Bayesian Inference: Gibbs Sampling

Ilker Yildirim
Department of Brain and Cognitive Sciences
University of Rochester
Rochester, NY 14627

August 2012

References: Most of the material in this note was taken from: (1) Lynch, S. M. (2007).
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. New York:
Springer; and (2) Taylan Cemgil’s lecture slides on Monte Carlo methods
(http://www.cmpe.boun.edu.tr/courses/cmpe58n /fall2009/)

1. Introduction

As Bayesian models of cognitive phenomena become more sophisticated, the need for efficient
inference methods becomes more urgent. In a nutshell, the goal of Bayesian inference is to
maintain a full posterior probability distribution over a set of random variables. However,
maintaining and using this distribution often involves computing integrals which, for most
non-trivial models, is intractable. Sampling algorithms based on Monte Carlo Markov Chain
(MCMC) techniques are one possible way to go about inference in such models.

The underlying logic of MCMC sampling is that we can estimate any desired expectation
by ergodic averages. That is, we can compute any statistic of a posterior distribution as long
as we have N simulated samples from that distribution:

BU(s)le ~ - D0) (1

where P is the posterior distribution of interest, f(s) is the desired expectation, and f(s®)
is the i simulated sample from P. For example, we can estimate the mean by Elx]p =

N i
% > ic1),

How do we obtain samples from the posterior distribution? Gibbs sampling is one MCMC
technique suitable for the task. The idea in Gibbs sampling is to generate posterior samples
by sweeping through each variable (or block of variables) to sample from its conditional
distribution with the remaining variables fixed to their current values. For instance, consider
the random variables X;, X5, and X3. We start by setting these variables to their initial

values xgo), xgo), and :c§0> (often values sampled from a prior distribution ¢). At iteration

i, we sample xgl) ~ p(Xy = 11| Xs = xgi_l),Xg = xéi_l)), sample x5 ~ p(Xy = x| X7 =

:cgi),Xg = xg*l)), and sample z3 ~ p(X3 = x3|X; = xgi),Xg = xg)) This process continues
until “convergence” (the sample values have the same distribution as if they were sampled

from the true posterior joint distribution). Algorithm 1 details a generic Gibbs sampler.

Algorithm 1 Gibbs sampler
Initialize (%) ~ g(x)
for iteration i = 1,2,... do
xgi) ~p(Xy =1 Xe = x;ifl),Xg = xéiil), ., Xp= a:%fl))
xg) ~p(Xy =29 X7 = acgi),Xg = a:gi_l), .., Xp= $%_1))

x%) ~p(Xp =xp|X; = :Bgi)vXQ = xéi)a . Xp=uap_y)

end for

In Algorithm 1, we are not directly sampling from the posterior distribution itself. Rather,
we simulate samples by sweeping through all the posterior conditionals, one random variable
at a time. Because we initialize the algorithm with random values, the samples simulated
based on this algorithm at early iterations may not necessarily be representative of the
actual posterior distribution. However, the theory of MCMC guarantees that the stationary
distribution of the samples generated under Algorithm 1 is the target joint posterior that
we are interested in (Gilks et al., 1996; also see the Computational Cognition Cheat Sheet
on Metropolis-Hastings sampling). For this reason, MCMC algorithms are typically run for
a large number of iterations (in the hope that convergence to the target posterior will be
achieved). Because samples from the early iterations are not from the target posterior, it
is common to discard these samples. The discarded iterations are often referred to as the
“burn-in” period.

A good way of learning about MCMC techniques is to study examples. In the rest of
this note, we develop a Gibbs sampler for a change-point model.

2. A change-point model

Suppose that we observe a sequence of counts x1, zs, ..., xxy where the average of the counts
has some value for time steps 1 to n, and a different value for time steps n + 1 to N. We
model the counts at each time step ¢ as a Poisson variable, which has the following density
function:
v

x! (2)
= exp(x log A — XA — log(z!))

Poisson(z; \) = e~

where A is the mean of the distribution. We model the mean A as a Gamma distribution,
which has the following density function:

1
bN ! exp(—bA)
I(a) (3)
=exp((a — 1) log A — bA — log I'(a) + a log b)

Gamma(\; a,b) =

The initial mean A; jumps to a new value Ay after a random time step n. Thus the generative
model is as follows:

n ~ Uniform(1,2,...,N)
Ai ~ Gamma(\;a,b)

Poisson(z;; A1) 1<i<mn
xT; ~
Poisson(z;; A2) n<i< N

The problem of inferring the posterior distribution over the latent variables n, A\;, Ay can
be solved via Bayes theorem.

(AL, A2, | T1n) X P(T10 | A1) P(Trp1:v] A2) P(AL) p(A2) (1) (5)

3. Conditional distributions

As Algorithm 1 illustrates, we need the posterior conditionals for each of the variables to
perform Gibbs sampling. We start by deriving the full joint distribution. We then derive
the posterior conditionals for each of the variables A\, Ay, n using the full joint distribution.

A form of the full joint distribution is given on the right hand side of Equation 5. We
start our derivation from there.

P(@1: | A)P(@n41:8 | A2)P(A1)P(A2)p(R)
n N 6
= (Hp(xzp‘l)) (H p($¢|>\2)> p(A)p(A2)p(n) R

Next we write the log of the full posterior by taking the logarithm of the right hand side of
Equation 6 and plugging in Equations 2 and 3 wherever appropriate.

log p(z1:n| A1) + log p(zn11.8|A2) + log p(A1) + log p(A2) + log p(n)

=1

+ Z (x; log Ag — A — log(x;!)) (7)

i=n+1
+(a—1) log Ay — b\ — log I'(a) + a log b
+(a—1) log Ay — by — log I'(a) + a log b
— log N

Now we obtain the posterior conditionals for each of the latent variables by collecting
the terms in the full joint distribution that include the latent variable of interest. We start

with A;. We obtain its posterior conditional by picking up the relevant terms in Equation 7
(and rearranging some of these terms).

log p()\lfn, A2, 1’1;N)

n

=t (@i log A — M) + (a— 1) log Ay — by

i=1

— <a+zn:xi—1) log Ay — (n+ b))\ (8)

=T log Gamma (a - Z Ti,n+ b>

=1

where the operator =% means “equal up to a constant”. Note that the posterior conditional
and the prior for \; are both Gamma distributions (albeit with different sets of parameters).
This correspondence of distributions is not random, but arises because we used a “conjugate”
prior distribution. That is, for certain pairs of priors and likelihoods, the posterior ends up
having the same probability distribution as the prior (with updated parameters). Gamma-
Poisson is one such pair of conjugacy, resulting in a Gamma posterior.

The posterior conditional for Ay can be derived similarly:

log p()\2|n, A1, l‘lzN)

N
=T Z (x; log Ay — A2) + (a — 1) log Ay — bAg
i=nt1 (9)
N
=" log Gamma <a+ Z i, N —n + b)
i=n+1

Finally, we derive the posterior conditional for n, the time step at which counts jump
from a mean of \; to a mean of As:

log p<n|>\17 >\27 ml:N)

n N
= Z (x; log Ay — Ay — log(z;!)) + Z (x; log Ay — A — log(z;!))
i=1 i=n+1 (10)
n N
—+ (Z xl> log A\ — nA\ + (Z a:l> log Ao — (N —n)\y
i=1 i=n+1

Note that the conditional posterior for n is not of a known closed form. But we can easily
obtain a multinomial distribution for n by computing p(n|A1, A2, z1.5) forn = 1,..., N which
we can use to draw new samples.

Now that we have the posterior conditionals for all the latent variables, we are ready to
simulate samples from the target joint posterior in Equation 5 using Algorithm 1.

4

4. Results

We implemented a Gibbs sampler for the change-point model using the Python programming
language. This code can be found on the Computational Cognition Cheat Sheet website.

We start by simulating data from the generative process described in Equation 4 (see
Figure 1, top row). Our simulations are based on this synthetic data set.

We initialized our Gibbs sampling chain by sampling each variable from its prior distri-
bution. For n, we drew an integer between 1 and N from Uniform(1,...,N). (In all our
simulations we set N = 50.) We initialized \; and Ay by drawing two independent values
from Gamma(a,b). (We set a = 2 and b = 1 in all our simulations, both for simulating
synthetic data set and for the Gibbs sampler.)

We report the results for one MCMC chain, which are typical of other chains that we
simulated. We ran the chain for 5200 iterations. We discarded the first 200 iterations as
burn-in. Our results are based on the remaining 5000 iterations.

Figure 1 illustrates the results. See its caption for explanation.
5. Summary

Given a generative model for a set of random variables, we can summarize Gibbs sampling
in two steps:

e Step 1: Derive the full joint density, and the posterior conditionals for each of the
random variables in the model.

e Step 2: Simulate samples from the posterior joint distribution based on the posterior
conditionals (Algorithm 1).

We illustrated both of these steps in a change-point detection problem.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in
Practice. London: Chapman and Hall.

T T 1T

Counts

iRl litE

AP TT‘J ‘F.j OwT‘,? Per ;O'F?‘T THT“

Q

00

T T T T T

T T T T 1T

Figure 1: (Top row) The synthetic data set. Each stick is a count, x1.n. The dotted red
line shows the average count values. This average jumps from A; to Ay at n = 26. (Row 2)
A trace plot based on the posterior samples for \; and \,. The Gibbs sampler remarkably
recovers the values that actually generated the data set. (Row 3) A histogram plot of the
posterior samples for A;. (Row 4) A histogram plot of the posterior samples for As. (Bottom
row) A histogram plot for n, the change-point. The model is almost certain on the generating
value of n.

