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Deriving the conditional distributions of a multivariate normal
distribution
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We have a multivariate normal vector . Consider partitioning  and  into𝑌 ∼  (𝝁, Σ) 𝝁 𝑌

𝝁 = [ ]𝝁1

𝝁2

𝑌 = [ ]
𝑦1

𝑦2

with a similar partition of  into

Then, , the conditional distribution of the first partition given the second, is ,
with mean 

and covariance matrix

Σ

[ ]Σ11

Σ21

Σ12

Σ22

( | = 𝑎)𝑦1 𝑦2  ( , )𝝁
⎯ ⎯⎯⎯

Σ
⎯ ⎯⎯⎯

= + (𝑎 − )𝝁
⎯ ⎯⎯⎯

𝝁1 Σ12 Σ22
−1

𝝁2

= −Σ
⎯ ⎯⎯⎯

Σ11 Σ12 Σ22
−1

Σ21

Actually these results are provided in Wikipedia too, but I have no idea how the  and  is
derived. These results are crucial, since they are important statistical formula for deriving 

. Would anyone provide me a derivation steps of deriving  and  ? Thank you very much!
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The idea is to use the definition of conditional density . You know that the𝑓( | = 𝑎) =𝑦1 𝑦2

( , 𝑎)𝑓 ,𝑌1 𝑌2 𝑦1

(𝑎)𝑓𝑌2
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joint  is a bivariate normal and that the marginal  is a normal then you just have to replace the
values and do the unpleasant algebra. These  might be of some help.  is the full proof.

(𝑎)𝑓𝑌2

𝑓 ,𝑌1 𝑌2 𝑓𝑌2

notes Here
– user10525 Jun 16, 2012 at 18:16

1  

 

Your second link answers the question (+1). Why not put it as an answer @Procrastinator? – gui11aume

Jun 16, 2012 at 22:54

1

  

I hadn't realized it, but I think I was implicitly using this equation in a conditional PCA. The conditional PCA

requires a transformation  that is effectively calculating the conditional covariance

matrix given some choice of A.
(𝐼 − 𝐴) Σ𝐴′(𝐴 )𝐴′ −1

– John Jul 2, 2012 at 15:49

 

@Procrastinator - your approach actually requires the knowledge of the Woodbury matrix identity, and the
knowledge of block-wise matrix inversion. These result in unnecessarily complicated matrix algebra.
– probabilityislogic Jul 2, 2012 at 16:17

2

  

@probabilityislogic Actually the result is proved in the link I provided. But it is respectable if you find it more
complicated than other methods. In addition, I was not attempting to provide an optimal solution in my

. Also, my comment was previous to Macro's answer (which I upvoted as you can see).comment
– user10525 Jul 2, 2012 at 16:25
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You can prove it by explicitly calculating the conditional density by brute force, as in
Procrastinator's link (+1) in the comments. But, there's also a theorem that says all conditional
distributions of a multivariate normal distribution are normal. Therefore, all that's left is to
calculate the mean vector and covariance matrix. I remember we derived this in a time series
class in college by cleverly defining a third variable and using its properties to derive the result
more simply than the brute force solution in the link (as long as you're comfortable with matrix
algebra). I'm going from memory but it was something like this:

Let  be the first partition and  the second. Now define  where 

. Now we can write

𝐱1 𝐱2 𝐳 = + 𝐀𝐱1 𝐱2

𝐀 = −Σ12 Σ
−1
22

cov(𝐳, )𝐱2 = cov( , ) + cov(𝐀 , )𝐱1 𝐱2 𝐱2 𝐱2

= + 𝐀var( )Σ12 𝐱2

= −Σ12 Σ12 Σ
−1
22

Σ22

= 0

Therefore  and  are uncorrelated and, .
Now, clearly , therefore it follows that

𝐳 𝐱2 since they are jointly normal, they are independent
𝐸(𝐳) = + 𝐀𝝁1 𝝁2

𝐸( | )𝐱1 𝐱2 = 𝐸(𝐳 − 𝐀 | )𝐱2 𝐱2

= 𝐸(𝐳| ) − 𝐸(𝐀 | )𝐱2 𝐱2 𝐱2

= 𝐸(𝐳) − 𝐀𝐱2

= + 𝐀( − )𝝁1 𝝁2 𝐱2
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+ ( )𝝁1 𝝁2 2

= + ( − )𝝁1 Σ12 Σ
−1
22

𝐱2 𝝁2

which proves the first part. For the covariance matrix, note that

var( | )𝐱1 𝐱2 = var(𝐳 − 𝐀 | )𝐱2 𝐱2

= var(𝐳| ) + var(𝐀 | ) − 𝐀cov(𝐳, − ) − cov(𝐳, − )𝐱2 𝐱2 𝐱2 𝐱2 𝐱2 𝐀′

= var(𝐳| )𝐱2

= var(𝐳)

Now we're almost done:

var( | ) = var(𝐳)𝐱1 𝐱2 = var( + 𝐀 )𝐱1 𝐱2

= var( ) + 𝐀var( ) + 𝐀cov( , ) + cov( , )𝐱1 𝐱2 𝐀′ 𝐱1 𝐱2 𝐱2 𝐱1 𝐀′

= + − 2Σ11 Σ12 Σ
−1
22

Σ22 Σ
−1
22

Σ21 Σ12 Σ
−1
22

Σ21

= + − 2Σ11 Σ12 Σ
−1
22

Σ21 Σ12 Σ
−1
22

Σ21

= −Σ11 Σ12 Σ
−1
22

Σ21

which proves the second part.

 For those not very familiar with the matrix algebra used here, .Note: this is an excellent resource

 One property used here this is not in the matrix cookbook (good catch @FlyingPig) is
 which is that for two random vectors 

,

For scalars, of course,  but for vectors they are different insofar as the
matrices are arranged differently.

Edit:
property 6 on the wikipedia page about covariance matrices:
𝐱, 𝐲

var(𝐱 + 𝐲) = var(𝐱) + var(𝐲) + cov(𝐱, 𝐲) + cov(𝐲, 𝐱)

cov(𝑋, 𝑌 ) = cov(𝑌 , 𝑋)
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Thanks for this brilliant method! There is one matrix algebra does not seem familiar to me, where can I find
the formula for opening ? I haven't found it on the link you sent.𝑣𝑎𝑟( + 𝐴 )𝑥1 𝑥2 –  Flying pig Jun 17,
2012 at 6:35

22

  

This is a very good answer (+1), but could be improved in terms of the ordering of the approach. We start
with saying we want a linear combination  of the whole vector that is
independent/uncorrelated with . This is because we can use the fact that  which means 

 and . These in turn lead to expressions for  and 
. This means we should take . Now we require . If 

 is invertible we then have .

𝑧 = 𝐶𝑥 = +𝐶1𝑥1 𝐶2𝑥2

𝑥2 𝑝(𝑧| ) = 𝑝(𝑧)𝑥2

𝑣𝑎𝑟(𝑧| ) = 𝑣𝑎𝑟(𝑧)𝑥2 𝐸(𝑧| ) = 𝐸(𝑧)𝑥2 𝑣𝑎𝑟( | )𝐶1𝑥1 𝑥2

𝐸( | )𝐶1𝑥1 𝑥2 = 𝐼𝐶1 𝑐𝑜𝑣(𝑧, ) = + = 0𝑥2 Σ12 𝐶2Σ22

Σ22 = −𝐶2 Σ12Σ
−1
22 – probabilityislogic Jul 2, 2012 at 16:00

2 @probabilityislogic, I'd actually never thought about the process that resulted in choosing this linear
combination but your comment makes it clear that it arises naturally, considering the constraints we want to
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  satisfy. +1! – Macro Jul 2, 2012 at 20:06

1
   

@jakeoung - it is not  that , it is setting it to this value, so that we get an expression that
contains the variables we want to know about.

proving = 𝐼𝐶1

– probabilityislogic Jan 14, 2018 at 14:40

1

   

@jakeoung I also don't quite understand that statement. I understand in this way: If , then 

. So the value of  is somehow an arbitrary scale. So we set 
 for simplicity.

𝑐𝑜𝑣(𝑧, ) = 0𝑥2

𝑐𝑜𝑣( 𝑧, ) = 𝑐𝑜𝑣(𝑧, ) = 0𝐶
−1
1 𝑥2 𝐶

−1
1 𝑥2 𝐶1

= 𝐼𝐶1 – Ken T May 5, 2018 at 16:03

22

The answer by  is great, but here is an even simpler way that does not require you to use
any outside theorem asserting the conditional distribution. It involves writing the Mahalanobis
distance in a form that separates the argument variable for the conditioning statement, and then
factorising the normal density accordingly.

Macro

 This derivation uses a matrix
inversion formula that uses the  . We first use the

 to write the inverse-variance matrix as:

Rewriting the Mahalanobis distance for a conditional vector:
Schur complement ≡ −𝚺∗ 𝚺11 𝚺12𝚺

−1
22

𝚺21

blockwise inversion formula

= = [ ] ,𝚺
−1 [ ]

𝚺11

𝚺21

𝚺12

𝚺22

−1
𝚺∗

11

𝚺∗

21

𝚺∗

12

𝚺∗

22

where:

=  𝚺∗

11
𝚺

−1
∗

= −𝚺∗

21
𝚺

−1
22

𝚺21𝚺
−1
∗

= − ,𝚺∗

12
𝚺

−1
∗ 𝚺12𝚺

−1
22

= + .  𝚺∗

22
𝚺

−1
22

𝚺
−1
22

𝚺21𝚺
−1
∗ 𝚺12𝚺

−1
22

Using this formula we can now write the Mahalanobis distance as:

(𝑦 − 𝝁 (𝑦 − 𝝁))T
𝚺

−1

= [ ] [ ][ ]
−𝑦1 𝝁1

−𝑦2 𝝁2

T
𝚺∗

11

𝚺∗

21

𝚺∗

12

𝚺∗

22

−𝑦1 𝝁1

−𝑦2 𝝁2

= ( − ( − ) + ( − ( − )𝑦1 𝝁1)T
𝚺∗

11
𝑦1 𝝁1 𝑦1 𝝁1)T

𝚺∗

12
𝑦2 𝝁2

+ ( − ( − ) + ( − ( − )𝑦2 𝝁2)T
𝚺∗

21
𝑦1 𝝁1 𝑦2 𝝁2)T

𝚺∗

22
𝑦2 𝝁2

= ( − ( − ) − ( − ( − )𝑦1 𝝁1)T
𝚺

−1
∗ 𝑦1 𝝁1 𝑦1 𝝁1)T

𝚺
−1
∗ 𝚺12𝚺

−1
22

𝑦2 𝝁2

− ( − ( − ) + ( − ( − )𝑦2 𝝁2)T
𝚺

−1
22

𝚺21𝚺
−1
∗ 𝑦1 𝝁1 𝑦2 𝝁2)T

𝚺
−1
22

𝑦2 𝝁2

+ ( − ( − )𝑦2 𝝁2)T
𝚺

−1
22

𝚺21𝚺
−1
∗ 𝚺12𝚺

−1
22

𝑦2 𝝁2

= ( − ( + ( − )) ( − ( + ( − )))𝑦1 𝝁1 𝚺12𝚺
−1
22

𝑦2 𝝁2 )T
𝚺

−1
∗ 𝑦1 𝝁1 𝚺12𝚺

−1
22

𝑦2 𝝁2

https://stats.stackexchange.com/users/4856/macro
https://stats.stackexchange.com/users/2392/probabilityislogic
https://stats.stackexchange.com/users/144196/ken-t
https://stats.stackexchange.com/posts/392664/timeline
https://stats.stackexchange.com/users/4856/macro
https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Invertible_matrix#Blockwise_inversion


+ ( − ( − )𝑦2 𝝁2)T
𝚺

−1
22

𝑦2 𝝁2

= ( − ( − ) + ( − ( − ),𝑦1 𝝁∗)T
𝚺

−1
∗ 𝑦1 𝝁∗ 𝑦2 𝝁2)T

𝚺
−1
22

𝑦2 𝝁2

where  is the . Note that this result is a
general result that does not assume normality of the random vectors involved in the
decomposition. It gives a useful way of decomposing the Mahalanobis distance so that it consists
of a sum of quadratic forms on the marginal and conditional parts. In the conditional part the
conditioning vector  is absorbed into the mean vector and variance matrix. To clarify the form,
we repeat the equation with labelling of terms:

≡ + ( − )𝝁∗ 𝝁1 𝚺12𝚺
−1
22

𝑦2 𝝁2 conditional mean vector

𝑦2

(𝑦 − 𝝁 (𝑦 − 𝝁) = + .)T
𝚺

−1 ( − ( − )𝑦1 𝝁∗)T
𝚺

−1
∗ 𝑦1 𝝁∗

  

Conditional Part

( − ( − )𝑦2 𝝁2)T
𝚺

−1
22

𝑦2 𝝁2
  

Marginal Part

 Now that we have the above form for the Mahalanobis
distance, the rest is easy. We have:
Deriving the conditional distribution:

𝑝( | ,𝝁, 𝚺)𝑦1 𝑦2 𝑝( , |𝝁, 𝚺)∝

𝑦1
𝑦1 𝑦2

= N(𝑦|𝝁, 𝚺)

exp( − (𝑦 − 𝝁 (𝑦 − 𝝁))∝

𝑦1 1

2
)T

𝚺
−1

exp( − ( − ( − ))∝

𝑦1 1

2
𝑦1 𝝁∗)T

𝚺
−1
∗ 𝑦1 𝝁∗

N( | , ).∝

𝑦1
𝑦1 𝝁∗ 𝚺∗

This establishes that the conditional distribution is also multivariate normal, with the specified
conditional mean vector and conditional variance matrix.
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Hi Ben. I am sorry for another question. Will the above marginal distribution hold if we don't assume normal
distribution for  and . Then what's the conditional distribution for  conditional  without normal
distribution? Or, is it possible to calculate the expectation and variance of  conditional  without normal
distribution following your setup without normality assumption. Deeply appreciate for your help! Thanks

𝑦1 𝑦2 𝑦1 𝑦2

𝑦1 𝑦2

– Charles Chou Nov 24, 2021 at 16:48

  
@CharlesChou: No, the moments  and  will not generally hold outside the normal distribution. (Also,
note that the above is a conditional distribution, not a marginal distribution.)

𝝁∗ 𝚺∗

– Ben Nov 24, 2021 at 20:24
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