
 1

Gibbs and Metropolis sampling (MCMC methods)  
and relations of Gibbs to EM 

Lecture Outline 
1. Gibbs 

• the algorithm 
• a bivariate example 
• an elementary convergence proof for a (discrete) bivariate case 
• more than two variables 
• a counter example. 

2. EM – again   
• EM as a maximization/maximization method 
• Gibbs as a variation of Generalized EM 

3. Generating a Random Variable. 
• Continuous r.v.s and an exact method based on transforming the cdf. 
• The “accept/reject” algorithm. 
• The Metropolis Algorithm 
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Gibbs Sampling 
 

We have a joint density 
f(x, y1, …, yk) 

and we are interested, say, in some features of the marginal density 

f(x)  =  ∫∫…∫ f(x, y1, …, yk) dy1, dy2, …, dyk.  

For instance, suppose that we are interested in the average 

E[X] =  ∫ x f(x)dx. 
 
If we can sample from the marginal distribution, then 

∞→mlim  n
1 ∑

=

n

i
iX

1
 = E[X] 

without using f(x) explicitly in integration.  Similar reasoning applies to 
any other characteristic of the statistical model, i.e., of the population. 



 3

The Gibbs Algorithm for computing this average. 

Assume we can sample the k+1-many univariate conditional densities: 
f(X |  y1, …, yk) 
f(Y1 |  x, y2, …, yk) 
f(Y2 |  x, y1, y3, …, yk) 
… 

f(Yk |  x, y1, y3, …, yk-1). 

Choose, arbitrarily, k initial values: Y1= y0
1 , Y2= y0

2, …., Yk= yk
0 . 

Create:   x1  by a draw from f(X | y0
1 , …, yk

0 ) 

    y1
1 by a draw from f(Y1 | x1 , y0

2, …, yk
0 ) 

    y1
2 by a draw from f(Y2 | x1 , y1

1, y0
3…, yk

0 ) 
    … 
    yk

1  by a draw from f(Yk | x1 , y1
1, …, yk

1
1− ). 
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This constitutes one Gibbs “pass” through the k+1 conditional distributions, 

yielding values:      ( x1 , y1
1, y1

2, …., yk
1 ). 

Iterate the sampling to form the second “pass”   
( x2, y2

1 , y2
2, …., yk

2 ). 
Theorem:  (under general conditions)  

The distribution of xn  converges to F(x) as n → ∞. 

Thus, we may take the last n X-values after many Gibbs passes: 

n
1 ∑

+

=

nm

mi

iX   ≈  E[X] 

or take just the last value, in
ix of n-many sequences of Gibbs passes  

(i = 1, … n)     n
1 ∑

=

n

ii

n
i

iX   ≈  E[X] 

to solve for the average,  =  ∫ x f(x)dx. 
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A bivariate example of the Gibbs Sampler. 
 
Example: Let X and Y have similar truncated conditional exponential 
distributions:  

f(X | y)  ∝  ye-yx  for 0 < X < b  

f(Y | x)  ∝  xe-xy  for 0 < Y < b 
where b is a known, positive constant. 
 
Though it is not convenient to calculate, the marginal density f(X) is 

readily simulated by Gibbs sampling from these (truncated) exponentials. 

 

Below is a histogram for X, b = 5.0, using a sample of 500 terminal 
observations with 15 Gibbs’ passes per trial, in

ix  (i = 1,…, 500, ni = 15) 
(from Casella and George, 1992). 
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Histogram for X, b = 5.0, using a sample of 500 terminal observations with 15 Gibbs’ passes per trial, 
in

ix  (i = 1,…, 500, ni = 15).  Taken from (Casella and George, 1992). 
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Here is an alternative way to compute the marginal f(X) using the same 
Gibbs Sampler. 
 
Recall the law of conditional expectations (assuming E[X] exists): 

E[ E[X | Y] ] = E[X] 
 

Thus     E[f(x|Y)] =  ∫ f(x | y)f(y)dy = f(x). 
 
Now, use the fact that the Gibbs sampler gives us a simulation of the 
marginal density f(Y) using the penultimate values (for Y) in each Gibbs’ 
pass, above:    1−in

iy  (i = 1, …500; ni = 15). 
Calculate f(x | 1−in

iy ), which by assumption is feasible. 
 
Then note that: 

f(x)   ≈  n
1 ∑

=

−n

ii

n
i

iy  ) |f(x 1  
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The solid line graphs the alternative Gibbs Sampler estimate of the marginal f(x) from eth  
same sequence of 500 Gibbs’ passes, using ∫ f(x | y)f(y)dy = f(x).  The dashed-line is the 
exact solution.  Taken from (Casella and George, 1992). 
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An elementary proof of convergence in the case of 2 x 2 Bernoulli data 
 
Let (X,Y) be a bivariate variable, marginally, each is Bernoulli 

   X 
                                   0       1 
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where pi ≥ 0, ∑ pi = 1, marginally  

P(X=0) = p1+p3  and  P(X=1) = p2+p4 

P(Y=0) = p1+p2  and  P(Y=1) = p3+p4. 
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The conditional probabilities P(X|y) and P(Y|x) are evident: 

P(Y|x):           X 
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P(X|y):           X 
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Suppose (for illustration) that we want to generate the marginal 

distribution of X by the Gibbs Sampler, using the sequence of iterations 

of draws between the two conditional probabilites P(X|y) and P(Y|x). 

 

That is, we are interested in the sequence <xi : i = 1, … > created from the 

starting value y0= 0 or y0= 1.   

Note that: 

P( X n  = 0 |xi : i = 1, …, n-1) = P( X n  = 0 |xn 1− )  the Markov property 

 = P( X n=0 | yn 1− =0) P(Y n 1− =0 | xn 1− )  +  P( X n=0 | yn 1− =1) P(Y n 1− =1 | xn 1− )  
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Thus, we have the four (positive) transition probabilities:  

P( X n  = j | xn 1− = i)  = pij > 0, with ∑i ∑j pij = 1  (i, j = 0, 1). 

With the transition probabilities positive, it is an (old) ergodic theorem 

that, P( X n) converges to a (unique) stationary distribution, independent 

of the starting value ( y0).  

 

Next, we confirm the easy fact that the marginal distribution P(X) is that 

same distinguished stationary point of this Markov process. 
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P( X n  = 0)    

=      P( X n  = 0 | xn 1− = 0) P( X n 1−  = 0)  +  P( X n  = 0 |xn 1− = 1) P( X n 1−  = 1)  

=    P( X n=0 | yn 1− =0) P(Y n 1− =0 | xn 1− = 0) P( X n 1−  = 0)   

+  P( X n=0 | yn 1− =1) P(Y n 1− =1 | xn 1− = 0) P( X n 1−  = 0) 

+    P( X n=0 | yn 1− =0) P(Y n 1− =0 | xn 1− = 1) P( X n 1−  = 1)   

+  P( X n=0 | yn 1− =1) P(Y n 1− =1 | xn 1− = 1) P( X n 1−  = 1)     

=  EP [EP [ X n=0 | X n 1− ] ] 

=  EP [ X n=0 ] 
=  P( X n  = 0) . 
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The Ergodic Theorem: 

Definitions:  

• A Markov chain, X0, X1, ….  satisfies  

P(Xn| xi: i = 1, …, n-1) =  P(Xn| xn-1) 

• The distribution F(x), with density f(x), for a Markov chain is 

stationary (or invariant) if    

∫A  f(x) dx  = ∫ P(Xn∈A | xn-1) f(x) dx. 

• The Markov chain is irreducible if each set with positive P-

probability is visited at some point (almost surely).   
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• An irreducible Markov chain is recurrent if, for each set A 

having positive P-probability, with positive P-probability the 

chain visits A infinitely often. 

• A Markov chain is periodic if for some integer k > 1, there is a 

partition into k sets {A1, …, Ak} such that  

P(Xn+1 ∈ Aj+1 | xn∈Aj) = 1 for all j= 1, …, k-1 (mod k).  That 

is, the chain cycles through the partition.  

Otherwise, the chain is aperiodic. 
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Theorem:  If the Markov chain X0, X1, ….  is irreducible with an 

invariant probability distribution F(x) then: 

1.  the Markov chain is recurrent 

2.  F is the unique invariant distribution 

If the chain is aperiodic, then for F-almost all x0, both 

3. limn→∞ supA | P(Xn ∈ A | X0 = x0 ) – ∫A  f(x) dx  | = 0 

And for any function h with ∫  h(x) dx < ∞, 

4.   limn→∞  n
1 ∑

=

n

ii
iXh )(   = ∫ h(x) f(x) dx   (= EF[h(x)] ), 

That is, the time average of h(X) equals its state-average, a.e. F. 
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A (now-familiar) puzzle. 

Example (continued): Let X and Y have similar conditional exponential 
distributions:  

f(X | y)  ∝  ye-yx  for 0 < X  

f(Y | x)  ∝  xe-xy  for 0 < Y 

To solve for the marginal density f(X) use Gibbs sampling from these 

exponential distributions.  The resulting sequence does not converge! 

Question:  Why does this happen? 

Answer:  (Hint: Recall HW #1, problem 2.)  Let θ be the statistical 
parameter for X with f(X|θ) the exponential model.  What “prior” 
density for θ yields the posterior f(θ | x)  ∝  xe-xθ?  

 Then, what is the “prior” expectation for X?  
Remark: Note that W = Xθ is pivotal.  What is its distribution? 



 18

More on this puzzle: 
The conjugate prior for the parameter θ in the exponential distribution is 
the Gamma Γ(α, β). 

f(θ) = )(α
β α

Γ θα-1 e-βθ    for θ, α, β > 0,  

Then the posterior for θ based on x = (x1, .., xn), n iid observations from 
the exponential distribution is 
    f(θ|x) is Gamma Γ(α′, β′) 

where α′ = α+n and β′ = β + Σ xi. 
Let n=1, and consider the limiting distribution as α, β → 0. 
 

This produces the “posterior” density f(θ | x)  ∝  xe-xθ , 
which is mimicked in Bayes theorem by the improper “prior” density   

f(θ )  ∝  1/θ.  But then EF(θ) does not exist! 
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Part 2  EM – again   
 

• EM as a maximization/maximization method 
 
• Gibbs as a variation of Generalized EM 
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EM as a maximization/maximization method. 

Recall: 

L(θ ; x) is the likelihood function for θ with respect to the incomplete data x. 

L(θ ; (x, z)) is the likelihood for θ with respect to the complete data (x,z). 

And L(θ ; z | x) is a conditional likelihood for θ with respect to z, given x;  

which is based on h(z | x, θ): the conditional density for the data z, given (x,θ). 

Then as     f(X | θ) = f(X, Z | θ)  / h(Z | x, θ) 

we have    log L(θ ; x) = log L(θ ; (x, z)) – log L(θ ; z | x) (*) 

 
As below, we use the EM algorithm to compute the mle    

θ̂   =   argmaxΘ L(θ ; x) 
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With θ̂0 an arbitrary choice, define 
(E-step)  Q(θ | x,θ̂0) =   ∫Z [log L(θ ; x, z)] h(z | x,θ̂0) dz 

       and 

   H(θ | x, θ̂0) =   ∫Z [log L(θ ; z | x)] h(z | x, θ̂0) dz. 

 

then   log L(θ ; x)  =   Q(θ | x, θ0) –  H(θ | x, θ0),  
as we have integrated-out z from (*) using the conditional density h(z | x, θ̂0). 
 
The EM algorithm is an iteration of 

i. the E-step: determine the integral Q(θ | x, θ̂j),  
ii. the M-step: define θ̂j+1 as argmaxΘ Q(θ | x, θ̂j). 

Continue until there is convergence of the θ̂j. 
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Now, for a Generalized EM algorithm. 
 
Let be P(Z) any distribution over the augmented data Z, with density p(z)  
Define the function F by: 

F(θ, P(Z))  =  ∫Z [log L(θ; x, z)] p(z)dz - ∫Z log p(z) p(z)dz 
   =  EP [log L(θ; x, z)] - EP [ log p(z)] 

 

When  p(Z) = h(Z | x, θ̂0) from above, then F(θ, P(Z)) = log L(θ ; x). 
 
Claim: For a fixed (arbitrary) value θ = θ̂0,  F(θ̂0, P(Z)) is maximized over 
distributions P(Z) by choosing p(Z) = h(Z | x, θ̂0). 
 
Thus, the EM algorithm is a sequence of M-M steps: the old E-step now is a 
max over the second term in F(θ̂0, P(Z)), given the first term. The second step 
remains (as in EM) a max over θ for a fixed second term, which does not 
involve θ 
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Suppose that the augmented data Z are multidimensional. 
 
Consider the GEM approach and, instead of maximizing the choice of 
P(Z) over all of the augmented data – instead of the old E-step – instead 
maximize over only one coordinate of Z at a time, alternating with the 
(old) M-step.   
 
This gives us the following link with the Gibbs algorithm: Instead of 
maximizing at each of these two steps, use the conditional distributions, 
we sample from them! 
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Part 3)   Generating a Random Variable 
 
3.1)  Continuous r.v.’s – an Exact Method using transformation of the CDF 
 

• Let Y be a continuous r.v. with cdf FY(•)  Then the range of FY(•)  is (0, 1),  
and as a r.v. FY it is distributed U ~ Uniform (0,1).  Thus the inverse 
tranformation FY

-1(U) gives us the desired distribution for Y. 
 
Examples:   
  

• If Y ~ Exponential(λ)   then FY
-1(U) = -λ ln(1-U) is the desired Exponential. 

 
And from known relationships between the Exponential distribution and other 
members of the Exponential Family, we may proceed as follows.  
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Let Uj be iid Uniform(0,1), so that Yj  = -λ ln(Uj)  are iid Exponential(λ)  
 

• Z = -2 ∑
=

n

j 1
ln(Uj)  ~ χ2

2n  a Chi-squared distribution on 2n degrees of freedom 

Note only even integer values possible here, alas! 
 

 

• Z = -β ∑
=

a

j 1
ln(Uj)  ~ Gamma ΓΓΓΓ(a, β)   –  with integer values only for a. 

 
• Z = 

)ln(U
  )ln(U

j1

j1

∑

∑

+
=

=
ba

j

a
j   ~ Beta(a,b)  – with integer values only for a. 
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3.2)    The “Accept/Reject” algorithm for approximations using  pdf’s. 
Suppose we want to generate Y ~ Beta(a,b), for non-integer values of a and b, 
say a = 2.7 and b = 6.3. 
Let (U,V) be independent Uniform(0, 1) random variables.  Let c > maxy fY(y) 
Now calculate P(Y < y) as follows: 
 P(V < y, U < (1/c) fY(V) )  =  ∫ ∫

y cvfY dudv0
/)(

0  
 
       =  (1/c) ∫ y

Y dvvf0 )(  

       =  (1/c) P(Y < y). 
 
So:  (i)  generate independent (U,V) Uniform(0,1) 

(ii) If U < (1/c)fY(V), set Y = V, otherwise, return to step (i). 

Note:  The waiting time for one value of Y with this algorthim is c, so we want c 
small.  Thus, choose c = maxy fY(y). But we waste generated values of U,V 
whenever U > (1/c)fY(V), so we want to choose a better approximation 
distribution for V than the uniform.   
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Let Y ~ fY(y) and V ~ fV(v).   

• Assume that these two have common support, i.e., the smallest closed sets 
of measure one are the same.  

 
• Also, assume that    M = supy [fY(y) / fV(y)] exists, i.e., M < ∞. 

 
Then generate the r.v. Y ~ fY(y) using  
 

U ~ Uniform(0,1) and V ~ fV(v), with (U, V) independent, as follows: 
 

(i) Generate values (u, v). 

(ii) If  u < (1/M) fY(v) / fV(y)  then set  y = v. 

If not, return to step (i) and redraw (u,v). 
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Proof of correctness for the accept/reject algorithm:   

The generated r.v. Y has a cdf 

 P(Y < y) = P(V < y | stop) 

   = P (V < y |  U < (1/M) fY(v) / fV(y) ) 

   = 
))(/)()/1((

))(/)()/1(,(
VfVfMUP

VfVfMUyVP
VY

VY
<

<≤  

   = 
∫ ∫

∫ ∫
∞
∞−

∞−
dvvduf

dvvduf
vfvfM

V

y vfvfM
V

VY

VY

)(

)(
)(/)()/1(

0

)(/)()/1(
0  

   = .)( dvvfy
Y∫ ∞−  

 

Example:  Generate Y ~ Beta(2.7,6.3). 

Let V ~ Beta(2,6).  Then M = 1.67 and we may proceed with the algorithm. 
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3.3) Metropolis algorithm for “heavy-tailed” target densities. 
As before, let Y ~ fY(y), V ~ fV(v), U ~ Uniform(0,1), with (U,V) independent. 

Assume only that Y and V have a common support. 

Metropolis Algorithm:   
 Step0: Generate v0 and set z0 = v0.    For i = 1, ….,  

 Stepi: Generate (ui , vi)   

Define   ρi   =   min {
)(
)(

iV

iY
vf
vf  x 

)(
)(

1

1

−

−

iY

iV
zf
zf  , 1} 

 

vi  if ui  <  ρρρρi    
Let     zi    =    

        zi-1  if ui  > ρρρρi. 

 

Then, as i →∞, the r.v. Zi converges in distribution to the random variable Y. 
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