
Rejection sampling

In numerical analysis and computational statistics, rejection sampling is a basic technique used to

generate observations from a distribution. It is also commonly called the acceptance-rejection

method or "accept-reject algorithm" and is a type of exact simulation method. The method works for

any distribution in  with a density.

Rejection sampling is based on the observation that to sample a random variable in one dimension,

one can perform a uniformly random sampling of the two-dimensional Cartesian graph, and keep the

samples in the region under the graph of its density function.
[1][2][3]

 Note that this property can be

extended to N-dimension functions.
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To visualize the motivation behind rejection sampling, imagine graphing the density function of a

random variable onto a large rectangular board and throwing darts at it. Assume that the darts are

uniformly distributed around the board. Now remove all of the darts that are outside the area under

the curve. The remaining darts will be distributed uniformly within the area under the curve, and the

x-positions of these darts will be distributed according to the random variable's density. This is

because there is the most room for the darts to land where the curve is highest and thus the

probability density is greatest.

The visualization as just described is equivalent to a particular form of rejection sampling where the

"proposal distribution" is uniform (hence its graph is a rectangle). The general form of rejection

sampling assumes that the board is not necessarily rectangular but is shaped according to the density

of some proposal distribution that we know how to sample from (for example, using inversion

sampling), and which is at least as high at every point as the distribution we want to sample from, so

that the former completely encloses the latter. (Otherwise, there would be parts of the curved area we

want to sample from that could never be reached.)
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Rejection sampling works as follows:

1. Sample a point on the x-axis from the proposal distribution.
2. Draw a vertical line at this x-position, up to the maximum y-value of the probability density

function of the proposal distribution.
3. Sample uniformly along this line from 0 to the maximum of the probability density function. If the

sampled value is greater than the value of the desired distribution at this vertical line, reject the x-
value and return to step 1; else the x-value is a sample from the desired distribution.

This algorithm can be used to sample from the area under any curve, regardless of whether the

function integrates to 1. In fact, scaling a function by a constant has no effect on the sampled x-

positions. Thus, the algorithm can be used to sample from a distribution whose normalizing constant

is unknown, which is common in computational statistics.

The rejection sampling method generates sampling values from a target distribution  with arbitrary

probability density function  by using a proposal distribution  with probability density .

The idea is that one can generate a sample value from  by instead sampling from  and accepting

the sample from  with probability , repeating the draws from  until a value is

accepted.  here is a constant, finite bound on the likelihood ratio , satisfying 

 over the support of ; in other words, M must satisfy  for all values of 

. Note that this requires that the support of  must include the support of —in other words, 

 whenever .

The validation of this method is the envelope principle: when simulating the pair 

, one produces a uniform simulation over the subgraph of . Accepting only pairs such that 

 then produces pairs  uniformly distributed over the subgraph of  and

thus, marginally, a simulation from 

This means that, with enough replicates, the algorithm generates a sample from the desired

distribution . There are a number of extensions to this algorithm, such as the Metropolis

algorithm.

This method relates to the general field of Monte Carlo techniques, including Markov chain Monte

Carlo algorithms that also use a proxy distribution to achieve simulation from the target distribution 

. It forms the basis for algorithms such as the Metropolis algorithm.

The unconditional acceptance probability is the proportion of proposed samples which are accepted,

which is
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where , and the value of  each time is generated under the density function 

 of the proposal distribution .

The number of samples required from  to obtain an accepted value thus follows a geometric

distribution with probability , which has mean . Intuitively,  is the expected number of the

iterations that are needed, as a measure of the computational complexity of the algorithm.

Rewrite the above equation,

Note that , due to the above formula, where  is a probability

which can only take values in the interval . When  is chosen closer to one, the

unconditional acceptance probability is higher the less that ratio varies, since  is the upper

bound for the likelihood ratio . In practice, a value of  closer to 1 is preferred as it

implies fewer rejected samples, on average, and thus fewer iterations of the algorithm. In this

https://en.wikipedia.org/wiki/Geometric_distribution


sense, one prefers to have  as small as possible (while still satisfying , which

suggests that  should generally resemble  in some way. Note, however, that  cannot

be equal to 1: such would imply that , i.e. that the target and proposal

distributions are actually the same distribution.

Rejection sampling is most often used in cases where the form of  makes sampling difficult. A

single iteration of the rejection algorithm requires sampling from the proposal distribution, drawing

from a uniform distribution, and evaluating the  expression. Rejection sampling is

thus more efficient than some other method whenever M times the cost of these operations—which is

the expected cost of obtaining a sample with rejection sampling—is lower than the cost of obtaining a

sample using the other method.

The algorithm, which was used by John von Neumann
[4]

 and dates back to Buffon and his needle,
[5]

obtains a sample from distribution  with density  using samples from distribution  with density 

as follows:

Obtain a sample  from distribution  and a sample  from  (the uniform distribution
over the unit interval).
Check whether or not .

If this holds, accept  as a sample drawn from ;
if not, reject the value of  and return to the sampling step.

The algorithm will take an average of  iterations to obtain a sample.

Rejection sampling can be far more efficient compared with the naive methods in some situations. For

example, given a problem as sampling  conditionally on  given the set , i.e., ,

sometimes  can be easily simulated, using the naive methods (e.g. by inverse transform sampling):

Sample  independently, and leave those satisfying 
Output: 

The problem is this sampling can be difficult and inefficient, if . The expected number

of iterations would be , which could be close to infinity. Moreover, even when you apply

the Rejection sampling method, it is always hard to optimize the bound  for the likelihood ratio.

More often than not,  is large and the rejection rate is high, the algorithm can be very inefficient.

The Natural Exponential Family (if it exists), also known as exponential tilting, provides a class of

proposal distributions that can lower the computation complexity, the value of  and speed up the

computations (see examples: working with Natural Exponential Families).
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Given a random variable ,  is the target distribution. Assume for the

simplicity, the density function can be explicitly written as . Choose the proposal as

where  and . Clearly, , is from a

natural exponential family. Moreover, the likelihood ratio is

Note that  implies that it is indeed a log moment-generation function, that is, 

. And it is easy to derive the log moment-

generation function of the proposal and therefore the proposal's moments.

As a simple example, suppose under , , with . The goal

is to sample , . The analysis goes as follows.

Choose the form of the proposal distribution , with log moment-generating function as 

, which further implies it is a normal

distribution .
Decide the well chosen  for the proposal distribution. In this setup, the intuitive way to choose 

 is to set , that is 

Explicitly write out the target, the proposal and the likelihood ratio
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Derive the bound  for the likelihood ratio , which is a decreasing function for ,
therefore

Rejection sampling criterion: for , if

holds, accept the value of ; if not, continue sampling new  and new 
 until acceptance.

For the above example, as the measurement of the efficiency, the expected number of the iterations

the NEF-Based Rejection sampling method is of order b, that is , while under the naive

method, the expected number of the iterations is , which is far more

inefficient.

In general, exponential tilting, a parametric class of proposal distribution, solves the optimization

problems conveniently, with its useful properties that directly characterize the distribution of the

proposal. For this type of problem, to simulate  conditionally on , among the class of simple

distributions, the trick is to use NEFs, which helps to gain some control over the complexity and

considerably speed up the computation. Indeed, there are deep mathematical reasons for using NEFs.

Rejection sampling can lead to a lot of unwanted samples being taken if the function being sampled is

highly concentrated in a certain region, for example a function that has a spike at some location. For

many distributions, this problem can be solved using an adaptive extension (see adaptive rejection

sampling), or with an appropriate change of variables with the method of the ratio of uniforms. In

addition, as the dimensions of the problem get larger, the ratio of the embedded volume to the

"corners" of the embedding volume tends towards zero, thus a lot of rejections can take place before a

useful sample is generated, thus making the algorithm inefficient and impractical. See curse of

dimensionality. In high dimensions, it is necessary to use a different approach, typically a Markov

chain Monte Carlo method such as Metropolis sampling or Gibbs sampling. (However, Gibbs

sampling, which breaks down a multi-dimensional sampling problem into a series of low-dimensional

samples, may use rejection sampling as one of its steps.)
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For many distributions, finding a proposal distribution that includes the given distribution without a

lot of wasted space is difficult. An extension of rejection sampling that can be used to overcome this

difficulty and efficiently sample from a wide variety of distributions (provided that they have log-

concave density functions, which is in fact the case for most of the common distributions—even those

whose density functions are not concave themselves) is known as adaptive rejection sampling

(ARS).

There are three basic ideas to this technique as ultimately introduced by Gilks in 1992:
[6]

1. If it helps, define your envelope distribution in log space (e.g. log-probability or log-density)
instead. That is, work with  instead of  directly.

Often, distributions that have algebraically messy density functions have reasonably simpler
log density functions (i.e. when  is messy,  may be easier to work with or, at
least, closer to piecewise linear).

2. Instead of a single uniform envelope density function, use a piecewise linear density function as
your envelope instead.

Each time you have to reject a sample, you can use the value of  that you evaluated, to
improve the piecewise approximation . This therefore reduces the chance that your next
attempt will be rejected. Asymptotically, the probability of needing to reject your sample should
converge to zero, and in practice, often very rapidly.
As proposed, any time we choose a point that is rejected, we tighten the envelope with
another line segment that is tangent to the curve at the point with the same x-coordinate as
the chosen point.
A piecewise linear model of the proposal log distribution results in a set of piecewise
exponential distributions (i.e. segments of one or more exponential distributions, attached end
to end). Exponential distributions are well behaved and well understood. The logarithm of an
exponential distribution is a straight line, and hence this method essentially involves enclosing
the logarithm of the density in a series of line segments. This is the source of the log-concave
restriction: if a distribution is log-concave, then its logarithm is concave (shaped like an
upside-down U), meaning that a line segment tangent to the curve will always pass over the
curve.
If not working in log space, a piecewise linear density function can also be sampled via
triangle distributions [7]

3. We can take even further advantage of the (log) concavity requirement, to potentially avoid the
cost of evaluating  when your sample is accepted.

Just like we can construct a piecewise linear upper bound (the "envelope" function) using the
values of  that we had to evaluate in the current chain of rejections, we can also
construct a piecewise linear lower bound (the "squeezing" function) using these values as
well.
Before evaluating (the potentially expensive)  to see if your sample will be accepted, we
may already know if it will be accepted by comparing against the (ideally cheaper)  (or 

 in this case) squeezing function that have available.
This squeezing step is optional, even when suggested by Gilks. At best it saves you from only
one extra evaluation of your (messy and/or expensive) target density. However, presumably
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for particularly expensive density functions (and assuming the rapid convergence of the
rejection rate toward zero) this can make a sizable difference in ultimate runtime.

The method essentially involves successively determining an envelope of straight-line segments that

approximates the logarithm better and better while still remaining above the curve, starting with a

fixed number of segments (possibly just a single tangent line). Sampling from a truncated exponential

random variable is straightforward. Just take the log of a uniform random variable (with appropriate

interval and corresponding truncation).

Unfortunately, ARS can only be applied from sampling from log-concave target densities. For this

reason, several extensions of ARS have been proposed in literature for tackling non-log-concave target

distributions.
[8][9][10]

 Furthermore, different combinations of ARS and the Metropolis-Hastings

method have been designed in order to obtain a universal sampler that builds a self-tuning proposal

densities (i.e., a proposal automatically constructed and adapted to the target). This class of methods

are often called as Adaptive Rejection Metropolis Sampling (ARMS) algorithms.
[11][12]

 The

resulting adaptive techniques can be always applied but the generated samples are correlated in this

case (although the correlation vanishes quickly to zero as the number of iterations grows).
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