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SUMMARY

We propose a method for rejection sampling from any univariate log-concave probability density
function. The method is adaptive: as sampling proceeds, the rejection envelope and the squeezing
function converge to the density function. The rejection envelope and squeezing function are piece-
wise exponential functions, the rejection envelope touching the density at previously sampled points,
and the squeezing function forming arcs between those points of contact. The technique is intended
for situations where evaluation of the density is computationally expensive, in particular for
applications of Gibbs sampling to Bayesian models with non-conjugacy. We apply the technique to a
Gibbs sampling analysis of monoclonal antibody reactivity.

Keywords: Adaptive rejection sampling; Bayesian inference; Gibbs sampling; Log-concave
density; Non-conjugate Bayesian models; Simulation

1. Introduction

We present a black box technique for sampling from any univariate log-concave
probability density functionf(x). Our method is based on rejection sampling and does
not require a determination of the mode off(x). It is adaptive: the envelope function
and the squeezing function (which form upper and lower bounds tof(x)) converge to
the density f(x) as sampling proceeds. The envelope and squeezing functions are
piecewise exponentials. The adaptive nature of our technique enables samples to be
drawn with few evaluations of f(x); it will therefore be useful in situations where the
evaluation of f(x) is computationally expensive. We describe adaptive rejection
sampling in Section 2.

Although not contained in Devroye (1986), adaptive rejection sampling has some
points of contact with methods of Devroye (1986). In particular, in chapter 4.5,
Devroye (1986) discusses rejection sampling using a sequence of envelope and
squeezing functions which converge to the density; however, the approach is not
adaptive as the bounding functions are determined in advance. In chapter 7.2,

tAddressforcorrespondence: Medical Research Council Biostatistics Unit, Fair View Lodge, 5 Shaftesbury Road,
Cambridge, CB2 2BW, UK.
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338 GILKS AND WILD
Devroye (1986) discusses non-adaptive black box methods for log-concave densities
which require the location of the mode of the density; in particular he presents an
algorithm for rejection sampling using a piecewise exponential envelope comprising
three pieces, the centre piece touching the density at its mode. In chapter 7.3, Devroye
(1986) discusses non-adaptive methods which take advantage of particular properties
of unimodal densities. An exercise in chapter 8.2 of Devroye (1986) concerns an
adaptive rejection sampling algorithm in which the rejection envelope is a histogram.

Adaptive rejection sampling grew out of an analysis of patterns of reactivity of
monoclonal antibodies. Our data for this analysis were in the form of percentages,
rounded to the nearest integer. This discretization would not have been a problem
except that much of the data were concentrated at or close to the extremes of the
percentage scale. The complexity of our model and data led us to a Gibbs sampling
analysis (Geman and Geman, 1984), for which we needed to be able to sample
efficiently from densities of complicated algebraic form. In Section 4 we present an
analysis of these data using adaptive rejection sampling and Gibbs sampling.

Gibbs sampling is a Markovian updating scheme originally developed by Geman
and Geman (1984) as a tool for image reconstruction. However, its applicability to
statistical modelling has recently been demonstrated (Gelfand and Smith, 1990). The
enormous potential of Gibbs sampling in complex statistical modelling is now being
realized. Applications currently include Bayesian cluster analysis (Gilks et al., 1989),
changepoint problems (Carlin et al., 1991), genetic linkage analysis (Mack et al.,
1990; Thomas, 1991), model selection from normal scale mixture densities (Carlin
and Polson, 1991a), influence diagnostics (Carlin and Polson, 1991b), hierarchical
models, variance components and errors in variables (Gelfand and Smith, 1990),
missing data, ordered means and growth curve models (Gelfand et al., 1990), outlier
detection (Verdinelli and Wasserman, 1991), generalized linear models with random
effects (Zeger and Karim, 1991) and analysis of frailty in survival analysis (Clayton,
1991). We are also aware of many other applications of Gibbs sampling, currently in
the form of unpublished manuscripts. We describe Gibbs sampling in Section 3.

Whereas the application of Gibbs sampling is straightforward for fully conjugate
Bayesian models (Gelfand and Smith, 1990; Gelfand et al., 1990), non-conjugacy can
cause computational difficulties. In applying Gibbs sampling to the estimation of
generalized linear models with random effects, Zeger and Karim (1991) deal with non-
conjugacy by rejection sampling from a normal envelope centred at the mode of the
sampling density. We show in Section 3 that adaptive rejection sampling is well suited
to handling non-conjugacy in applications of Gibbs sampling, as it requires neither
the mode of the sampling density nor a rejection envelope that corresponds to a
standard density.

2. Adaptive Rejection Sampling

To set the scene we begin by describing standard (non-adaptive) rejection sampling.

2.1. Non-adaptive Rejection Sampling
Rejection sampling is a general method for sampling points independently from a

densityf(x). The density need be specified only up to a constant of integration, i.e.
rejection sampling may be performed by using g(x) instead of f(x), where g(x) =
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ADAPTIVE REJECTION SAMPLING 339
cf(x) for some possibly unknown value of c. This is particularly useful when
c= SD g(x) dx is not available in closed form (where D denotes the domain off(x), i.e.
the set of x for which f(x) > 0).

To sample n points independently from f(x) by rejection sampling, define an
envelope function g,(x) such that g,(x) > g(x) for all x in D, and optionally define also
a squeezing function gl(x) such that gl(x) < g(x) for all x in D. Then perform the
following sampling step until n points have been accepted.

Sample a value x* from g,(x), and sample a value w independently from the
uniform(O, 1) distribution. If you have defined a gl(x)-function, perform the
following squeezing test: if

w 6- gl(x*)Igu(x*)

then accept x*. Otherwise evaluate g(x*) and perform the following rejection test:
if

w < g(x*)/gu(x*)

then accept x*; otherwise reject x*. Repeat until n points have been accepted.

Rejection sampling is only useful if it is more efficient or convenient to sample from
the envelope gu(x) than from the densityf(x) itself. In practice, finding a suitable gu(x)
can be difficult and often involves locating the supremum of g(x) in D by using a
standard optimization technique.

2.2. Adaptive Rejection Sampling
For Gibbs sampling, usually only one sample is required from each density,

although sampling from many thousands of different densities may be required.
Moreover, when estimating a model involving non-conjugacy, evaluations of g(x)
may be computationally expensive. These points are elaborated in Section 3. In these
circumstances rejection sampling may be very inefficient, since it may involve many
thousands of optimizations, each involving several evaluations of a g(x) function.

Adaptive rejection sampling reduces the number of evaluations of g(x) in two
ways. Firstly, through the assumption of log-concavity of f(x), we avoid the need to
locate the supremum of g(x) in D. Secondly, after each rejection, the probability of
needing to evaluate g(x) further is reduced by updating the envelope and squeezing
functions to incorporate the most recently acquired information about g(x).

We now describe our method in more detail. We assume that D is connected, that
g(x) is continuous and differentiable everywhere in D and that h(x) = lng(x) is
concave everywhere in D (i.e. h'(x) = dh(x)/dx decreases monotonically with
increasing x in D). This definition of log-concavity admits both straight line segments
in h(x) and discontinuities in h'(x). The continuous curve in Fig. 1 exemplifies a
concave h(x) in a domain D.

Suppose that h(x) and h'(x) have been evaluated at k abscissae in D: x 6 x2 <
< Xk. Let Tk = {xi; i= 1, ... , k} . We define the rejection envelope on Tkas expuk(x)
where Uk(X) is a piecewise linear upper hull formed from the tangents to h(x) at the
abscissae in Tk, in the manner of the upper broken curve of Fig. 1. For j = 1,...
k- I the tangents at xj and xj, 1 intersect at

- h(xj+ 1) - h(xj) - xj+ 1 h'(xj+ 1) + xj h'(xj) (1)
Zi h'(xj) - h'(xj + ,)
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340 GILKS AND WILD
Thus for x E [zj1, z;] and j = 1, . . ., k, we define

Uk(X) = h(xj) + (x-xj)h'(xj) (2)
where zo is the lower bound of D (or - oo if D is not bounded below) and Zk is the upper
bound of D (or + X if D is not bounded above). We also define

Sk(X) = exp Uk(X)/ exp uk(x ) dx'. (3)
D

Finally, we define the squeezing function on Tk as exp 4k(x), where 4k(x) is a piecewise
linear lower hull formed from the chords between adjacent abscissae in Tk, in the
manner of the lower broken curve of Fig. 1. Thus for x E [xj, xj+ 1]

I (x) = (xj+ x) h(xj) + (x - xj) h(xj+ 1)(4)
Xj+ 1- Xj

forj= 1, . ., k- 1. For x < xl or x > xk we define lk(x) = -Coo
Thus the rejection envelope and the squeezing function are piecewise exponential

functions. The concavity of h(x) ensures that Ik(x) < h(x) < Uk(X) for all x in D.
To sample n points independently from f(x) by adaptive rejection sampling,

perform the following initialization step, and then perform the following sampling
and updating steps alternately until n points have been accepted.

2.2.1. Initialization step
Initialize the abscissae in Tk. If D is unbounded on the left then choose xl such that

h'(xl) > 0. If D is unbounded on the right then choosexksuch that h'(xk) <0. Having

i Iix x xX2 3
Fig. 1. A concave log-density h(x), bounded on the left, showing upper and lower hulls based on three
abscissae (x1, x2, x3): , h(x); ---, upper hull; ...., lower hull
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ADAPTIVE REJECTION SAMPLING 341
defined k starting abscissae, calculate the functions Uk(X), sk(x) and 4k(x) from
equations (2), (3) and (4) respectively.

2.2.2. Sampling step
Sample a value x* from Sk(X) and sample a value w independently from the

uniform(O, 1) distribution. Perform the following squeezing test: if

w < exp { lk(x*) - Uk(X*)}

then accept x*. Otherwise evaluate h(x*) and h'(x*) and perform the following
rejection test: if

w < exp{h(x*) -Uk(X*)}

then accept x*; otherwise reject x*.

2.2.3. Updating step
If h(x*) and h'(x*) were evaluated at the sampling step, include x* in Tk to form

Tk+ 1; relabel the elements of Tk+,1 in ascending order; construct the functions Uk+ 1(X),
Sk+ 1(x) and Ik+ I(x) from equations (2), (3) and (4) respectively on the basis of
Tk+ 1; increment k. Return to the sampling step if n points have not yet been
accepted.

2.3. Proof of Adaptive Rejection Sampling
The proof that adaptive rejection sampling leads to independent samples fromf(x)

is straightforward. Let x,* denote the rth sampled value of x, whether or not it was
accepted or included in Tk. Let

O if x,* was accepted at the squeezing test,
6= I if x,* was accepted at the rejection test,

2 if x,* was rejected.
Let Hr denote the history of the process, up to and including the processing of x,*: so
Hr = {(xi*, bi); i = 1, . . , r }. Thus Hr defines the current upper and lower hulls.

Let [ J ] generically denote a conditional probability density function. Then

[(x,*+ x) nO (6r+ I2) tHr] = exph(x) expuk(x')dx'

and so

[Xr*+ X I Hr n (6r+ *2)] = exp h(x)j exp h(x') dx' = f(x)

which does not depend on Hr. Thus accepted values of x are drawn independently
from f(x).

2.4. Efficiency
Suppose that k evaluations of h(x) and h'(x) have been performed. Suppose also

that the current x* has not been accepted at the squeezing step. Then the probability
that x* = x is proportional to exp Uk(x) - exp lk(x). Thus new evaluations of h(x) and
h'(x) are most likely to occur at values of x where the rejection envelope and squeezing
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342 GILKS AND WILD
function are most discrepant. Therefore the method tends to space evaluations of h(x)
and h'(x) optimally.

The number of evaluations of h(x) and h'(x) needed to sample a value from f(x)
could be sensitive to the initial choice of Tk. We examine this empirically in Table 1,
for the standard normal density and with two starting abscissae. Widely separated
starting abscissae are only modestly detrimental, and the optimum starting abscissae
are around - 1 and + 1. Asymmetry in the starting abscissae has little impact on the
number of evaluations of h(x) and h'(x). In general we have found two starting
abscissae (k= 2) to be necessary and sufficient for computational efficiency.

Empirically, the number of evaluations of h(x) and h'(x) required to sample n
points from f(x) increases approximately in proportion to Vn, even for quite non-
normal densities. To sample 100 points from the standard normal distribution about
15 evaluations of h(x) and h'(x) are required; to sample 1000 points about 30
evaluations of h(x) and h'(x) are required.

3. Adaptive Rejection Sampling and Gibbs Sampling

3.1. Gibbs Sampling
Complex data sets can often be modelled in the form of a number n of submodels,

each submodel m = 1, . . ., n expressing the conditional distribution [Oim I {I ji; i e m }]
of parameter Oim conditional on a set of other parameters indexed by Sm. We shall refer
to [Oim I { ji; i E Sm }] as the model conditional for lm. Usually model conditionals are
defined hierarchically (Lindley and Smith, 1972). For notational convenience we shall
regard data as fixed parameters. Gibbs sampling (Geman and Geman, 1984) is often a
convenient method of obtaining the joint posterior distribution of the parameters of a
hierarchical model, and of any marginal or conditional posteriors of interest (Gelfand
and Smith, 1990; Gelfand et al., 1990).

To perform Gibbs sampling, initial values are assigned to each free parameter.
Then for each free parameter O3m in turn the current parameter value is replaced by a
value drawn from the full conditional distribution of that parameter [Oim I { ji; i = 19

TABLE 1
Evaluations of h(x) required to sample one point from the standard normal density, using adaptive
rejection sampling, for various starting abscissae t

Starting abscissae Mean number I of Maximum number I ofXI X2 evaluations of h(x) evaluations of h(x)-0.5 0.5 3.1 7- 1.0 1.0 2.8 6-2.0 2.0 3.3 6-5.0 5.0 4.4 8-10.0 10.0 5.1 8-9.0 1.0 4.3 8-8.0 2.0 4.4 7-7.0 3.0 4.5 8-6.0 4.0 4.4 8
t 000 simulations.
lIncluding evaluations at the starting abscissae xl and x2.
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ADAPTIVE REJECTION SAMPLING 343
m - 1, m + 1,. .., n}], conditioning on all the remaining parameters (fixed or

free). We shall denote this full conditional distribution by [O3m I ]. This resampling is
repeated many times. Under fairly weak regularity conditions Geman and Geman
(1984) show that this process generates samples from the joint posterior distribution
of the free parameters, conditional on the fixed parameters (data). From these
samples any posterior summaries of interest can be straightforwardly calculated (e.g.
the mean, median, 5th and 95th centiles of the sampled values for each free
parameter). For further details see Gelfand et al. (1990).

Thus Gibbs sampling requires specification of the full conditional distribution
[O3m I ] for each parameter O3m. For a hierarchical model the full conditional for Om, can
be expressed in terms of the model conditionals:

[Om I I oc [Om I I Oi; i I S }{ [ I I i; i E S}] (5)
{j:meSj}

where the product is over all submodels which condition on (3m. Here proportionality
implies that the full conditional distribution for O3m differs from the right-hand side of
expression (5) only by a multiplicative term which does not depend on (3m, but which
will in general depend on other {I (i; i * m}. Unless there is conjugacy between each of
the producted terms in expression (5), the full conditional will not correspond to a
common distribution and it will not be possible to derive a closed form for the propor-
tionality constant in expression (5). Moreover, since it is the product of possibly many
terms, expression (5) will be computationally expensive to evaluate repeatedly.
Section 4 provides an example in which over 150 terms form the product in expression
(5); in other applications several thousand terms could be involved.

3.2. Log-concavity
Now, most commonly used densities are concave on the logarithmic scale, with

respect to both random variable and distributional parameters (see Table 2).
Moreover, when this is not so, the log-density may be concave with respect to a
suitably transformed random variable or parameter (taking account of the Jacobian if
transforming the random variable) (Table 2). In particular if [xJI t, a] is any density
parameterized in terms of a location parameter It and scale parameter a, such that

[X1I 4,o] = I f x 4)

for some functionf(z), and if lnf(z) is concave with respect to its argument z, then the
logarithm of the density [xI I,t a] is concave with respect to x, It and r = a1, but not
necessarily with respect to a or other functions of a.

Therefore, taking logarithms in expression (5), often all the terms in

h(13m) = ln[3m {i; i { E Sm}] + E ln[j 3{(3i; i ES}] (6)
{j:mes }

will be concave with respect to Om and consequently also h((3m) will be concave with
respect to (3m, being the sum of concave terms. In these circumstances adaptive
rejection sampling can be used to sample efficiently from h((3m). For adaptive
rejection sampling of (3m we require of [(d I {I (i; i e Sj}] in equation (6) only that it be
continuous, differentiable and log-concave with respect to (3m. Thus [(34 { (3i; i e Sj }]
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344 GILKS AND WILD
TABLE 2
Log-concavity for common probability density functions f(x) t

f(x) Parameters logf(x) concave logf(x) not
with respect to concave with

respect to

Normal Mean A, variance a2 x, , l/a, log a a
Log-normal Location A, scale a2 log x, A, l/a, log a x, aExponential Rate A x, log x, A
Gamma Index r, rate A log x, x (if r 1), A, r x (if r< 1)
Beta Shape a, b logit(x), x (if a, b > 1), a, b
Double exponential Location a, scale f x, a, 1/fl, log f fi
Weibull Shape b, scale a log x, x (if b > 1), a, bLogistic Location a, scale fi x, a, 1/fl fiPareto Shape 0, bound xo log x, l/x (if 0 > 1), x

x0, log x0, 0Gumbel or Location a, scale,f x, a, 1/fl fi
extreme valuet Degrees of freedom k xF Degrees of freedom m, n log x x

X 2 Degrees of freedom k logx, x (if kk2), k x (if k<2)Bernoulli Proportion p p, logit(p)
Binomial Proportion p, index r p, logit(p)Poisson Rate A A
Geometric Proportion p p, logit(p)
Negative binomial Proportion p, index r p, logit(p)

tIn considering concavity of logf(x) with respect to transformations of the random variable x, the Jacobian of the
transformation was taken into account. The table also contains common discrete distributions with continuous
parameters. The notation follows that of Mood et al. (1974).

could be a discrete distribution of f3i. We have included some common discrete
distributions in Table 2.

3.3. Multivariate Full Conditionals
Adaptive rejection sampling, as we have described it, permits only univariate

sampling. However, if f,m in formulae (5) and (6) is multivariate, then (univariate)
adaptive rejection sampling can still be used. To see this note that, for each element
3mk of IOm, the univariate full conditional [Ilmk I] is proportional to the multivariate
full conditional [13m I ]. Therefore, if [I0m I ] is log-concave with respect to j3 (which it
may be, by invoking the argument of Section 3.2), then [I3mk I ] will be log-concave
with respect to mk. Thus the Gibbs sampler can be implemented to update each
element Imk in turn, using adaptive rejection sampling with h(fmk) = ln[lm I ].

4. Application to Monoclonal Antibody Reactivity

We have applied adaptive rejection sampling to a Gibbs sampling analysis of
monoclonal antibody reactivity. The data that we examine originate from flow
cytometry experiments in which 13 monoclonal antibodies were tested against 15
normal and malignant human cell types. The data form part of a much larger study
designed to discover antigens involved in small cell lung cancers (Souhami et al.,
1991). Each of the 13 antibodies studied here is known to react with cells expressing
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ADAPTIVE REJECTION SAMPLING 345
the neural cell adhesion molecule (NCAM), a molecule which is expressed on the
surface of normal peripheral nerve cells, but which also appears on malignant small
cell lung cancer cells. In normal nerve cells the molecule is thought to attach the nerve
to other cells, thereby fixing it in position; in malignant cells its role is as yet unclear.
The NCAM molecule is also present, in varying densities, on other normal and
malignant cell types (e.g. brain cells and neuroblastoma cells) but is absent on many
cell types.

The recognition of an antigen (a molecule expressed on the surface of a cell) by an
antibody depends on the fraction antibody binding (FAB) portion of the antibody
being the correct shape to lock on to the antigen. Since different monoclonal
antibodies recognizing the same antigen will in general have slightly differently
shaped FAB portions, we might expect such antibodies to differ somewhat in their
ability to bind to the antigen. The purpose of the analysis presented here is to quantify
the nature and extent of this variability. Lack of variability could indicate that the
NCAM molecule has only one epitope (molecular feature) accessible to antibody.

4. 1. Model
In each flow cytometry experiment, reactivity was measured as the percentage of

cells reacting with antibody. Percentages were reported rounded to the nearest
integer. Let Yijr denote the percentage reactivity recorded in the rth experiment testing
antibody i against target cell type j (for i = 1, . . ., I; j= 1, . . ., J; r = 1, . . ., nij). We
might proceed by ignoring the rounding and constructing a linear model of
logit(yijr/100), where logit(x) denotes log{x/(l - x)}. However, with these data the
rounding is important, as there are many (rounded) reactivities of 0.0 or 100.0.
Therefore, instead we suppose that yij is related to an underlying logistic distribution
with location parameter Iuij and scale parameter ry as follows:

yij,I Ai , ry1I=1 (7)
[Yyiitl1yi,ryTy] 1 + exp -r (bijr- tij)} + exp- ry(aijr- Atj)}

where

ai.. = logit (iir )0.5 if Yijr > 0,

= -o if Yijr = 0,
and

bijr = logit 100 5) if Yijr < 100,

= +?? 0if Yijr= 100.
For the location parameter we specify

Aij = 00 + Olj + 02i (8)
This model specifies a basic pattern of reactivity (B0 + OIj) across cell types, reflecting
different densities of cell surface expression of the NCAM molecule. The basic
pattern is adjusted to allow for differences in affinity for the NCAM molecule (32i).

To complete the model we need to specify priors for i30, lu, 12i and ry. We set
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346 GILKS AND WILD
[fo I cao, Tro] N(aio, r7 1), (9)
[3lj 1rl] TN(O, ri 1), (10)
[f2i 1IT2J N(O, r- 1), (1 1)

[,ryl|py, Ay] - G(py, Ay)s (12)
where N(a, , -1) denotes a normal distribution with mean a and variance X -1, and
G(p, A) denotes a gamma distribution with index parameter p and scale parameter A.
We set a0 = - 1.0, zr = 0.1, py= 2.0 and Ay = 4.0 to give fairly flat priors for f0 and ry.
We do not fix the remaining hyperparameters r1 and r2, as the data contain
information about them: indeed, these hyperparameters are the focus of this analysis.
Instead we specify fairly flat hyperpriors

[I-kI Pk, Ak] G(Pk, Ak) (13)
for k= 1, 2, setting Pk= 2.0 and Ak= 4.O.

4.2. Gibbs Sampling
To estimate the hierarchical model (7)-(13) by Gibbs sampling the full condi-

tional distribution for each free model parameter is required. The full conditional
for , is

[3oI] oc exp {-2 To(fo ao)2}TI [1+ exp{ -Ty(bijr-" Itij)}

1 + exp{ Ty(aijr- tij)}] (14)
where each data point contributes one term to the product. Expressions similar to
expression (14) also hold for the full conditional distributions of f,lj, fi2i and r, (with
suitable restrictions on the subscripts of the product operator and, for ry, the first
term in expression (14) being replaced by the gamma prior (12)).

The full conditional distribution for i30 in expression (14) does not simplify; thus
sampling i30 could be time consuming. Fortunately, each of the many terms in
expression (14) is concave on the logarithmic scale with respect to i30, and so adaptive
rejection sampling can be used. Similar considerations apply to the full conditionals
for flj, fi2i and ry.

The full conditional for r1 is straightforward:

GT p, ] j (+J, Al +2 -i 1 (15)
with a similar expression for the full conditional for r2.

We performed 1000 iterations of the Gibbs sampler. At each iteration, for each of
the parameters 0, fBlj, f 2i and ry, we used the 15th and 85th centiles of the sampling
density Sk(X) from the previous iteration as starting values for adaptive rejection
sampling.
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ADAPTIVE REJECTION SAMPLING 347
4.3. Results

For each of the parameters sampled by adaptive rejection sampling, on average
only three evaluations of h(x) were required at each iteration (including the two
starting evaluations), and on only 5 % of iterations were more than four evaluations of
h(x) required.

Convergence in distribution was achieved within 10 iterations. Therefore the
posterior summaries in Table 3 were based on iterations 1 1-1100. The results suggest
that there is substantial variability in the expression of NCAM among targets (Xr 1),
but relatively little variability in antibody affinity for the NCAM molecule (r- 1).
There is some evidence that antibody 12 has low affinity to NCAM as the 90% support
interval for O2,12 does not cover 0.

5. Conclusions

We have shown that adaptive rejection sampling can be used as a black box routine
for efficiently sampling from complex densities, in particular those arising in
applications of Gibbs sampling to the analysis of hierarchical Bayesian models
involving non-conjugacy. In the context of Gibbs sampling, we suggest the use of
centiles from the sampling densities s(x) from one iteration to provide starting
abscissae for the next iteration, as described in Section 4.

Although adaptive rejection sampling is conceptually simple, care must be taken in
its implementation to avoid numerical problems when sampling from densities which
are extremely concentrated or skewed. We have written a Fortran program (available
on request) to perform adaptive rejection sampling, which behaves well under

TABLE 3
Posterior summaries based on iterations 11-1000 of the Gibbs sampler for model (7)-(13)

Parameter Mean Standard deviation 5th centile 95th centile

T1 0.13 0.05 0.06 0.21'r2 1.59 0.55 0.80 2.65Ty 0.87 0.04 0.81 0.93a1 = 1/rT1 2.95 0.56 2.19 4.02a2= 1/1T2 0.83 0.16 0.61 1.11Ory= 1/ -slTY 1.07 0.02 1.04 1.1192,1 0.23 0.37 -0.39 0.8502,2 0.03 0.39 -0.62 0.6302,3 0.42 0.38 -0.21 1.0602,4 0.06 0.36 -0.52 0.6002,5 -0.15 0.37 -0.75 0.442,6 --0.26 0.36 - 0.83 0.3402,7 -0.04 0.36 -0.64 0.5302,8 0.06 0.37 -0.54 0.7202,9 -0.26 0.37 -0.37 0.88I2,10 -0.13 0.36 -0.69 0.46I2,11 0.21 0.36 -0.39 0.78l2,12 -0.66 0.36 - 1.27 -0.09I2,13 0.10 0.37 -0.50 0.74
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extreme conditions. In particular, this algorithm can be used straightforwardly to
sample from truncated distributions.
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