ST740

Gibbs sampling

Gibbs sampling was proposed in the early 1990s (Geman and Geman, 1984; Gelfand and

Smith, 1990) and fundamentally changed Bayesian computing.
Gibbs sampling is attractive because it can sample from high-dimensional posteriors.

The main idea is to break the problem of sampling from the high-dimensional joint distribu-

tion into a series of samples from low-dimensional conditional distributions.

Because the low-dimensional updates are done in a loop, samples are not independent as in

rejection sampling.

The dependence of the samples turns out to follow a Markov distribution, leading to the

name Markov chain Monte Carlo (MCMC).
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Gibbs sampling

The algorithm begins by setting initial values for all parameters, 8 = (0", ..., 65).

Variables are then sampled one at a time from their full conditional distributions,

(0101, ...,0;-1,0j11,....6,,5).

Rather than 1 sample from p-dimensional joint, we make p 1-dimensional samples.

The process is repeated until the required number of samples have been generated.

Formally, the algorithm is:
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Gibbs sampling
e Simple linear regression: Y; ~ N(8y + X;81,0%), B; ~ N(u;,77) and 0* ~ InvGamma(a, b).
o Initial values: A reasonable choice would be to set 3y, 31, and o2 at their MLEs.

e The full conditionals are all conjugate:

- 50‘6170—273, ~

- 51‘507 027 y~

- 02‘607617), ~
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Code

n <- length(y)

#intial values:

ols <= lm(y~X)
sigma2 <- var(olsSresiduals)
beta <- olsS$coef

#Initialize matrix to store the results:

samples <- matrix(0,n.samples, 3)
colnames (samples) <- c("betal", "beta2","sigma"2")

#Start the MCMC sampler:
for(i in l:n.samples) {
#update sigma”2:

SSE <— sum((y-beta[l]-Xxbetal2]) "2)
sigma2 <- 1/rgamma (1l,n/2+a,SSE/2+b)

#update betal:

AVAYAYA <- n/sigma2 + 1/taull]"2

MMM <- sum(y—-Xsbetal[2])/sigma2 + mul[l]/taul[l]"2
beta[l] <- rnorm(l,MMM/VVV,1l/sqgrt (VVV))

#update beta2:

AVAYAYA <- sum(X“"2)/sigma2 + 1/taul[2]"2

MMM <— sum(X* (y-beta[l]))/sigma2 + mu[2]/tau[2]"2
beta[2] <- rnorm(l,MMM/VVV,1l/sqgrt (VVV))

#store results:

samples[i, ] <- c(beta,sigma2)

Code is online at

http://wwwd.stat.ncsu.edu/~reich/ST740/code/BayesSLM.R.
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Gibbs sampling
e Why does this work? 8® isn’t a sample from the posterior. V) likely isn’t either.

e However, once we get one sample from the posterior (i.e., convergence) then the next one is

also from the posterior:
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Gibbs sampling
e When does the chain converge? That is, for which ¢ can we assume that 8 ~ p(0|y)?
e Proving that the chain will eventually converge requires many stochastic process theorems.
e The Markov chain will converge to p(0|y) if it satisfies the detailed balance condition
p(0V]y)P(6“D|0") = p(6“+Dly) P(8V]6“HD),
where P(60"*V]0)) is the PDF of the transition from one iteration to the next.
e Geman and Geman showed this holds for Gibbs sampling.
e This is an asymptotic result, in practice we need a finite time to mark convergence.

e Typically, we sample say S = 50, 000 draws and discard the first say B = 5, 000 as burn-in,

and then use the last S — B samples for posterior inference.

e Ideally it looks like this:

e These samples are not independent! They follow a first-order Markov chain, meaning that

610"~V is independent of samples before ¢ — 1.

e However, the mean (or other summaries) of the samples remains an unbiased estimate of the

posterior mean.
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Variants of Gibbs sampling

e Updating parameters one at a time can lead to high autocorrelation (the lag h autocorrelation

function (ACF) is p(h) = Cor[e(t), 0(t+h)].
e Autocorrelation leads to slow convergence and imprecise estimates.

o This is especially true with the posterior correlation between parameters is high.

e Many variants including blocked and collapsed Gibbs have been proposed for this.
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Blocked Gibbs sampling

Rather than update parameters one at a time, we update blocks of parameters one at a time.

Putting highly-correlated parameters in the block can improve convergence and mixing.

Consider the simple linear regression case and define 8, = (3, 31) and 8, = o2,

Blocked Gibbs alternates between

1. 6 ~ p(6,165 " y)

2. 0% ~ p(6,]6\".y)

The full conditionals are
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Code

n <- length(y)
p <- ncol (X)

# Intial values:
sigma2 <- rgamma(l,1,1)
beta <- rnorm(p,0,10)

# Initialize vectors to store the results:
keep.sigma2 <- rep(0,n.samples)
keep.beta <- matrix(0,n.samples, p)

# Pre—-compute some matrices that will be used at each iteration
tXXinv <- solve (t (X) %$*%X)
betahat <- tXXinv%$x%t (X) $x%y

#Start the MCMC sampler!
for(i in l:n.samples) {

# Update beta:
beta <- rmvnorm(l,betahat, sigmaz2xtXXinv)
beta <- as.vector (beta)

# Update sigma?2:
sigma2 <- 1/rgamma (1l,n/2+a,sum((y—X%*%beta) "2)/2+b)

# Store results:

keep.sigmaz2[i] <- sigma?2
keep.betali, ] <—- beta

Code is online at

http://wwwéd.stat.ncsu.edu/~reich/ST740/code/BayesLM.R.
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Collapsed Gibbs sampling

e In some cases it is possible to marginalize out parameters in closed form.

e For example, in the linear regression case the marginal posterior distribution of 65 is

In this case, we can just do Gibbs sampling to obtain draws from Bét) ~ p(0s]y).

After this MCMC is computed, we can then sample the values of 6, from 9?) ~ p(0, |0§t), y).

The samples ) = (9?), Ogt)) have the correct joint posterior distribution p(8|y).

e MCMC is now performed on a lower dimensional problem which may be easier code and

faster to converge.

ST740 (3) Computing - Part 2 Page 10




