
Gibbs sampling

• Gibbs sampling was proposed in the early 1990s (Geman and Geman, 1984; Gelfand and

Smith, 1990) and fundamentally changed Bayesian computing.

• Gibbs sampling is attractive because it can sample from high-dimensional posteriors.

• The main idea is to break the problem of sampling from the high-dimensional joint distribu-

tion into a series of samples from low-dimensional conditional distributions.

• Because the low-dimensional updates are done in a loop, samples are not independent as in

rejection sampling.

• The dependence of the samples turns out to follow a Markov distribution, leading to the

name Markov chain Monte Carlo (MCMC).
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Gibbs sampling

• The algorithm begins by setting initial values for all parameters, θ(0) = (θ
(0)
1 , ..., θ

(0)
p ).

• Variables are then sampled one at a time from their full conditional distributions,

p(θj|θ1, ..., θj−1, θj+1, ..., θp, y).

• Rather than 1 sample from p-dimensional joint, we make p 1-dimensional samples.

• The process is repeated until the required number of samples have been generated.

• Formally, the algorithm is:
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Gibbs sampling

• Simple linear regression: Yi ∼ N(β0+Xiβ1, σ
2), βj ∼ N(µj, τ

2
j ) and σ2 ∼ InvGamma(a, b).

• Initial values: A reasonable choice would be to set β0, β1, and σ2 at their MLEs.

• The full conditionals are all conjugate:

– β0|β1, σ
2, y ∼

– β1|β0, σ
2, y ∼

– σ2|β0, β1, y ∼
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Code

n <- length(y)

#intial values:

ols <- lm(y˜X)
sigma2 <- var(ols$residuals)
beta <- ols$coef

#Initialize matrix to store the results:

samples <- matrix(0,n.samples,3)
colnames(samples) <- c("beta1","beta2","sigmaˆ2")

#Start the MCMC sampler:

for(i in 1:n.samples){

#update sigmaˆ2:

SSE <- sum((y-beta[1]-X*beta[2])ˆ2)
sigma2 <- 1/rgamma(1,n/2+a,SSE/2+b)

#update beta1:

VVV <- n/sigma2 + 1/tau[1]ˆ2
MMM <- sum(y-X*beta[2])/sigma2 + mu[1]/tau[1]ˆ2
beta[1] <- rnorm(1,MMM/VVV,1/sqrt(VVV))

#update beta2:

VVV <- sum(Xˆ2)/sigma2 + 1/tau[2]ˆ2
MMM <- sum(X*(y-beta[1]))/sigma2 + mu[2]/tau[2]ˆ2
beta[2] <- rnorm(1,MMM/VVV,1/sqrt(VVV))

#store results:

samples[i,] <- c(beta,sigma2)
}

Code is online at

http://www4.stat.ncsu.edu/∼reich/ST740/code/BayesSLM.R.

ST740 (3) Computing - Part 2 Page 4



Gibbs sampling

• Why does this work? θ(0) isn’t a sample from the posterior. θ(1) likely isn’t either.

• However, once we get one sample from the posterior (i.e., convergence) then the next one is

also from the posterior:
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Gibbs sampling

• When does the chain converge? That is, for which t can we assume that θ(t) ∼ p(θ|y)?

• Proving that the chain will eventually converge requires many stochastic process theorems.

• The Markov chain will converge to p(θ|y) if it satisfies the detailed balance condition

p(θ(t)|y)P (θ(t+1)|θ(t)) = p(θ(t+1)|y)P (θ(t)|θ(t+1)),

where P (θ(t+1)|θ(t)) is the PDF of the transition from one iteration to the next.

• Geman and Geman showed this holds for Gibbs sampling.

• This is an asymptotic result, in practice we need a finite time to mark convergence.

• Typically, we sample say S = 50, 000 draws and discard the first say B = 5, 000 as burn-in,

and then use the last S −B samples for posterior inference.

• Ideally it looks like this:

• These samples are not independent! They follow a first-order Markov chain, meaning that

θ(t)|θ(t−1) is independent of samples before t− 1.

• However, the mean (or other summaries) of the samples remains an unbiased estimate of the

posterior mean.
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Variants of Gibbs sampling

• Updating parameters one at a time can lead to high autocorrelation (the lag h autocorrelation

function (ACF) is ρ(h) = Cor[θ(t),θ(t+h)].

• Autocorrelation leads to slow convergence and imprecise estimates.

• This is especially true with the posterior correlation between parameters is high.

• Many variants including blocked and collapsed Gibbs have been proposed for this.
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Blocked Gibbs sampling

• Rather than update parameters one at a time, we update blocks of parameters one at a time.

• Putting highly-correlated parameters in the block can improve convergence and mixing.

• Consider the simple linear regression case and define θ1 = (β0, β1) and θ2 = σ2.

• Blocked Gibbs alternates between

1. θ
(t)
1 ∼ p(θ1|θ(t−1)

2 , y)

2. θ
(t)
2 ∼ p(θ2|θ(t)

1 , y)

• The full conditionals are
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Code

n <- length(y)
p <- ncol(X)

# Intial values:
sigma2 <- rgamma(1,1,1)
beta <- rnorm(p,0,10)

# Initialize vectors to store the results:
keep.sigma2 <- rep(0,n.samples)
keep.beta <- matrix(0,n.samples,p)

# Pre-compute some matrices that will be used at each iteration
tXXinv <- solve(t(X)%*%X)
betahat <- tXXinv%*%t(X)%*%y

#Start the MCMC sampler!
for(i in 1:n.samples){

# Update beta:
beta <- rmvnorm(1,betahat,sigma2*tXXinv)
beta <- as.vector(beta)

# Update sigma2:
sigma2 <- 1/rgamma(1,n/2+a,sum((y-X%*%beta)ˆ2)/2+b)

# Store results:
keep.sigma2[i] <- sigma2
keep.beta[i,] <- beta

}

Code is online at

http://www4.stat.ncsu.edu/∼reich/ST740/code/BayesLM.R.
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Collapsed Gibbs sampling

• In some cases it is possible to marginalize out parameters in closed form.

• For example, in the linear regression case the marginal posterior distribution of θ2 is

• In this case, we can just do Gibbs sampling to obtain draws from θ
(t)
2 ∼ p(θ2|y).

• After this MCMC is computed, we can then sample the values of θ1 from θ
(t)
1 ∼ p(θ1|θ(t)

2 , y).

• The samples θ(t) = (θ
(t)
1 ,θ

(t)
2 ) have the correct joint posterior distribution p(θ|y).

• MCMC is now performed on a lower dimensional problem which may be easier code and

faster to converge.
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