dot{z}-P_{i}-F_{i}\right)}{I_{i}-\ddot{\alpha}} \\
& V\left(T_{V}\right)=v\left(1-\frac{v}{N-Z}\right) S_{i 1}^{2} \tag{5.9}
\end{align*}
$$

where $S_{i i}^{2}$ is given by (4.10). It may be noted that $P_{i 1}{ }^{\prime}$ given by (5.8) reduces to $P_{i 11}$ given by (4.11) in the special case $n=\dot{L}$. It will be shown below that each of the $(n-1)$ integrals summed over v in (5.8) contribute identically to $F_{i 1}$, to $O\left(N^{-4}\right)$ assuming that $P_{1}=n p_{i}$ is $O\left(N^{-1}\right)$.

Let us consider the $m^{\text {th }}$ vera $(m=0,1, \ldots, n-2)$ in (5.8), say $P_{i i}^{(m)}$, given by

$$
\begin{gather*}
P_{i i}^{(m)}=(\therefore-I)^{-1} \sum_{\nabla=m i}^{i n-n+m} \int_{0}^{F_{i}}\left[F_{\nabla}\left(m+1+t-P_{i}\right)\right. \\
\left.-F_{\nabla}\left(m+1+t-P_{i}-P_{i}\right)\right] d t \tag{5.10}
\end{gather*}
$$

ana let $i=1$ ara $i^{\prime}=\mathcal{E}$ without loss of generality. Proceeding now exactly 2 in the case of $n=\dot{2}$, by expanding $F_{V}(T)$ in an Edgeworth series ara applying Euler-kiaclaurin formula (4.zl) trice, ana approximating \sum_{v} by $\int d v$, we find

$$
\begin{align*}
& \left.-\frac{k_{3} P_{1} P_{\dot{\dot{E}}}}{j S_{1 \dot{L}}} \cdot \nabla_{I}^{-\frac{1}{\dot{2}}} F^{(4)}\left(v_{\dot{\Sigma}}\right)\right\} d v+\rho_{m}+\omega_{m}+\rho_{m}^{\prime} \tag{5.11}
\end{align*}
$$

where

$$
\begin{gather*}
v_{1}=v\left(I-\frac{v}{N-\Sigma}\right) \tag{5.12}\\
v_{i}=\frac{m+1-\frac{P_{1}+P_{\Sigma}}{\dot{L}}-v \cdot \frac{n-P_{1}-P_{c}}{N-L}}{v_{1} S_{1 \Sigma}} \tag{5.13}
\end{gather*}
$$

$\rho_{\text {m }}, \omega_{\text {m }}$ and ρ_{m}^{\prime} are the renainaer terms defined exactly as in the case $n=z, P^{(r)}(x)$ denotes the $r^{\text {th }}$ order derivetive of the normal cumuleitve distribution $F(x)$, and k_{3} is the standardized cumulant of the total T_{v} given b_{y} (4.17). Note that ∇_{i} depends on π.

Let us now evaluate the iermis in (5.11) one iy one. The first term is
where
L.OW mace the transformation

$$
\begin{equation*}
\nabla-c=u \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
c=(N-\alpha) \cdot \frac{\dot{c}(\dot{L}+1)-F_{1}-P_{\dot{L}}}{\dot{c}\left(n_{L}-P_{1}-P_{\dot{K}}\right)} . \tag{5.17}
\end{equation*}
$$

Tner

$$
\begin{equation*}
v_{1}=\left(c-\frac{c^{2}}{\Pi-\dot{\alpha}}\right)\left[1+\frac{n\left(1-\frac{z c}{1-2}\right)}{c-\frac{c^{2}}{1-\alpha}}-\frac{u}{(N-L)\left(c-\frac{c^{2}}{1-\Sigma}\right)}\right] \tag{5.18}
\end{equation*}
$$

For the case $n=\alpha, m=0$ so that

$$
\begin{equation*}
c=\frac{N-\dot{E}}{2} \text { and } v_{1}=\frac{(I-z)}{4}\left(1-\frac{4 u^{\dot{\alpha}}}{(N-\alpha)^{z}}\right) . \tag{5.19}
\end{equation*}
$$

Now, in order to expend $v_{1}^{-\frac{1}{2}}$ in binomially, it is necessary to show that

$$
\begin{equation*}
F=\frac{u\left(1-\frac{\Sigma c}{1-\frac{2}{2}}\right)}{c-\frac{c^{2}}{1-\dot{z}}}-\frac{u^{\dot{2}}}{(N-\alpha)\left(c-\frac{c^{2}}{\sum-\dot{2}}\right)} \tag{5.20}
\end{equation*}
$$

is les: than one in absolute value for ail u ranging from

 $\bar{F}=-4 u^{k} /(\eta-\alpha)^{2}$. Now $\varepsilon \tau u=m-c,(5 . \varepsilon 0)$ reduces to
which is less than in absolute value. Ais. for any value between $\mathrm{L}-\mathrm{c}$ anc 0, say $z-c+e$ with $e>0$,
which is less than in acsolute value. Similarly, et $u=$ $\mathrm{H}-\mathrm{H}+\mathrm{H}-\mathrm{C}$,

$$
\begin{equation*}
F=-1+\frac{\left(n-P_{1}-P_{\varepsilon}\right)^{\dot{L}}(n-m-\dot{L})(n-n+m)}{(N-z)^{\dot{L}}\left(m+1-\frac{P_{1}+P_{E}}{\Sigma}\right)\left(n-m-1-\frac{P_{1}+P_{\mathcal{E}}}{2}\right)} \tag{5.<3}
\end{equation*}
$$

which is less than l ir acsolute value, ard for any value between 0 and $n-n+m-c, s a y n-n+\pi-c-e$,

$$
\vec{F}=-1+\frac{\left(r_{1}-P_{I}-P_{\mathcal{E}}\right)(n-\mu-z+e)\left(N-r_{1}+m-e\right)}{(N-\alpha)^{2}\left(\amalg+1-\frac{P_{I}+P_{\mathcal{E}}}{\mathcal{L}}\right)\left(n-\mu-1-\frac{P_{I}+P_{\mathcal{E}}}{\mathcal{L}}\right)}
$$

which is less tran 1 in acsolute value. Eence, F is less than I in acsolute vaiue for eil values of u ranging froan - c to $\boldsymbol{i}-r+i-c$.

Now, as in the case $n=x$, experiaing the exponential in (5.10) as well as $v_{1}^{-\frac{1}{2}}$ in terms of u cinomialiy, and chenging tre variable of integration u to p where

$$
\begin{equation*}
\sum=u n(\pi-\alpha)^{-\frac{1}{k}}\left(c-\frac{c^{\dot{L}}}{i-\dot{\alpha}}\right)^{-\frac{1}{k}} \tag{5.<5}
\end{equation*}
$$

where

$$
\begin{equation*}
n=\left(r_{i}-F_{I}-P_{z}\right)(N-z)^{-\frac{1}{2}} S_{I L}^{-1} \tag{5.亡6}
\end{equation*}
$$

we fir. a efter consideracle simplificetion

$$
\begin{align*}
& A_{n}=\frac{\left(\dot{i}-\frac{\alpha}{1}\right)}{\left(n-\frac{P_{i} P_{i}}{\left(n-P_{1}-P_{z}\right)}\right.}(\dot{i} \pi)^{-\frac{1}{z}} \int_{-\infty}^{\infty} e^{-\frac{p^{2}}{z}} \\
& \cdot\left[1+h^{-i}\left(p^{2}-p^{4}\right)+\frac{1}{2} h_{1}\left(\frac{3}{4} p^{2}-\frac{3}{2} p^{4}+\frac{1}{4} p^{6}\right)\right. \\
& +h^{-4}\left(\frac{3}{8} p^{4}-\frac{3}{4} p^{6}+\frac{1}{8} p^{2}\right)+h_{1}^{2} h^{-2}\left(\frac{15}{16} p^{4}-\frac{45}{16} p^{6}\right. \\
& \left.+\frac{15}{16} p^{8}-\frac{1}{16} p^{10}\right)+h_{1}^{4}\left(\frac{35}{128} p^{4}-\frac{35}{32} p^{6}+\frac{35}{64} p^{8}\right. \\
& \left.\left.-\frac{7}{96} \mathrm{p}^{10}+\frac{1}{.384} \mathrm{p}^{1 \dot{ }}\right)+ \text { higher terms }\right] d p
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{n}_{1}=-\frac{(i-\alpha) S_{I \alpha}\left(I-\frac{\Sigma c}{N-\dot{\Sigma}}\right)}{\left(n-F_{I}-F_{\dot{\varepsilon}}\right)\left(c-\frac{c^{2}}{1-\dot{\varepsilon}}\right)^{\frac{1}{2}}} \tag{5.88}
\end{equation*}
$$

end the linits of integretion in ($5 . 幺 7$) ere respectively $n(m-c)(N-\alpha)^{-\frac{1}{\alpha}}\left(c-\frac{c^{i}}{\approx-\dot{\alpha}}\right)^{-\frac{1}{\Sigma}} \sin h(i-n+m-c)(\eta-\dot{\alpha})^{-\frac{1}{\alpha}}$ - $\left(c_{1}-\frac{c^{\dot{2}}}{i,-\dot{L}}\right)_{\dot{I}}^{\dot{I}}$. These irtegratior limits ore respectively
 apart irow errors whice are $O\left(e^{-\mathrm{K}_{\mathrm{N}} \mathrm{e}}\right)$. The main feature here is the appearance of a noncentrality type perameter h_{1} which deperas or 4 era is zer, Bher. $n=\sim$ However, it will ice
 volving h_{l} ere zer so thet all the jerms A_{n} coritricute iderticeliy to $P_{l \mathcal{L}}$. Using tice stancraized normel moments

$$
\begin{gather*}
\mu_{4}=3, \mu_{6}=16, \mu_{8}=105, \mu_{10}=945, \mu_{12}=10395 \\
\text { and } \mu_{2 \mathrm{r}+1}=0, r=1, \dot{2}, 3,4 \tag{5.29}
\end{gather*}
$$

we firà from (0.2) ,

$$
\begin{equation*}
A_{U}=(N-\alpha) \frac{P_{1} P_{\alpha}}{(N-1)}\left(n-P_{I}-P_{i}\right)\left(I-h^{-i}+3 h^{-4}\right) \tag{5.30}
\end{equation*}
$$

to $O\left(N^{-4}\right)$, wrich shows that A_{m} is indepencert of m since h does not depend on m. Similer analysis for the second term
wiere

$$
p^{(3)}\left(v_{\dot{\Sigma}}\right)=(\dot{\pi} \pi)^{-\frac{I}{\dot{\Sigma}}} e^{-\frac{1}{i} v_{i}^{2}}\left(v_{\dot{L}}^{z}-1\right)
$$

shows tiant

$$
\begin{align*}
& \cdot \int_{-\infty}^{\infty} e^{-\frac{1}{2} p^{k}}\left[\left(p^{k}-i\right)+\frac{1}{2} n_{1}\left(p^{5}-6 p^{3}+3 p\right)\right. \\
& -\frac{1}{\varepsilon} h^{-c}\left(p^{6}-6 p^{4}+3 p^{\kappa}\right)+\frac{1}{8} h_{1}^{k}\left(p^{6}-15 p^{6}+45 p^{4}-15 p^{6}\right) \\
& \text { + niener terius]ap } \tag{5.33}
\end{align*}
$$

whicr is seen to be zero to $O\left(\Gamma^{-4}\right)$ usirg the rormal momerts ($\because . \dot{C}$) and nerce $B_{\text {II }}$ aoes not cuntribute to $P_{l \mathcal{L}}$ t $O\left(N^{-4}\right)$. Simileriy, $\because e$ firk thet the next term

$$
\begin{equation*}
\omega_{m}=(i v-i)^{-1} \frac{F_{1}^{3} P_{g}}{\dot{c} 4 S_{I L}} \int_{m}^{N-r_{1}+m} v_{1}^{-\frac{1}{\dot{\alpha}}} p^{(\xi)}\left(v_{g}\right) d v \tag{5.34}
\end{equation*}
$$

is reaucea to

$$
\begin{align*}
& C_{L}=\frac{(N-\alpha)}{(1-1)} \frac{=_{1} P_{i}}{z 4\left(n-P_{1}-P_{\dot{L}}\right)}(z \pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} p^{2}} \\
& \cdot\left[\left(p^{2}-1\right)+\frac{1}{\dot{K}} h_{I}\left(p^{5}-4 p^{3}+p\right)-\frac{1}{\Sigma} h^{-2}\left(p^{6}-4 p^{4}+p^{\dot{C}}\right)\right. \\
& \left.+\frac{1}{8} \operatorname{n}_{1}^{2}\left(p^{8}-11 p^{3}+21 p^{4}-3 p^{2}\right)+\text { higher terms }\right] \mathrm{dp} \text {. } \tag{5.35}
\end{align*}
$$

Using the normal moments, the evaluation of the terms retrained in ($=.35$) yields

$$
\begin{equation*}
C_{a}=-\frac{(\because-\dot{\prime})}{(i-1)} \frac{P_{1}^{j} F_{\varepsilon^{n}}^{-i}}{I \alpha\left(n_{1}-P_{1}-F_{i}\right)} \tag{5.36}
\end{equation*}
$$

which is $O\left(N^{-5}\right)$ since h^{-i} is $O\left(N^{-1}\right)$ enc hence C_{m} does not c.ritribute to $P_{\text {li }}$ tu $O\left(\mathrm{~N}^{-4}\right)$. The next teri is
where

$$
\begin{equation*}
-P^{(4)}\left(v_{i}\right)=(\dot{i})^{-\frac{1}{\dot{\alpha}}} e^{-\frac{1}{\dot{2}} v_{i}^{\dot{\alpha}}}\left(v_{\dot{\alpha}}^{\dot{\alpha}}-3 v_{\dot{K}}\right) \tag{5.37}
\end{equation*}
$$

erse

$$
\begin{equation*}
E_{3} v_{1}^{-\frac{1}{2}}=\left[v_{1}^{-1}\left(1-\frac{v}{2-i}\right)-(i-\alpha)^{-1}\left(1-\frac{v}{1-i-1}\right)^{-1}\right] K_{3} . \tag{5.39}
\end{equation*}
$$

Now, wailing the transformations u and p, expanding ${ }_{3} 3^{-\frac{7}{2}}$, $\left(v_{i}^{3}-3 v_{z}\right)$ and the exponential in (5.38) in terms of p, an ab multiplying out tie resulting series, we fino after considerable simplification

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} p^{2}}\left\{\frac { (1 - \frac { \alpha c } { \vdots - \dot { z } }) } { (c - \frac { c ^ { c } } { 2 - i }) } \left[\left(p^{3}-3 b\right)\right.\right. \\
& +\frac{1}{2} h_{1}\left(p^{E}-6 p^{4}+3 p^{2}\right)-\frac{1}{i} h^{-k}\left(p^{7}-6 p^{2}+3 p^{3}\right) \\
& +\frac{1}{8} h_{1}^{2}\left(p^{9}-13 p^{7}+33 p^{5}-9 p^{3}\right)-\frac{1}{4} h_{1} h^{-\dot{c}}\left(p^{10}-13 p^{8}\right. \\
& \left.+33 p^{6}-9 p^{4}\right)+\frac{1}{4 \varepsilon} h_{1}^{3}\left(p^{1 c}-24 p^{10}+100 p^{=}-240 p^{6}\right. \\
& \left.+45 p^{4} j\right]-n^{-1}(a-i)^{\frac{1}{\dot{z}}}\left(c-\frac{c^{c}}{\int-\dot{i}}\right) \\
& \cdot\left[\frac{1}{c^{\dot{c}}}+\frac{1}{(\therefore-\alpha)^{c}\left(1-\frac{c}{2-\varepsilon}\right)^{2}}\right]\left[\left(p^{4}-3 p^{z} ;\right.\right. \\
& +\frac{1}{2} h_{1}\left(p^{7}-6 p^{5}+3 p^{3}\right)-\frac{1}{2} h^{-i}\left(p^{5}-6 p^{6}+3 p^{4}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{1}{8} h_{1}^{2}\left(p^{i 0}-13 p^{6}+33 p^{6}-9 p^{4}\right)\right]+h^{-2}(1-\alpha)\left(c-\frac{c^{2}}{M-2}\right)^{\frac{3}{2}} \\
& \cdot\left[\frac{1}{c^{3}}-\frac{1}{(N-2)^{3}\left(1-\frac{c}{N-2}\right)^{3}}\right]\left[\left(p^{5}-3 p^{3}\right)\right. \\
& \left.+\frac{1}{2} h_{1}\left(p^{6}-6 p^{6}+3 p^{4}\right)\right]-h^{-3}(n-2)^{\frac{3}{2}}\left(c-\frac{c^{2}}{1-\frac{2}{2}}\right)^{2} \\
& \cdot\left[\frac{1}{c^{4}}+\frac{1}{(\therefore-2)^{4}\left(1-\frac{c}{i-\frac{2}{2}}\right)^{4}}\right]\left(p^{6}-3 p^{4}\right) \\
& + \text { aiqner terins }\} \text { dp } \tag{5.40}
\end{align*}
$$

Using now the stanardized normsl moments (E.¿Q), the evaluation of the terius retaired in (5.40) yiciās

$$
\begin{align*}
& \cdot\left\{\frac{1}{c^{c}}+\frac{1}{(\therefore-a)^{c}\left(1-\frac{c}{2-\dot{z}}\right)^{\dot{c}}}\right\}+E c^{-z}\left(1-\frac{c}{i:-\dot{c}}\right)^{\dot{c}} \\
& \left.+\frac{-c^{2}}{(i .-a)^{4}\left(i-\frac{c}{2-\alpha}\right)^{2}}\right] . \tag{5.41}
\end{align*}
$$

Eurther simplificetion of (5.41) results in

$$
\begin{equation*}
D_{L}=-\frac{i(\dot{i}-\dot{ })}{\left(i-\frac{F_{i} P_{i} K_{J}}{\left(n-F_{I}-F_{i}\right)} h^{-j}(i-z)^{-\frac{1}{i}}, ~\right.} \tag{E}
\end{equation*}
$$

which is $O\left(N^{-4}\right)$ and does rot depend on m.
The argument to snow that the remainder terms ρ_{m}, ω_{m} aria ρ_{m}^{\prime} du not contribute to $P_{I Z}$ to $O\left(N^{-4}\right)$ is similar to that given in the case $n=\alpha$, for the remainder terms ρ, ω and ρ^{\prime}. Therefore, adding the expressions A_{m} and D_{m} (since B_{m} and C_{m} are zero to $O\left(N^{-4}\right)$ given by (5.30) end (5.4\%) respectively, we ind to $O\left(N^{-4}\right)$,

Since (5.4j) does not depend on r_{1}, it follows that, to o(N^{-4}),

$$
\begin{align*}
& P_{1 \dot{ }}=\sum_{m=0}^{n-\dot{m}} P_{1 \dot{L}}^{(m)} \\
& =\left(r_{1}-1\right) \frac{(K-\dot{L})}{(i-1)} \frac{P_{1} P_{\dot{E}}}{\left(r_{1}-P_{I}-P_{\dot{L}}\right)} \tag{5.44}
\end{align*}
$$

For the special case $n=\dot{\alpha}$, (5.44) reduces to (4.47) derived ir Chapter IV. Since the lest two terms ir. (5.44) ere $O\left(i^{-4}\right)$, we outcin to $O\left(I^{-3}\right)$, the simplified expression

$$
\begin{equation*}
P_{I \alpha}=(n-1) \frac{(\therefore-\alpha)}{(n-1)} \frac{F_{1} P_{\dot{L}}}{\left(n-P_{I}-P_{i}\right)}\left(I-n^{-\dot{\alpha}}\right) \tag{5.45}
\end{equation*}
$$

As in the case of $n=c$, we car apply the two checis to test the order of (5.44). Ir. the first check, finer ail

reduces to $n(n-1) / N(N-1)$ which is the correct probability for two units to ce in a sample of size n drawn with equal procabilities and without replacement. The second check is to test that

$$
\begin{equation*}
\sum_{i \neq i}^{N} P_{i i 1}=(n-1) P_{i} \tag{5.46}
\end{equation*}
$$

is satisfied to $O\left(\Lambda^{-3}\right)$ wher (5.44) is substituted in (5.46) where the suifixes 1 and \mathcal{L} are replaced by 1 and $i \prime$ respectively. Now, proceeaire exactly as in the case $\mathrm{n}=\mathcal{E}$, (5.44) to $O\left(N^{-4}\right)$ can be siuplified $2 s$

$$
\begin{align*}
& P_{i 1}=\frac{(n-1)}{n} F_{1} P_{1}+\frac{(n-1)}{n^{2}}\left(P_{1}^{2} P_{1}+P_{1} P_{1}^{2}\right) \\
& -\frac{(n-1)}{n^{3}} F_{i} E_{1} \sum P_{i}^{2}+\frac{(n-1)}{n^{3}}\left(\alpha P_{1}^{3} E_{1}+\alpha F_{1} F_{1}^{3}\right. \\
& \left.+\dot{ } F_{i}^{k} F_{i^{\prime}}^{\alpha}\right)-\frac{3(n-1)}{n^{4}}\left(P_{i}^{2} F_{1^{\prime}}+F_{i^{\prime}} F_{i^{\prime}}^{\mathcal{L}}\right) \sum P_{t}^{\mathcal{L}} \\
& +\frac{3(n-1)}{n^{5}} P_{i} P_{i}\left(\sum P_{t}^{c}\right)^{2}-\frac{\varepsilon(n-1)}{n^{4}} P_{i} F_{i}, \sum P_{t}^{3} \tag{5.47}
\end{align*}
$$

where P_{1} and $P_{\mathcal{E}}$ are replaced by P_{i} and P_{i} respectively. Suming (5.47) now over i' from 1 to N except $i^{\prime}=1$, and notire that $\sum P_{t}=r$, e octain to $O\left(N^{-3}\right)$,

$$
\begin{align*}
\sum_{i^{\prime} \neq 1}^{N} P_{i i 1}= & \frac{(n-1)}{n_{1}} p_{i}\left(n-P_{i}\right)+\frac{(n-1)}{n^{2}} p_{i}^{2}\left(n-p_{i}\right) \\
& +\frac{(n-1)}{n^{2}} p_{i}\left(\sum p_{t}^{2}-p_{i}^{2}\right)+\frac{2(n-1)}{n^{2}} p_{1}^{3} \\
& -\frac{(n-1)}{n^{3}} p_{i}^{2} \sum p_{t}^{2}-\frac{(n-1)}{n^{3}} P_{i}\left(n-p_{i}\right) \sum p_{t}^{2} \\
= & (n-1) P_{i} \tag{5.48}
\end{align*}
$$

thereby proviaing the cesired check.
B. Variance Formules to Orders $O\left(N^{I}\right)$ and $O\left(N^{O}\right)$

Sucstituting for $P_{i 1}$ from (5.47) in

$$
\begin{equation*}
V(\hat{Y})=\sum^{N} \frac{y_{j}^{\mathcal{L}}}{\mathcal{F}_{j}}+\sum_{i \neq 1}^{N} \frac{P_{i i^{\prime}}}{F_{i} P_{i \prime}} y_{i} y_{i},-Y^{2} \tag{5.49}
\end{equation*}
$$

anc retainire terius to $C\left(N^{O}\right)$, we finna

$$
\begin{aligned}
& V(\hat{Y})=\sum \frac{y_{j}^{\dot{L}}}{P_{j}}-\frac{Y^{\dot{E}}}{n}-\frac{(n-1)}{n} \sum y_{j}^{2}+\frac{\dot{k}(n-1)}{n^{2}}\left(\sum P_{j} y_{j}\right) Y \\
& -\frac{(n-I)}{n^{3}}\left(\sum P_{t}^{\alpha}\right) Y^{\Sigma}-\frac{\dot{L}(n-1)}{n^{\dot{L}}} \sum P_{j} Y_{j}^{2} \\
& +\frac{(n-1)}{n^{3}}\left(\sum F_{t}^{\dot{E}}\right)\left(\sum y_{j}^{\dot{E}}\right)-\frac{6(n-1)}{n^{4}}\left(\sum P_{t}^{2}\right)\left(\sum P_{j} y_{j}\right) Y \\
& +\frac{4\left(r_{i}-I\right)}{n^{j}}\left(\sum P_{j}^{2} y_{j}\right) Y+\frac{3\left(r_{i}-1\right)}{n_{i}^{5}}\left(\sum P_{t}^{2}\right)_{Y}^{2} \\
& -\frac{\varepsilon(n-1)}{n^{4}} Y^{\varepsilon}\left(\sum F_{t}^{3}\right)+\frac{\varepsilon(n-1)}{n^{3}}\left(\sum P_{j} y_{j}^{E}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \sum^{N} P_{j}\left[I-\frac{(n-1)}{n} P_{j}\right]\left(\frac{y_{j}}{\tilde{F}_{j}}-\frac{Y}{n}\right)^{\mathcal{L}} \\
& -\frac{(n-1)}{n^{2}} \sum^{N}\left(\hbar P_{j}^{3}-\frac{P_{j}^{2}}{n} \sum^{N} F_{t}^{2}\right)\left(\frac{y_{j}}{P_{j}}-\frac{Y}{n}\right)^{Z} \\
& +\frac{\dot{E}(n-1)}{n^{3}}\left(\sum^{N} P_{j} y_{j}-\frac{Y}{n} \sum^{N} P_{t}^{2}\right)^{2} \tag{5.51}
\end{align*}
$$

to $O\left(N^{0}\right)$. On the other hand, if terms only to $O\left(N^{1}\right)$ are retainea, from (5.50) we find to $O\left(N^{1}\right)$, the simplified expression

$$
\begin{align*}
V(\hat{y})= & \sum \frac{y_{j}^{k}}{P_{j}}-\frac{Y^{2}}{n}-\frac{\left(n_{1}-I\right)}{n} \sum y_{j}^{\delta}+\frac{\varepsilon(n-1)}{n^{2}}\left(\sum P_{j} y_{j}\right) Y \\
& -\frac{(n-I)}{n^{3}}\left(\sum P_{t}^{2}\right) Y^{\Sigma} \tag{5.52}\\
= & \sum^{N} P_{j}\left[I-\frac{\left(n_{i}-I\right)}{n} P_{j}\right]\left(\frac{y_{j}}{P_{j}}-\frac{Y}{n}\right)^{\varepsilon} . \tag{5.53}
\end{align*}
$$

Equetion (5.53) shows the characteristic reduction in the variance wher compared with tie veriance in sampling with replacement, tirough tie "finite popuIation corrections" $\left(I-\frac{(n-I)}{n} F_{j}\right)$. Ferce, the present sampling procedure without replacerient yields a smaller vsriance for \hat{Y} asymptotically compered with unecual probebility sampling with replacement, for tife general sample size n. For the special case of equal probacilities $P_{j}=n / N,(5.51)$ to $O\left(N^{D}\right)$ reduces to the familiar veriance formula for sample total in ecual
procacility sampling without replacement.
C. Estimation of the Variance

The method is, as before, to substitute for $P_{i 1}$ in the Yates and Grundy estimate of the variance

$$
\begin{equation*}
v_{Y G}(\hat{Y})=\sum_{i^{\prime}>1}^{n} \frac{P_{1} P_{11}-P_{1 i 1}}{P_{111}}\left(\frac{y_{1}}{P_{i}}-\frac{y_{11}}{P_{11}}\right)^{\varepsilon} . \tag{5.54}
\end{equation*}
$$

Frow (5.47) to $\mathrm{O}\left(\mathrm{N}^{-3}\right)$, we have

$$
\begin{equation*}
P_{11} 1=\frac{(n-1)}{n} P_{i} P_{i}\left[1+\frac{l}{n}\left(P_{i}+P_{i}\right)-\frac{1}{n^{2}} \sum P_{t}^{2}\right] . \tag{5.55}
\end{equation*}
$$

Therefore, substituting (5.55) in (5.54), we find

$$
\begin{align*}
\nabla_{Y G}(\hat{Y})= & (n-1)^{-1} \sum_{i^{\prime}>i}^{n} \frac{1-\frac{(n-1)}{n}\left(P_{i}+P_{i^{\prime}}\right)+\frac{(n-1)}{n^{2}} \sum P_{t}^{2}}{1+\frac{1}{n}\left(P_{i}+P_{i^{\prime}}\right)-\frac{1}{n^{2}} \sum P_{t}^{2}} \\
& \cdot\left(\frac{y_{1}}{P_{1}}-\frac{y_{1 \prime}}{P_{i \prime}}\right)^{2} . \tag{5.56}
\end{align*}
$$

Expanding the denominator binomially and retaining terms to $O\left(H^{1}\right)$, we find

$$
\begin{equation*}
v_{Y G}(\hat{y})=\left(r_{i}-1\right)^{-1} \sum_{i^{\prime}>i}^{n}\left(1-P_{i}-P_{i^{\prime}}+\frac{1}{n} \sum_{P_{t}^{2}}^{N}\right)\left(\frac{y_{i}}{P_{i}}-\frac{y_{i^{\prime}}}{P_{i \prime}}\right)^{2} \tag{5.57}
\end{equation*}
$$

to $O\left(K^{l}\right)$. For the special case of equal procacilities $P_{i}=n / i$, (5.57) agrees with the familiar formula for the estimate of the variance in equal probability sampling without
replacement, noting that

$$
\begin{equation*}
\sum_{i^{\prime}>1}^{n}\left(y_{i}-y_{i},\right)^{2}=n \sum^{n}\left(y_{i}-\bar{y}\right)^{2} \tag{5.58}
\end{equation*}
$$

On the other hand, by suostituting for P_{11}, from (5.47) in (5.54) end expanding the denominator binomially and retaining terms to $O\left(i^{\circ}\right)$, we octain

$$
\begin{align*}
& \nabla_{Y G}(\hat{Y})=(n-1)^{-1} \sum_{i^{\prime}>i}^{n}\left[1-\left(F_{i}+P_{i},\right)+\frac{1}{n} \sum^{N} P_{t}^{2}\right. \\
& -\frac{1}{n}\left(p_{1}^{2}+P_{i^{\prime}}^{2}\right)-\frac{E}{n^{3}}\left(\sum^{1:} p_{t}^{2}\right)^{2} \\
& \left.+\frac{1}{n^{\Sigma}}\left(P_{i}+P_{i^{\prime}}\right) \sum^{N} P_{t}^{\dot{Z}}+\frac{\dot{E}}{n^{\dot{\delta}}} \sum^{i} P_{t}^{3}\right]\left(\frac{y_{i}}{P_{i}}-\frac{y_{i \prime}}{P_{i^{\prime}}}\right)^{\dot{E}} \tag{5.59}
\end{align*}
$$

to $O\left(N^{0}\right)$, which agrees witi the estimate of the varience in equal procaioility sampling without replecemer.t, when all $P_{i}=n / N$.
D. Comperison with the kethod of Revised Probabilities of Yetes and Grundy

It is snown here for the case of general sample size n, that the $P_{\text {iil }}$ vaiues attained through the Yates ard Grundy procedure of revised probabilities to ensure $P_{j}=n p_{j}$, and tinrough our procedure are exactly the same to $O\left(N^{-3}\right)$, so that $V(\hat{X})$ is the same for both proceaures to $O\left(N^{I}\right)$. We sinell not evaluete here the $F_{i i}$, values to $0\left(r^{-4}\right)$ for the Yates and

Grundy procedure as was done in the case $n=\dot{z}$, since the evaluation seems to involve heavy algebra.

Now, from (5.47), the probability of selecting the units i and i' in a sample of size n for our procedure, to $O\left(N^{-3}\right)$ is

$$
\begin{align*}
p_{i 1^{\prime}}= & n(n-1) p_{i} p_{i^{\prime}}+n(n-1)\left(p_{i}^{2} p_{1^{\prime}}+p_{i} p_{i^{\prime}}^{i}\right) \\
& -n(n-1) p_{i} p_{i^{\prime}} \sum_{i}^{N} p_{t}^{2} \tag{5.60}
\end{align*}
$$

since $P_{i}=n p_{i}$. For the Yates and Grundy procedure, the probability for selecting the units i and il is given by

$$
\begin{align*}
& \cdot \frac{p_{s}^{*}}{\left(1-p_{j}^{*}\right)} \cdots \frac{p_{i}^{*}}{\left(1-p_{j}^{*}-p_{s}^{*}-\cdots\right)} \\
& \left.\cdots \frac{p_{i}^{*}}{\left(I-p_{j}^{*}-p_{s}^{*} \cdots-p_{i}^{*} \cdots\right)}\right] \\
& +\sum_{\ell=1}^{i-1}\left[\sum_{\substack{j \neq s \neq \cdots \\
j \neq i \prime}}^{\substack{(i-\alpha) \text { sums }}} \cdots p_{j}^{*} \cdot \frac{p_{s}^{*}}{\left(1-p_{j}^{*}\right)} \cdots \frac{\ell^{\text {th }} \text { position }}{\left(1-p_{j}-p_{s}-\cdots\right)}\right. \\
& \left.\left.\cdots \frac{p_{1}^{*}}{\left(1-p_{j}^{*}-p_{s}^{*} \cdots-p_{i}^{*} \cdots\right)}\right]\right\} \tag{5.61}
\end{align*}
$$

and

$$
\begin{gather*}
p_{i}=p_{i}^{*}+p_{i}^{*} \sum_{j \neq i}^{N} \frac{p_{j}^{*}}{\left(1-p_{j}^{*}\right)}+\sum_{k=3}^{n}\left\{\sum_{j \neq s \neq \cdots \neq 1}^{(k-1) \text { sums }} \cdots p_{j}^{*}\right. \\
\left.\cdot \frac{p_{s}^{*}}{\left(1-p_{j}^{*}\right)} \cdots \frac{p_{1}^{*}}{\left(1-p_{j}^{*}-p_{s}^{*}-\cdots\right)}\right\} \tag{5.62}
\end{gather*}
$$

where p_{i}^{*} are the revised probabilities winch ensure that $P_{i}=n p_{1}$. Now, expanding the denominators in (5.62) binomialIV, he find after sone algebra, to $O\left(N^{-\varepsilon}\right)$,

$$
\begin{align*}
& P_{i}=p_{i}^{*}\left\{z+\left(\sum p_{t}^{* \dot{c}}-p_{i}^{*}\right)+\sum_{z=3}^{n}\left[1-(\dot{z}-1) p_{i}^{*}\right.\right. \\
& \left.\left.+(i-1) \sum p_{t}^{*<}\right]\right\} \\
& =n p_{i}^{*}\left[1-\frac{(n-1)}{z} p_{i}^{*}+\frac{(n-1)}{\bar{c}} \sum p_{t}^{* 2}\right]=n p_{i} . \tag{5.63}
\end{align*}
$$

Therefore

$$
\begin{align*}
& p_{i}^{*}=p_{i}\left[I-\frac{(n-I)}{\varepsilon} p_{i}^{*}+\frac{(r-I)}{z} \sum p_{t}^{* \kappa}\right]^{-1} \\
& =p_{i}\left[I+\frac{(n-1)}{\dot{L}} p_{i}^{*}-\frac{(n-1)}{\dot{L}} \sum p_{t}^{* \dot{c}}\right] \text { to } O\left(N^{-\varepsilon}\right) \\
& =p_{i}\left[1+\frac{(r-1)}{z} p_{i}-\frac{(r-1)}{\varepsilon} \sum p_{t}^{\dot{z}}\right] \text { to } 0\left(N^{-\varepsilon}\right) \tag{5.64}
\end{align*}
$$

since

$$
\begin{equation*}
p_{i}^{*}=p_{i}\left[I+\operatorname{ter} i=s \text { of } O\left(N^{-1}\right)\right] \text {. } \tag{5.65}
\end{equation*}
$$

Further, expanding the denominators in (5.51) binomially, we obtain after cunsiaeracle simplification, to $O\left(N^{-3}\right)$,

$$
\begin{align*}
p_{i i}^{(a)}= & p_{1}^{*} p_{1}^{*}\left(1+p_{1}^{*}\right)+p_{1}^{*} p_{1}^{*}\left(1+p_{1}^{*}\right)+p_{1}^{*} p_{1}^{*}, \sum_{k=3}^{n}[z(k-1) \\
& -\left(p_{1}^{*}+p_{1}^{*}\right)\left\{2(k-k)(k-1)-\frac{k(k-1)}{2}\right\} \\
& \left.-\sum p_{t}^{* 2}\{(k-1)(k-2)(k-3)-k(k-1)(k-2)\}\right] \tag{0.66}\\
= & n(n-1) p_{1}^{*} p_{1}^{*} 1+\left(p_{1}^{* E} p_{1}^{*} 1+p_{1}^{*} p_{1}^{* 2} 1\right)\left[\frac{(n-1) n(n+1)}{6}\right. \\
& \left.-\frac{k(n-k)(n-1) n}{3}\right]+(n-k)(n-1) n \cdot p_{1}^{*} p_{1}^{*}, \sum p_{t}^{* *} . \tag{5.67}
\end{align*}
$$

Sucstituting for p_{1}^{*} froil (5.64) in (5.67), we finally obtain to $O\left(\mathrm{~N}^{-3}\right)$,

$$
\begin{align*}
& p_{i i^{\prime}}^{(a)}=n(n-1) p_{i} p_{i}{ }^{\prime}+\left(p_{i}^{2} p_{i}{ }^{\prime}+p_{i} p_{i^{\prime}}^{2}\right)\left[\frac{(n-1) n(n+1)}{6}\right. \\
& \left.-\frac{i(n-i)(n-1) n}{3}+\frac{(n-1)^{2} n_{n}}{2}\right]+\left(p_{1} p_{1}, \sum p_{t}^{\varepsilon}\right) \\
& \text { - }\left[(n-\alpha)(n-1) n-(n-1)_{n} n\right] \\
& =n(n-1) p_{i} p_{11}+n(n-1)\left(p_{1}^{\epsilon} p_{1} 1+p_{i} p_{11}^{c}\right) \\
& -n(r .-1) p_{i} p_{i}, \sum p_{t}^{z} \tag{5.68}
\end{align*}
$$

wiich is exactiy the same as the $P_{i i}$, to $O\left(\mathbb{N}^{-3}\right)$ for our procedure, rameiy, equetion (5.60).
E. A Comperison with Retio kethod of Estinetion

It is of importance to meike efficiency comparisors with alternative methocis of utilizing supplementery information
such es ratio and regression methods of estination and stratification. The difficulties involved in such comperisons and the limitations of the available results in the literature have already been mentioned in Chapter II. As meritioned earlier, Cochran (1953) has conpered the variance of the estimate in unequal probability sampling with replacement and the variance of the ratio estimete without the usual finite population correction factor. Since we have ooteined a compact expression for the variance of the estimate \hat{Y} in unequal procability sampling without replacement, namely (5.53), it will ce of interest to compere this with the variance of the ratio estimete not ignoring the finite population correction factor. Now from (5.53),

$$
\begin{equation*}
V(\hat{Y})=\frac{1}{n} \sum^{n} \frac{1}{p_{j}}\left(y_{j}-Y p_{j}\right)^{2}-\frac{(n-1)}{n} \sum^{N}\left(y_{j}-Y p_{j}\right)^{2} \tag{5.69}
\end{equation*}
$$

to $O\left(N^{l}\right)$, since $P_{j}=r p_{j}$. On the other hand, the variance of tine ratio estimate \hat{Y}_{R} for large samples (ignoring its ifes) is giver by

$$
\begin{equation*}
V\left(\hat{Y}_{R}\right)=\frac{N^{2}}{n(K-1)} \cdot\left(1-\frac{n}{N}\right) \sum^{K}\left(y_{j}-Y p_{j}\right)^{\varepsilon} \tag{5.70}
\end{equation*}
$$

where $p_{j}=\frac{X_{j}}{X}$.

$$
\begin{align*}
= & \frac{N}{n}\left(I+\frac{1}{N}\right)\left(I-\frac{r_{1}}{N}\right)^{N}\left(y_{j}-Y p_{j}\right)^{\mathcal{L}} \text { to } o\left(n^{1}\right) \\
= & \frac{\pi}{n_{1}} \sum^{N}\left(y_{j}-Y p_{j}\right)^{2}-\frac{(n-I)}{n} \sum^{N}\left(y_{j}-Y p_{j} j^{2}\right. \\
& \text { to } O\left(n^{1}\right) . \tag{5.71}
\end{align*}
$$

The first term of (5.69) represents the variance in unequal probacility sampling witn replacement. It is interesting to note from (5.69) and (5.71) that the finite population correction factors for \hat{Y} and \hat{Y}_{R} are exactly the same. Therefore, tine comparison reduces to tre comparison of the variance in unequal probability sampling with replacement and the variance of the ratio estimete without the correction factor, so that Cochran's results apply here. Assumirg the model

$$
\begin{equation*}
y_{j}=Y p_{j}+e_{j} \tag{5.72}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left(e_{j} \mid p_{j}\right)=0 ; E\left(e_{j}^{2} \mid p_{j}\right)=\varepsilon p_{j}^{g}, \quad a>0, g>0 \tag{5.73}
\end{equation*}
$$

Cochran has shown tiat the estimete in unecuel probacility sampling with replacemert is more precise thar. the ratio estimate if $g>1$ and less precise it $g<l$. Also, it is stated thet in practice g usually lies between 1 ard \dot{c}, so that the estimate \hat{Y} is generally more precise thar the ratio estimate \hat{Y}_{R}. चie do not propose to investigate he:e further possibilities of efficiency comperisons with other methocis of utilizir.g supplementary information, e.g. stratificetion.
VI. NISCELLANEOUS TOPICS IN UNEQUAL PROBABILITY SANPLING

In Chapters III to V, we have developed the theory for a particular sampling procedure of unequal probability sampling without replacement, the advantages of which have already been described. We shall now discuss some interesting topics in unequal procability sampling in general.
A. A New Sampling System for which the Yates and Grundy Estimate of the Variance is Always Positive

As mentionea earlier in Chapter II, the Horvitz and Thompson estimate of the variance of \hat{Y} can take negative values. The Yates ard Grundy estimate of the veriance of \hat{Y} is given by

$$
\begin{equation*}
\nabla_{Y G}(\hat{Y})=\sum_{i^{\prime}>i}^{n} \frac{P_{i} F_{i}-F_{i i^{\prime}}}{F_{i i^{\prime}}}\left(\frac{y_{i}}{P_{i}}-\frac{y_{i \prime}}{P_{i} 1}\right)^{\&} \tag{6.1}
\end{equation*}
$$

and it is believed to be "less of ten negative". Also as mentioned earlier, the estimator (6.1) is always positive in the following two important situetions:
(I) The first unit is selected with p.p.s., i.e. With probabilities p_{i} ana the remaining ($n-1$) urits in the sample ere seiected with equal procabilities and without replacement.
(a) The first unit is selectec with p.p.s. and the second urit is selected with p.p.s. of the remeirirg units, the sample size beirg two.

This means that the Yates and Grundy estimate of the variance is always positive whenever two units are drawn by the above plan (\sim) which is the one originally proposed by Horvitz and Thompson and also employed by Yates and Grundy.

It may be noted that for these two systems P_{i} is not proportional to p_{1} unless the revised probaicilities p_{1}^{*} are introduced. We shall not be concerned here with the problem of maning P_{i} proportional to p_{i}. It will be of interest to identify more sampling systems which yield simple expressions for P_{1} and $P_{i i}$ as in the cese $O \bar{i}$ systems I an $\dot{\mathcal{Z}}$, and for which the Yates aria Grundy estimete of the variance is always positive. We identify here a new sampling system with $n>2$ winch yielos simple expressions for P_{i} end $P_{i i}$ and for which the Yates and Grundy estimate of the variance is always positive. The sampling syster is as follows:
(3) The first unit is selected with p.p.s., second unit with p.p.s. of the remaining urits as in (k) and the remairing ($n-2$) units in the sample are selected Hith equal probainifties and without replacement.
Ther, from the above description it follows thet

$$
\begin{equation*}
p_{i}=p_{i}+p_{i} \sum_{j \neq i}^{n} \frac{p_{j}}{1-p_{j}}+\sum_{j \neq i \neq i}^{N} \sum_{1-p_{j}}^{n-\frac{p_{k}}{n}-2} \tag{6.2}
\end{equation*}
$$

Notine that $\sum^{K} p_{t}=1,(6 . \alpha)$ car. ce simplified as

$$
\begin{equation*}
P_{i}=\frac{(n-n)}{(N-\alpha)} p_{i}\left[\frac{1}{i-p_{i}}+A_{i j}{ }^{\prime}\right]+\frac{n-2}{N-2} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{11^{\prime}}=\sum_{j \neq\left(i, i^{\prime}\right)}^{N} \frac{p_{j}}{i-p_{j}} . \tag{6.4}
\end{equation*}
$$

Also

$$
\begin{align*}
& p_{i 1} \prime=p_{i} p_{i}\left(\frac{1}{1-p_{i}}+\frac{1}{1-p_{i}}\right)+\left(\sum_{j \neq(i, i 1)}^{N} p_{j}\right) \\
& \cdot\left(\frac{p_{i}}{1-p_{i}}+\frac{p_{i}}{1-p_{i} 1}\right) \frac{n-\mathcal{L}}{i-i} \\
& +\left(p_{i}+p_{i}\right)\left[\sum_{j \neq\left(i, i^{\prime}\right)}^{N} \frac{p_{j}}{1-p_{j}}\right] \frac{n-q}{N-i} \\
& +\frac{\left(n_{1}-\dot{L}\right)\left(n_{1}-3\right)}{(i-k)(i-j)} \sum_{\substack{N \neq j 1 \\
\\
\\
j\left(1,1^{\prime}\right)}}^{N} \frac{p_{j} p_{j 1}}{1-p_{j}} \tag{6.5}\\
& =p_{i} p_{i}\left(\frac{1}{1-p_{i}}+\frac{1}{i-p_{i}}\right) \frac{n-n}{1+2}+\frac{(n-2)(N-n)}{(N-\Sigma)(N-3)}\left(p_{i}+p_{i} 1\right) \\
& +\frac{(n-k)(N-n)}{(n-\alpha)(1-3)}\left(p_{i}+p_{1} 1\right) A_{i 1}+\frac{(n-k)(n-3)}{(N-\alpha)(N-3)} . \tag{6.6}
\end{align*}
$$

For the special case of equal procabilities $p_{i}=\frac{1}{N},(6.3)$ reauces to n / N erid (6.5) to $n(n-1) / N(N-1)$ trus providing ع. cheć. Now $\nabla_{Y G}(\hat{Y})$ is Elways positive when $P_{i} P_{i} \prime$ - $F_{i i}{ }^{\prime}>0$ for every pair (i,i'). So it is sufficient if se prove for
system 3 that

$$
\begin{equation*}
P_{i} P_{1^{\prime}}-P_{i 1^{\prime}}>0 \quad\left(1 \neq 1^{\prime}=1, \dot{\alpha}, \ldots, N\right) \tag{6.7}
\end{equation*}
$$

After some simplification, we find from (6.3) and (6.6) that

$$
\begin{align*}
& P_{i} P_{1},-P_{i 1}=\frac{(N-n)}{(N-E)^{2}}\left[\frac { (n - 2) } { (N - 3) } \left\{\left(1-p_{1}-p_{1} n^{\prime}\right)\right.\right. \\
& \left.-A_{11^{\prime}}\left(p_{1}+p_{1}\right)\right\}-\frac{p_{1} p_{1}\left(1-p_{1}-p_{1}\right)(N-n)}{\left(1-p_{1}\right)\left(1-p_{1}\right)} \\
& +(N-n) A_{1 i} \cdot \frac{p_{1} p_{i}\left(2-p_{1}-p_{i}\right)}{\left(1-p_{i}\right)\left(1-p_{i}\right)} \\
& \left.+(n-n) p_{i} p_{i}, A_{1 i}^{\mathcal{L}}\right] \text {. } \tag{6.8}
\end{align*}
$$

Consider now the term

$$
\begin{equation*}
M_{i}=\left(1-p_{i}-p_{i} 1\right)-A_{i 1}\left(p_{i}+p_{i}\right) \tag{6.9}
\end{equation*}
$$

Since

$$
\begin{equation*}
1-p_{j}>p_{i}+p_{i} \quad \text { for } j \neq\left(i, i^{\prime}\right) \tag{0.10}
\end{equation*}
$$

we have

$$
\begin{align*}
A_{i i^{\prime}}\left(p_{i}+p_{i} \prime\right) & =\sum_{j \neq\left(i, i^{\prime}\right)}^{N} \frac{p_{j}}{1-p_{j}}\left(p_{i}+p_{i}\right)<\sum_{j \neq\left(i, i^{\prime}\right)}^{N} p_{j} \\
& =1-p_{i}-p_{i} \tag{6.11}
\end{align*}
$$

so that

$$
\begin{equation*}
h_{1}>\left(1-p_{i}-p_{i},\right)-\left(1-p_{i}-p_{i},\right)=0 \tag{6.12}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \text { - } \left.\frac{p_{1} p_{1}\left(i-p_{1}-p_{1} \prime\right)}{\left(1-p_{i}\right)\left(1-p_{1}\right)}-\frac{p_{i} p_{1}\left(1-p_{1}-p_{1}\right)(N-n)}{\left(1-p_{1}\right)\left(1-p_{1} \prime\right)}\right] . \tag{6.13}
\end{align*}
$$

To prove that (6.1.5) is greater thar zero, one can use the proof of Sen (195.j) and Des Raj (19i6a) for system (z), which consists of finaing the minimum of $A_{i 1} 1$ end sucstituting it in (6.13). However, we give below ar. elementary and simpler prooi to show that (6.13) is greater then zero. Tis proof, OI course, can ce used as ar alternative and simpler proof to show that the Yaies and Grunay estimete of tiae veriance is always positive for system (z). Since

$$
\begin{equation*}
A_{i 1}^{\prime}=\sum_{j \neq\left(i, i^{\prime}\right)}^{K} \frac{p_{j}}{i-p_{j}}>\sum_{j \neq(i, i 1)}^{N} p_{i}=I-p_{i}-p_{i} \tag{5.14}
\end{equation*}
$$

ey sucstituting for $A_{\text {ii }}$ from (6.14) ir. (6.13), it foliows tiat

$$
\begin{align*}
& \left.+\frac{(\Omega-n) p_{i} p_{i}}{\left(1-p_{i}\right)\left(1-p_{i}\right)}\left(i-p_{i}-p_{i}\right)^{i}\right] \tag{3.15}
\end{align*}
$$

which is greater ther zero. Hence, the Yates ana zrundy estimate of the verience is Eirays positive for seapliré syミteri (3).
B. Two Probleius in Unequal Frobability Sampling

1. Estimation of the erficiency of unequal probability sampling over equal probability sampling

It is or interest to estimate the kain in efficiercy in using unequā procacility sacipli:.g over equal probability sampling. The veriance of the estimete of the total in equal procaililty sauplirg without replacement is

$$
\begin{equation*}
V(N \bar{y})=\frac{N^{\dot{z}}}{n}\left(1-\frac{n}{N}\right) \frac{1}{N-1}\left(\sum_{t}^{N} y_{t}^{\dot{E}}-\frac{Y^{\dot{K}}}{N}\right) . \tag{6.16}
\end{equation*}
$$

So, the prociem is to estimete (6.16) froin a semple drewn with unequal prooabilities, specifically P_{i} is the probetility for incluaing the $i^{\text {th }}$ unit in a sample of size n. Now

$$
\begin{equation*}
E \sum^{n} \frac{y_{1}^{\dot{L}}}{p_{i}}=\sum^{N} y_{i}^{c} . \tag{6.17}
\end{equation*}
$$

Also since

$$
\begin{equation*}
V(\hat{Y})=E\left(\hat{Y}^{\dot{Z}}\right)-Y^{\dot{Z}} \tag{6.18}
\end{equation*}
$$

where E erotes ine expectation, it foilows thet

$$
\text { Est. } \hat{Y}^{\dot{\alpha}}=\hat{Y}^{\dot{L}}-E s t \cdot V(\hat{Y}) .
$$

For tre estimete of $V(\hat{Y})$, we use tine Yates rin Grunay estimete or the variance, $v_{Y G}(\hat{Y})$. Therefore, en unciased estimete of $V(i \bar{y})$ irsu the sample arewn with urequal probebilizies is

Comperine this witn $v_{Y G}(\hat{Y})$, en estimete of the percentage gein in efficiency in using unequal probsbility sempling over equel
probacility sampline is

$$
\begin{equation*}
\frac{v^{\prime}(N \bar{y})-v_{Y G}(\hat{Y})}{v_{Y G}(\hat{Y})} \approx 100 \tag{6.EI}
\end{equation*}
$$

It may be noted that for the special cese of equal probabilities $P_{i}=n / N,(6 . \alpha 0)$ reduces to the familier formule for the estimate $O i$ the veriance in equal probebility sempling without replacement. The above formulas are not, of course, intended to indicate for which populations $V(\hat{Y}) \leq V(N \bar{y})$ and for which populations the inequality is inverted. They are merely intended to proviae estimates for the veriances computed from date with unecual probability sampling. An example illustrating tiis is given bejow.

Example. Let us iske the example of Horvitz and Thompson (195\%), nemely, the 20 blocks of Awes, Iowa, given in Table I, Chapter III. Using our perticuler sampling procedure for $n=\alpha$, the urits 5 aná $i 4$ are selected with probabilities proportional to size aria without replacement, essuming that the ordering of the units giver. in Tacle I is rendom. The followirg values are octaired:

$$
\hat{\underline{y}}=\frac{y_{5}}{F_{5}}+\frac{y_{14}}{\bar{P}_{14}}=4 \varepsilon 1.34
$$

Using the formulas (4.7.3) ard (4.75),

$$
\begin{aligned}
& \nabla_{Y G}(\hat{Y})=15305 \text { to } O\left(N^{I}\right) \\
& \nabla_{Y G}(\hat{Y})=15777 \text { to } O\left(N^{0}\right)
\end{aligned}
$$

These two vaiues show that the approxiciatior to $O\left(N^{1}\right)$ is duite
satisfactory. Also from (6.20),

$$
v^{\prime}(N \bar{y})=69663
$$

Therefore, an estimate of percentage gain in efficiency is equal to

$$
100\left(\frac{69663}{15805}-1\right)=341
$$

Obviously in this example the variance estimates based on sample size of two units are very unreliable. In practice, such estimates each computed from one of a lerge number of strata would be pooled.

2. Alternative estimators in unequal probability sampling

In Lost of the large scale sample surveys, we are usually interested in estimating the population totals or means of several characteristics. If the sample is selected with p.p.s. of tre supplementary variacle x, it may often hapoen thet x is rot highly correlated with all the characteristics of interest. For some of the cheracteristics y, the correlation between y arci x maj ce quite smali so thet using the usual estimetors in unequel procability sampling may give lerge Variance for the estimates of these characteristics. In such circumstences, one would like to use alternetive estimetors taet have smaller varience. In equal probecility sampling when the supplementery veriable x is uillized through retio or regression estimetes, there is no aifficulty in the gove
circumstances, since we can ignore the information on x and use the familiar estimate $N \bar{y}$ to estimete the population total. One naturally thinise of using $N \bar{y}$ as an estimate of the total In p.p.s. sampling also for just those characteristics y for which the correlation between y and x is quite small. Now, under the p.p.s. system

$$
\begin{equation*}
E(N \bar{y})=\frac{N}{n} \sum^{N} y_{1} p_{i}=Y+\left(\frac{N}{n} \sum^{N} y_{i} p_{i}-Y\right) . \tag{6.22}
\end{equation*}
$$

Also from the ordinary definition of population coverience,

$$
\begin{align*}
\operatorname{Cov} \cdot\left(y_{i}, F_{i}\right) & =\frac{1}{N}\left[\sum y_{i} P_{i}-\frac{Y \sum P_{i}}{N}\right] \\
& =\frac{r}{N^{2}}\left(\frac{N}{n} \sum y_{i} P_{i}-Y\right) \tag{5.23}
\end{align*}
$$

since $\sum^{N} P_{i}=n$. Since ve are usualiy interestea in the sampling proceaures for winch $p_{i}=n p_{i}$ winere $p_{i}=x_{i} / X$,

$$
\begin{equation*}
\operatorname{Cov} \cdot\left(y_{i}, p_{i}\right)=\frac{n}{x} \operatorname{Cov} \cdot\left(y_{i}, x_{i}\right) \tag{6.24}
\end{equation*}
$$

Therefore, iron (0.23) and (5.24),

$$
\begin{equation*}
E(N \bar{y})=Y+\frac{N^{2}}{\bar{x}} \operatorname{cov} \cdot\left(y_{i}, x_{i}\right) \tag{6.25}
\end{equation*}
$$

Since we expect to heve a very simeli correletion between y ara x for just those characteristics y zor winc we may wish to use the estimete $\overline{\mathrm{N}} \mathrm{y}$, the cias in (3.25) is small enc can ce neglectea. In fact, if there is no correletion, \mathbb{H} is on unciased estimete of Y. To compere the veriance of $\mathbb{V} \bar{y}$ anc the usual estimator \hat{Y}, under the p.p.s. system, let us consiđer
our particular sampling procedure. We have, to $O\left(N^{1}\right)$,

$$
\begin{equation*}
V(\hat{y})=V\left(\sum^{n} \frac{y_{1}}{P_{i}}\right)=\sum^{N} p_{1}\left[1-\frac{(n-1)}{n} p_{i}\right]\left(\frac{y_{1}}{P_{1}}-\frac{Y}{n}\right)^{2} . \tag{6.26}
\end{equation*}
$$

Now

$$
\begin{equation*}
V(N \bar{y})=\frac{n^{2}}{n^{2}} v\left(\sum^{n} y_{i}\right)=\frac{n^{\dot{2}}}{n^{2}} v\left(\sum^{n} \frac{y_{i} P_{i}}{F_{i}}\right) . \tag{6.27}
\end{equation*}
$$

Therefore, $V\left(\sum^{n} y_{1}\right)$ to $O(n)$ is obtained c_{i} replacing y_{i} by $y_{i} p_{i}$ in (6.26). Hence, to $O\left(N^{-3}\right)$,

$$
\begin{equation*}
V(n \bar{y})=\frac{n^{2}}{n^{2}} \sum^{N} P_{i}\left[I-\frac{(n-1)}{n} P_{i}\right]\left(y_{i}-\frac{\sum y_{i} P_{i}}{n}\right)^{2} . \tag{6.22}
\end{equation*}
$$

Since the correlation cetweer y ond x is expected to be quite suall,

$$
\begin{equation*}
\frac{M}{n} \sum y_{i} P_{i} \doteq Y \tag{6.29}
\end{equation*}
$$

Therefore, to $O\left(N^{-3}\right)$,

$$
\begin{equation*}
V(\overline{n y}) \doteq \sum^{n} P_{i}\left[1-\frac{(n-1)}{n_{i}} P_{i}\right]\left(\frac{1}{r_{i}} y_{i}-\frac{Y}{n}\right)^{2} . \tag{6.30}
\end{equation*}
$$

Now, if the correiation cetween y eric x is smell, we expect that the variation cetween the variates $\frac{1}{n} y_{i}$ is smaller than that between the variates $\frac{y_{i}}{F_{i}}=\frac{x}{n} \cdot \frac{y_{i}}{x_{1}}$. Now roting tiat the equetions (5.30) End ($\because . .26$) are weighted sums of squeres of deviations of the varietes $\frac{N}{n} y_{i}$ an $\dot{C}_{i} y_{i}$ from \because / n respectively with the same weignts, it follows that unaer the above circumstarces we expect $V(N \cdot \bar{y})$ to ce smaller then. $V(\hat{Y})$.

In unequal procability sampling with replecement, the variance of the usual estimetor $\hat{Y}^{\prime}=\sum^{n} y_{i} / n p_{i}$ is greater than or equal to the variance of the estimator $N \bar{y}$, if it is assumed that y_{i} and p_{i} (or x_{i}) are approximately independent as sinown below. Tnis assumption may not be too unrealistic when the correlation between y_{i} and x_{1} is very sinall and sampling is done with replacement. Now

$$
\begin{equation*}
v\left(\hat{Y}^{\prime}\right)=n^{-l} \sum \frac{y_{i}^{\dot{c}}}{p_{i}}-\frac{Y^{\varepsilon}}{r_{1}} \tag{6.31}
\end{equation*}
$$

and

$$
\begin{equation*}
v(N \bar{y})=\frac{N^{\Sigma}}{n} \sum y_{i}^{\varepsilon} p_{i}-\frac{n^{\bar{c}}}{n}\left(\sum y_{1} p_{i}\right)^{c} . \tag{6.32}
\end{equation*}
$$

Since y_{i} and p_{i} are assumed to be approximetely independent,

$$
\begin{align*}
& \sum y_{i} p_{i} \doteq \frac{Y \sum p_{i}}{N}=\frac{Y}{N} \\
& \sum y_{1}^{c} D_{i}=\frac{\sum y_{1}^{2} \sum p_{i}}{\mathbb{N}} \\
& \operatorname{ara} \sum \frac{y_{i}^{k}}{v_{i}}=\frac{\sum y_{i}^{2} \sum \frac{1}{p_{i}}}{N} . \tag{0.33}
\end{align*}
$$

Therefore, $V(N \bar{y})$ is smiller tizer or equal to $V\left(\hat{Y}^{\prime}\right)$ if

$$
\begin{equation*}
\frac{M}{n}\left(\sum y_{i}^{\dot{\alpha}}\right)\left(\sum p_{i}\right)-\frac{Y^{2}}{n} \leq \frac{1}{\Gamma_{n}}\left(\sum y_{i}^{\dot{\alpha}}\right)\left(\sum \frac{1}{p_{i}}\right)-\frac{Y^{\alpha}}{r^{2}} \tag{6.34}
\end{equation*}
$$

or

$$
\begin{equation*}
N^{-1} \sum \frac{1}{O_{1}} \geq N \sum p_{1}=N . \tag{6.35}
\end{equation*}
$$

Now, the harmonic mean of the $p_{i}^{\prime} s$ is smaller than or equal to the aritametic mean of the $p_{i}^{\prime} s, i \cdot \underline{e}$.

$$
\begin{align*}
& \frac{N}{\sum \frac{1}{p_{1}}} \leq \frac{\sum p_{1}}{N}=N^{-1} \\
& \text { or } N^{-1} \sum \frac{1}{p_{1}} \geq N \tag{6.36}
\end{align*}
$$

wilch is the saiue as (6.35). Hence, the $v \equiv$ riance of $N \bar{y}$ is sLailer tian or equal to the variance of \hat{Y}^{\prime}.
C. Efficiency of Stratification

Stratification is an important device to increase the precision of the estimators. A usefil stratified unequal probacility sampline desigr is described in tine next section. Here ve consiaer efficiency of stratificetion for unequal procacility sampling witiout replecement. Cochrer. (195.j) has consiaerea the efficiency of stretificetion ir equal probability sempline without replecerent ar. hes estifeted the gain in eificiency due to stratification. Suanetwe (1954) has considered tie case of unecual protecility samiang witi replacement. The proclem involved is to compere the estimate of the variance of tive giver siratifiled sanple with the estimate of the variance of an unstratifi expressed in ierms of the urits in the stratified semple. Efficiency oi stretification for unequal procecility sempling
without replacement has not been considered in the literatifie, the reasun prodady is aue to the difficulties involved in evaluating the probabilities P_{i} and $P_{i 1}$ involved in the variance formula, when $r>z$. The only procedure availaole which gives simple expressions for P_{1} gnd P_{11} when $n>2$ seems to be that of didzuno, which has some restrictive features due to the fact that only one unit is selected with unequal probabilities and the remaining ($n-1$) urits are selected with equal procabilities.

Since we have developed an asymptotic theory for a particular unequal probacility samoling procedure whici provides compact expressions for the veriance wher. $n>\varepsilon$, it may ce useful to spell out here the formulas for evaluating efficiency of stratificetion ir unequei procacility sampling without replacement.

Let there ie L strata with N_{h} units ir the $\mathrm{h}^{\text {th }}$ stretum ($n=1, \ldots, L$). A sampie of size n_{h} is arewn from the $h^{\text {ti }}$ stratum witi unequal procacilities ana without replecement so tinat

$$
\begin{equation*}
\hat{Y}_{s}=\sum_{n}^{L} \sum_{i}^{n_{h}} \frac{y_{h t}}{F_{h t}}=\sum_{h}^{L} \hat{Y}_{h} \tag{0.37}
\end{equation*}
$$

is an unciased estimste oi the population total Y where $F_{h t}$ is the procacility for selecting the $t^{\text {tin }}$ unit of tre $h^{i i}$ stratum. Since the samples are draw. Independeritly froui each stretur,

$$
\begin{align*}
V\left(\hat{Y}_{s}\right)= & \sum_{h}^{L} V\left(\hat{Y}_{h}\right)=\sum_{h}^{L}\left[\sum_{t}^{N_{h}} \frac{y_{h t}}{P_{h t}}\right. \\
& +\sum_{t \neq t^{\prime}}^{N_{h}} \frac{P_{h t t^{\prime}}}{P_{h t^{\prime}} P_{h t^{\prime}}} y_{h t^{\prime}}^{y_{h t}}-Y_{h}^{2} \tag{6.38}
\end{align*}
$$

where $P_{\text {ht t }}$ is the probability for selecting both units t ara t' of the $h^{\text {th }}$ stratum. Equation (6.38) is a general formula for any sampling procedure. Now, for our particular sampling procedure, assuming that N_{h} is large we have to $O\left(N_{h}^{i}\right)$,

$$
\begin{equation*}
V\left(\hat{Y}_{n}\right)=\sum_{i}^{M_{n}} P_{h t}\left[1-\frac{\left(n_{n}-1\right)}{n_{h}} P_{h t}\right]\left(\frac{y_{n t}}{P_{n t}}-\frac{Y_{h}}{n_{h}}\right)^{\varepsilon} \tag{6.39}
\end{equation*}
$$

where $P_{h t}=n_{h} p_{h t}$ and Y_{h} is the copulation total for the $h^{\text {th }}$ stratuin. If the size measures x_{i} are good for tine population as a whole, we car offer. expect that the same size measures to de good for each of the strata so the usuaijy we taine $p_{h t}=x_{h t} / X_{h}$ where X_{h} is the $h^{\text {th }}$ stratum total for the x_{i}. using (6.39) it follows that

$$
\begin{align*}
V\left(\hat{Y}_{s}\right)= & \sum_{h}^{L} \sum_{t}^{I_{n}} \frac{p_{h t}}{n_{n}}\left(\frac{y_{h t}}{p_{h t}}-Y_{h}\right)^{i} \\
& -\sum_{n}^{L} \frac{\left(n_{h}-I\right)}{n_{h}} \sum_{t}^{i_{n}}\left(y_{h t}-Y_{h} p_{h t}\right)^{L} \tag{6.40}
\end{align*}
$$

for our saipliry procedure. Also, the Yates end Grundy
estimate of the variance of \hat{Y}_{s} for any sampling procedure is

$$
\begin{align*}
v_{Y G}\left(\hat{Y}_{s}\right)= & \sum_{h}^{L} v_{Y G}\left(\hat{Y}_{h}\right)=\sum_{h}^{L} \sum_{t>t^{\prime}}^{\mathrm{H}_{h}} \frac{P_{h t^{\prime}} P_{h t^{\prime}}-P_{h t t^{\prime}}}{P_{h t t^{\prime}}} \\
& \cdot\left(\frac{y_{h t}}{P_{h t}}-\frac{y_{h^{\prime}}}{P_{h t^{\prime}}}\right)^{z} . \tag{6.41}
\end{align*}
$$

For our sampling procedure, using the estimate of the variance of \hat{Y}_{h} to $O\left(N_{h}^{I}\right)$, we have

$$
\begin{align*}
v_{Y G}\left(\hat{Y}_{s}\right)= & \sum_{h}^{L}\left(n_{h}-1\right)^{-1} \sum_{t>t^{\prime}}^{n_{h}} \\
& \cdot\left(I-P_{h t}-P_{h t^{\prime}}+n_{h}^{-1} \sum_{t}^{N_{h}} p_{h t}^{2}\right)\left(\frac{y_{h t}}{P_{h t}}-\frac{y_{h t^{\prime}}}{P_{h t^{\prime}}}\right)^{2} .
\end{align*}
$$

Also, for an unstratified sample of size $n=\sum^{i} n_{h}$, the variance formula for the estimate $\hat{\forall}$ is

$$
\begin{align*}
& V(\hat{Y})=\sum^{N} \frac{y_{j}^{\dot{L}}}{F_{j}}+\sum_{i \neq j^{\prime}}^{N} \frac{P_{i 1^{\prime}}}{P_{i} P_{i}{ }^{\prime}} y_{i y^{\prime}},-Y^{2} \\
& =\sum_{i>i^{\prime}}^{i}\left(P_{i} F_{i^{\prime}}-P_{i 1},\left(\frac{y_{i}}{P_{i}}-\frac{y_{1}}{P_{i^{\prime}}}\right)^{2}\right. \tag{6.4.3}
\end{align*}
$$

where F_{i} and $F_{i 1}$ are respectively the probability for selecting the $i^{\text {th }}$ unit and the probability for selecting both the units i raj i' in er unstratifieã sample of size n. For our samplirie procedure, to $O\left(\mathbb{N}^{\mathrm{I}}\right)$ we have

$$
\begin{equation*}
V(\hat{Y})=\sum^{n} F_{i}\left[I-\frac{(n-1)}{n} P_{i}\right]\left(\frac{y_{1}}{P_{i}}-\frac{Y}{n}\right)^{2} \tag{6.44}
\end{equation*}
$$

where $P_{i}=n p_{i}$ with $p_{i}=x_{1} / X$.
Let the $1^{\text {th }}$ unit in the population correspond to the $t^{\text {th }}$ unit in the $h^{\text {th }}$ stratum so that $p_{i}=p_{n t} p_{h}$. where p_{h}. $=$

$$
\sum_{h}^{N_{h}} p_{i}=\frac{X_{h}}{X} . \quad \text { Then (} 0.44 \text {) can be written as }
$$

$$
\begin{align*}
v(\hat{Y})= & \sum_{h}^{L} \sum_{t}^{N_{h}} \frac{p_{h t}}{n p_{h}}\left(\frac{y_{h t}}{p_{h t}}-y_{h}\right)^{z}+\frac{1}{n} \sum_{h}^{L} p_{h}\left(\frac{y_{h}}{p_{h}}-Y\right)^{2} \\
& -\frac{(n-1)}{n} \sum_{h}^{L} \sum_{t}^{L}\left(y_{h t}-p_{h t} p_{h}\right)^{\varepsilon} . \tag{6.45}
\end{align*}
$$

Therefore from (6.45) an ar (6.40)

$$
\begin{align*}
V(\hat{Y})-V\left(\hat{Y}_{s}\right)= & \sum_{h}^{L}-\sum_{t}^{N_{h}}\left(\frac{1}{n p_{h .}}-\frac{1}{n_{h}}\right) p_{h t}\left(\frac{y_{h t}}{p_{h t}}-Y_{h}\right)^{z} \\
& +\frac{1}{n} \sum_{h} p_{h}\left(\frac{Y_{h}}{p_{h}}-v\right)^{z} \\
& -\frac{(n-I)}{n} \sum_{h}^{L} \sum_{t}^{N_{h}}\left(y_{h t}-p_{h t} p_{h} . Y\right)^{2} \\
& +\sum_{h}^{L} \frac{\left(n_{h}-I\right)}{n_{h}} \sum_{t}^{N_{h}}\left(y_{h t}-p_{n t} v\right)^{2} \tag{5.46}
\end{align*}
$$

In tine r.h.s of (0.46), the first two terms are of larger order thar the lest trio terms. So, if the allocation of the
n_{h} is such that $n_{h}=n p_{h}$., we expect $V\left(\hat{Y}_{s}\right)$ to be smaller than $V(\dot{\bar{Y}})$ 。

Let us now consider the estimation of the efficiency of stratification. Let $F_{h t}^{\prime}$ and $P_{h t t}^{\prime}$ derote P_{i} and $P_{i i}$, respectively where i and i^{\prime} correspond to t and $t^{\text {th }}$ units in the $h^{\text {tin }}$ stratum. Similariy let $P_{\text {hin }}^{\prime} t t^{\prime}$ denote P_{11}, where 1 and i^{\prime} correspond to units t and t^{\prime} in the $h^{\text {tin }}$ and h^{\prime} th streta respectively. Then, (6.43) cen be written as

$$
\begin{align*}
V(\hat{Y})= & \sum_{h}^{L} \sum_{t>t^{\prime}}^{N_{h}}\left(P_{h t^{\prime}}^{\prime} P_{h t^{\prime}}^{\prime}-P_{h t t^{\prime}}^{\prime}\right)\left(\frac{y_{h t}}{P_{h t}^{\prime}}-\frac{y_{h t^{\prime}}}{P_{h t^{\prime}}^{\prime}}\right)^{2} \\
& +\sum_{h>h^{\prime}}^{L} \sum_{t}^{N_{h}} \sum_{i^{\prime}}^{N_{h}^{\prime}}\left(P_{h t^{\prime}}^{\prime} P_{h^{\prime} t^{\prime}}^{\prime}-P_{h h^{\prime} t t^{\prime}}^{\prime}\right)\left(\frac{y_{h t}}{P_{h t}^{\prime}}-\frac{y_{h h^{\prime} t^{\prime}}}{P_{h^{\prime} t^{\prime}}^{\prime}}\right)^{\varepsilon} . \tag{6.47}
\end{align*}
$$

Therefore, an unbiased estimate of (6.47) from the given stratified sample is

$$
\begin{aligned}
& v(\hat{Y})=\sum_{n}^{L} \sum_{t>t^{\prime}}^{n_{h}} \frac{\left(F_{h t^{\prime}}^{\prime} P_{n t^{\prime}}^{\prime}-P_{n t t^{\prime}}^{\prime}\right)}{P_{j t t^{\prime}}^{\prime}}\left(\frac{y_{h t}}{P_{h t}^{\prime}}-\frac{y_{h t^{\prime}}}{P_{h t^{\prime}}^{\prime}}\right)^{\kappa} \\
& +\sum_{h>h^{\prime}}^{L} \sum_{t}^{n_{h}} \sum_{t^{\prime}}^{n_{h}{ }^{\prime}} \frac{\left(P_{h t^{\prime}}^{\prime} P_{h^{\prime} t^{\prime}}^{\prime}-P_{h h^{\prime} t t^{\prime}}^{\prime}\right)}{F_{h t^{\prime}} P_{h^{\prime} t^{\prime}}}\left(\frac{y_{h t}}{P_{h t}^{\prime}}-\frac{y_{h^{\prime} t^{\prime}}}{P_{h^{\prime} t^{\prime}}^{\prime}}\right)^{\dot{E}} .
\end{aligned}
$$

In the special case of equal proocbilities, we have $F_{i}=r_{1} / \mathrm{I}$, $F_{i i^{\prime}}=n(n-I) / N(i-I), P_{h t}=n_{n} / N_{h}$ and $P_{h t t^{\prime}}=n_{n}\left(r_{n}-1\right) /$ $i_{n}\left(i_{n}-1\right)$ ara it car be shown after some manipulatior that
(6.48) reduces to the expression given by Cochran (1953) which is

$$
\begin{align*}
v(\hat{Y})= & \frac{(N-n)}{N_{(}(N-I)}\left[N \sum N_{h} s_{h}^{\mathcal{L}}-N \sum \frac{\sum_{h} s_{h}^{2}}{n_{h}}+\sum \frac{n_{h}^{2} s_{h}^{2}}{n_{h}}\right. \\
& \left.-\sum N_{h} s_{h}^{2}+N \sum N_{1} \bar{y}_{h}^{\dot{z}}-\left(\sum N_{h} \bar{y}_{h}\right)\right] \tag{6.49}
\end{align*}
$$

where \bar{y}_{h} and s_{h}^{i} are respectively the sample mean and the sample wear. square for the $h^{\text {th }}$ stratum. Also it may be noted that tine situations in which $v(\hat{Y})$ is positive are similar to those in which the Yates ard Grundy estimate of tie variance is positive.

For our particular sampling procedure, the general
formula (6.48) reduces to

$$
\begin{align*}
& v(\hat{y})=\sum_{h}^{L} \sum_{t>t^{i}}^{n_{h}} \frac{1}{n n_{h}\left(n_{h}-1\right)}\left[1-\left(p_{h t}+p_{n t^{1}}\right)\right. \\
& \left.\cdot\left\{\left(r_{1}-I\right) p_{h}+I\right\}+(n-I) \sum_{n} p_{h}^{\alpha} \cdot \sum_{t} p_{h t}^{z}+\sum_{i} p_{n t}^{i}\right] \\
& x\left(\frac{y_{n \tau}}{p_{n t}}-\frac{y_{h t^{\prime}}}{p_{n t^{\prime}}}\right)^{i} \\
& +\sum_{n>n^{\prime}}^{i} \sum_{t}^{n_{n}} \sum_{t}^{n_{h}} \frac{p_{h} \cdot p_{h^{\prime}}}{n n_{h} n_{h}} \cdot\left[1-(r-1)\left(p_{h t} p_{n} .\right.\right. \\
& \left.\left.+p_{n^{\prime} \tau^{\prime}} p_{h^{\prime}}\right)^{\prime}+(n-1) \sum_{h} p_{n}^{i} \cdot \sum_{i} p_{n \tau}^{i}\right] \\
& x\left(\frac{y_{n t}}{p_{n \tau^{\prime}} p_{n .}}-\frac{y_{\lambda^{\prime} t^{\prime}}}{p_{h^{\prime} t^{\prime}} p_{n^{\prime}}}\right)^{\dot{\varepsilon}} \tag{6.50}
\end{align*}
$$

after sucstituting for $P_{1 i}$, to $O\left(N^{-3}\right)$ and $P_{h t t}$ to $O\left(N_{h}^{-3}\right)$. Finally, the estimated percentage gain in erficiency due to stratification is given by

$$
\begin{equation*}
\frac{\mathbf{v}(\hat{Y})-v_{Y G}\left(\hat{Y}_{s}\right)}{v_{Y G}\left(\hat{Y}_{s}\right)} \times 100 . \tag{6.51}
\end{equation*}
$$

D. A Stratified Unequal Probability Sampling Design

As mentioned earlier in Chapter II, the sentiments expressed by Neibull (1960) regarding the desirability of sampling the units with higher weights than the units with lower weights, can be incorporated in the following stratified cesign: First, ranis the uniis accoraing to their weights (say weight or a unit is proportional to its size measure). Ther form several strate by grouping the units in thet order, such that each stratium has approximetely the same totel size.

Draw two units iron each stratum with unecual probabilities, usually with p.p.s. (assuming of curse thet there ere at least two units in each stratuii). It is not necessary that uriecual procacility saiplire hes to ce used in each stretum. In fiaut, in sofe of tine strata we may prefer to use equal prodacility sampling since the size measures of the urits may not very much in these strata. By stretifyine in this menner, the numicer of urits in a stratum with hizher size measures is smaller thar the numcer of units in a straturi witi lower size measures since the strata ere all approximately of equal total
size. Therefore, the intensity of sampling in the strete witil higher size measures is greater than the intensity of samplirg in the strata with lower size measures since the sample size is the same (namely two) in all the strata. For exancle, if two units have very large size measures, these two units may constitute a stratum so that these two units will ce included in the sample with certainty, i.e. the samping intersity in this stratum is hundred percert. The above stratified design provides a valid estimate of the variance of the estimate of the population total or mean unlike the design where only units with higher veights ere sanipled.

128

VII．LITERAIURE CITED

Abdel－Aty，S．H．1954．Tailes of generalized k－statistics． Biometrika，41：¿53－260．

Cochran，w．G．19：3．Sampling techniques．John iiley and Sons，Incorporeted，New York．

Des iaj．1904．Ratio estimation in samplire with equal and unequal procacilities．Journal of the Indian Society of Agricultural Statistics，6：127－138．
－1956a．Some estimetors in sampling with varying procabilities without replacement．Journal of the American Statistical Associetion，5l：Ë69－غ84．
－1956．A note on the determination of optimum proicicilities in sanpline vithout replacement．Sanziay \bar{a} ， 17：197－200．
－1958．On the relative accuracy of some sanipling technicues．Journal of the American Statistical Asso－ ciation，53：98－101．

Durcir，J．190．5．Some results in sempling treory when the urits are selectec with unequal probabilities．Journal uf tife Royal Statistical Society，Series B，l5：̌6̌－

Goamce，V．F．1955．A unilied theory of sempline from finite populations．Journal of the Soyal Statistical Societ：Series B，17： $669-\Sigma 77$.

Goodiaxt，A．a：à L．Kish．1950．Control ceyord stretifica－ tion；a tecinicue in procecility semolire．Jourral of the Abericar Stetistical Associetion，45：350－37\％．
 samitire from finite populations．Anneis of iethemetical SUEiistiこs，14：3－3．j－36え．

Jartle ，彐．O．anci A．Ross．19：4．Unuiesed retio estimetors． Nature，174：ぐフ．
 OÍ samplir．e without replaceuer．t iroc a îirite uriverse． Jourral oi the Americer Steuistieal Associetior，47： 663－685．

Kencall，. ．G．and A．Stuart．1953．The advanced theory of stailsuics．Hainer fuclisming Company，Incorporated， New York．

Koop，J．C．1957．Contricutions to the general theory of sampling finite populations without replacement and with unequal procabilities．Unpuclished Ph．D．Thesis． Library，Norti Carolina State College，Raletea，North Carolina．

Laniri，D．B．1901．A metiok of samle selection proviaing unciased ratio estimetes．Eulletin of International Statistical Institute，33：1．33－140．

Fadow，\quad ．G．194E．On the limiting districutions of esti－ mates wased on samiles from firite universes．Arnals or Matnematical Statistics，15：535－645． －1949．On the theory of systehetic sampling． II．Ainals of mathematical Statistics， $20: 333-354$ ．
mickey，k ．R．1954．Some finite poouletion unciased ratio and regression estimatons．（ilimeo．）Stetistical Lacuretory，Iowa State University of Science and Tech－ nology，Ailes，Iova． －195®．Some finite populatior uncirsea retio erd regression estimetors．Jourrel of the Acericar Statis－ ticel Associetion，54：594－612．

Biuzuno， A .1950 ．Ar outline of the theory if sampling systems．Annels oi the Institute of Sietisticel letio eletics（Japar），1：149－1こう．
surthy，is．$\therefore . \quad$ 1957．Orāered and unoraereãestimetors in

Varain，E．D．1951．On sampling without replecemert with varying procebilities．Jounnal of the Incien Society Of Agricultural Statistics，3：169－174．

Said，E．1905．A comperison setween alternative techniques uzire suyjemertary iriormation in sample survey design． Unpuclished Zn．D．Thesis．Licrery，Nortin Caroline State Coilege，Raleign，liortin Caroiira．
Se：，A．A．19シう．On the estimete of the veriance in saminge Wiitn veryine 戶roóncilities．Jourral of tae Incien Soci＝ty of Ágricultural Stetistios，5：IIc－İ？．
_ 1955. A simple desigri in sampline with verying prodacilitios. Journal of the Indien Scciety of Agricultural Statisties, 7:57-69.

Stevers, $\boldsymbol{N} . \operatorname{L}$. 1950. SamplinE without replacement with probenility proportional to size. Journal of the Royal Statistical Society, Series B, $20: 393-397$.

Sukhatne, P. V. 1954. Saumlirg theory of surveys with auplicetion. Iowa State College Press, Ames, Iova.

Thoupson, D. J. 195\%. A tineory of sampling finite universes にith arbitrary probabilitius. Unpuilished Fin. D. Thesis. Library, Iowa State University of Science and Technology, Anes, Iowa.

Heituli, C. 1960. Some aspects of statisticel inference with applications to sample survey theory. Stetistical Institute, University of Cothencure, Sweden.
 their efficiencies. Unpublished Pn. E. Thesis. Litrairy, Iona Stete University ui Scierce anc Technology, Anes, Iowa.
:ishart, J. 195\%. boment coefficients of the k-steiistics in semiles frow a finite populftio:. Eiometrias, 39: 1ーI3.

Yates, F. 1949. Sampline metroas for censuses aria surveys. Charles Griffin and Company, Incorporated, Iondon.
ard P. w. Grundy. 19e3. Selection without replaceient irom within straia with procacility proportional to size. journal of the Royal Statistical Society, Series E, lo: $235-261$.

Zarkovic, 3. 3. 1950. On. the efficiency of sameling with varying probecilities and the seleciion of units with revlecement. Metrixa, 3:53-50.

VIII. ACKNOWIEDGNENTS

The aution is greatly indected to Professur H. O. Hertley ror his vaiuacle guicance durirg the preparetion of this thesis. Sincere tianks se elso expressed to Professor A. A. Eencroit for his aina açice frow time to time.

Acinowledguent is Eiso mede for the support oi tils work by £ casic rescarch greit irom the Office of Orainarice Research, ünited States Arcy.

IX. APPENDIX

Madow (1948) has shown that the distribution of 9 standerdized total of v units from a population of size N, tends to a normal distribution witi meen zero ana stancard deviation 1 , provided that an $e>0$ exists such that $\frac{v}{N}<l-e$ if v and N are suificiently large. That is, all $k_{r}(r \geq 3)$ of the stancarcized total ere zero in the limit. koreover it follows from Nadu's results that $k_{r}(r \geq 3)$ is et least $O\left(N^{-\frac{1}{2}}\right)$ with $v=$ qu. This result inneaiately shows that none of the k_{r} 's ($r \geq 3$) contribute to $P_{l \&}$ to $O\left(N^{-3}\right)$. However, iedow's result is not sufilcient to show thet (4.47) for P_{12} is correct to $O\left(\mathrm{~K}^{-4}\right)$ since we reed to show thet $\mathrm{k}_{\mathrm{r}}(\mathrm{r} \geq 4)$ is at least $O\left(N^{-c}\right)$ with $c>I / \Sigma$. We now give a heuristic ergument to soow that k_{r} is in fact $O\left(N^{-\frac{r}{2}+1}\right)$ with $v=$ qi.. It may be noted that for infinite populetions it is well known that k_{r} is $O\left(v^{-\frac{r}{Z}+1}\right)$. Usiiag the results of iisisart (195í) arid AiccelAty $(1 \Omega \div 4)$, if is verifiec below that $k_{r}(r \leq 8)$ is $O\left(N^{-\frac{r}{2}+1}\right.$, with $v=$ G.. The diniculty involvea in giving e generel proof is that ro general rel-tions fur the standerined
 are available except tict Abcel-Aty provicies e táile giving tae $r \in l \equiv t i o n s$ up to $r=$ lic. Ir. general ve heve

$$
K_{i j t} \ldots=\dddot{K}_{i} A_{j} K_{t} \cdots+\text { terms of } O\left(N^{-1}\right) \text { era samiler }
$$

Now frow Wishart，the fourth moment μ_{4} of the standardized total is

$$
\begin{equation*}
\mu_{4}=a^{-2}\left[K_{4}\left\{a^{3}-\frac{2}{N^{\prime}}\left(a-N^{-1}\right)\right\}+3 a^{2} K_{22}\right] \tag{9.1}
\end{equation*}
$$

where $s=1 / v-1 / N$ ．Using the relations

$$
K_{\Sigma \Sigma}=\frac{N-1}{N+1} K_{2}^{2}-\frac{(N-1)}{N(N-1)} K_{4}
$$

ana

$$
\begin{equation*}
k_{4}=\mu_{4}-3 \mu_{2}^{2} \tag{9.3}
\end{equation*}
$$

it is seen that

$$
\begin{equation*}
k_{4}=K_{4}\left[a-\frac{\left(a-n^{-1}\right)}{N a}-\frac{3(n-1)}{1(1)+1)}\right]-\frac{6}{2+1} K_{反}^{E} \tag{0.4}
\end{equation*}
$$

which is $O\left(N^{-1}\right)$ with $v=$ ali．Similarly，

$$
\begin{align*}
& k_{5}=K_{5}\left[a^{\frac{3}{2}}-\frac{\nabla}{1 a^{\frac{3}{2}}}\left(a^{3}+n^{-3}\right)\right] \\
& +\left[\frac{6}{1+5} \mathbb{K}_{3}+\frac{(N-1)}{N(N+5)} K_{5}\right]\left[\frac{6}{\frac{1}{\frac{1}{2}}}-\frac{4}{a^{\frac{1}{2}}}\left(2-N^{-1}\right)-6 e^{\frac{1}{2}}\right]
\end{align*}
$$

winch is $O\left(N^{-\frac{3}{2}}\right)$ with $\nabla=$ oN．Also

$$
\begin{align*}
& \mu_{6}=a^{-3}\left[a v\left(a^{5}+N^{-5}\right) K_{6}+15 v a^{2}\left(a^{3}+N^{-3}\right) K_{4 \%}\right. \\
& \left.+10 a^{2}\left(\varepsilon-N^{-\dot{\alpha}}\right)^{2} K_{33}+10 a^{3} K_{\angle え 亡}\right] \text {. } \tag{9.6}
\end{align*}
$$

Note that in the r．h．s．of（ 9.6 ），the first term is $O\left(N^{-6}\right)$ ， the next trio terms are $O\left(K^{-1}\right)$ era the lest teri is $O\left(N^{O}\right)$ with
$\mathbf{v}=\mathrm{qN}$. Using the relation

$$
\begin{equation*}
\Sigma_{6}=\mu_{6}-15 \mu_{4} \mu_{z}-10 \mu_{3}^{2}+30 \mu_{2}^{3} \tag{9.7}
\end{equation*}
$$

and the relations for $K_{i j t} \ldots$ in terms of K_{i} from inshert, It is found that all terms of $O\left(N^{-1}\right)$ and $O\left(N^{O}\right)$ in (9.6) becone cumulant corrections which cancel so that k_{6} is $O\left(N^{-2}\right)$. Now from Acdel-Aty

$$
\begin{equation*}
\mu_{7}=a^{-\frac{7}{\tilde{Z}}}\left[K_{7} A_{7}+i I K_{5<} A_{5} A_{2}+35 K_{43} A_{4} A_{3}+105 K_{3 \Sigma \Sigma} A_{3} A_{2}^{2}\right] \tag{9.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=a^{r-1}-\frac{a^{r-\alpha}}{N}+\frac{a^{r-3}}{N^{z}} \cdots(-1)^{r-\alpha} \frac{a}{N^{r-\alpha}} \tag{9.9}
\end{equation*}
$$

Using the relations

$$
\begin{equation*}
k_{7}=\mu_{7}-\alpha i \mu_{5} \mu_{2}-35 \mu_{4} \mu_{3}+i 10 \mu_{3} \mu_{\dot{2}}^{\dot{Z}} \tag{9.10}
\end{equation*}
$$

 that k_{r} is $O\left(N^{-\frac{\tilde{V}}{\tilde{Z}}}\right)$. Similarly, it is verified that k_{g} is $0\left(l^{-3}\right)$. In general we have frow Acdel-Aty

$$
\begin{aligned}
& \mu_{r}=a^{-\frac{r}{\dot{¿}}}\left[K_{r} A_{r}+\sum_{\substack{i, j \geq i \\
i+j=r}} c_{i-1, j-1}\left(v, N ; K_{i j}+\cdots\right.\right.
\end{aligned}
$$

where

$$
\begin{equation*}
G_{i-1, j-1, \tau-1}, \ldots(v,: \because)=\overline{(1!j!\underline{L} \cdots)} \frac{r!}{\Gamma(s!m!\cdots)} \hat{A}_{1} A_{j} \hat{A}_{t} \cdots \tag{9.12}
\end{equation*}
$$

where s of the $A^{\prime} s$ are equal, A of the $A^{\prime} s$ are equal and so or. Note that $a^{-\frac{r}{2}} C_{1-1,}, j-1, t-1, \ldots(v, N)$ is $O\left(N^{-}[(i-1)+(j-I)+(t-I)+\cdots]+\frac{r}{\Sigma}\right)$. Since we nave verified that k_{r} is $O\left(N^{-\frac{r}{i}+1}\right)$ up to $r=8$, we conjecture tinct using (G .II) and the relation for k_{r} in terms of $\mu_{i}(i \leq r)$ which involves Bernoulli numbers, an also tie relations for $K_{i j}$... in terms of K_{1}, all terms of order larger than $O\left(I^{-\frac{r}{2}+I}\right.$) become cumulant corrections mich cancel so that k_{r} is $O\left(i^{-\frac{r}{z}+1}\right)$. we should recall here that ar indewendent checks on the order of magaitude of $F_{\text {le }}$ was given earlier in Chapters IV and V.

