
Machine Learning                                                                          Srihari 

1 

MCMC and Gibbs Sampling 

Sargur Srihari 
srihari@cedar.buffalo.edu 



Machine Learning                                                                          Srihari 

2 

Topics 

1.  Markov Chain Monte Carlo 
2.  Markov Chains 
3.  Gibbs Sampling 
4.  Basic Metropolis Algorithm 
5.  Metropolis-Hastings Algorithm 
6.  Slice Sampling 
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Markov Chain Monte Carlo (MCMC) 

•  Simple Monte Carlo methods (Rejection sampling 
and importance sampling) are for evaluating 
expectations of functions  
–  They suffer from severe limitations, particularly with high 

dimensionality 
•  MCMC is a very general and powerful framework 

–  Markov refers to sequence of samples rather than the 
model being Markovian 

–  Allows sampling from large class of distributions 
–  Scales well with dimensionality  
–  MCMC origin is in statistical physics (Metropolis 1949) 
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Markov chains 
•  First order Markov chain is a sequence of random 

variables  z(1),…,z(M) such that 
–   conditional independence property holds: 

 p(z(m+1)| z(1),.., z(m)) = p(z(m+1)| z(m))  

•  Represented in a directed graph as a chain 
•  Markov chain specified by  

–  Distribution of initial variable p(z(0)) 
–  Conditional (transition) probabilities 
Tm(z(m),z(m+1)) = p(z(m+1)|z(m)) 

•  Markov chain is homogeneous if all transition 
probabilities are the same for all m 

Each sample dependent 
only on previous sample 
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Gibbs Sampling 
•  A simple and widely applicable MCMC 

algorithm 
–  Special case of Metropolis-Hastings 

•  Consider distribution p(z)=p(z1,..,zM) 
from which we wish to sample 

•  We have chosen an initial state for the 
Markov chain 

•  Each step involves replacing value of 
one variable by a value drawn from 
p(zi|z\i) 
 where symbol  z\i denotes z1,..,zM with zi 
omitted 

•  Repeat procedure by cycling through 
variables in some particular order 

Josiah Willard Gibbs 
1839-1903 
Born New Haven CT 
First US PhD in Engg. 
Developed  
vector analysis,  
crystallography and  
planetary orbits 
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Gibbs with Three Variables 
•  Distribution p(z1,z2,z3) over three variables 
•  At step t  selected values are z1

(t), z2
(t) and z3

(t) 

•  Replace z1
(t) by new value z1

(t+1) obtained by 
sampling from p(z1|z2

(t),z3
(t)) 

•  Replace z2
(t) by value z2

(t+1) by sampling from 
p(z2|z1

(t+1),z3
(t)) 

–  New value for z1 is used straightaway  
•  Update z3 with a sample z3

(t+1) drawn from p(z3|z1
(t

+1),z2
(t+1)) 

•  Cycle through three variables in turn 
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Gibbs Sampling with M variables  

•  Initialize first sample: {zi, i=1,..,M} 
•   For t=1,..,T, T = no of samples 

– Sample z1
(t+1)~ p(z1|z2

(t),z3
(t),…, zM

(t) ) 
– Sample z2

(t+1)~ p(z2|z1
(t+1),z3

(t),…, zM
(t) ) 

– ….. 
– Sample zj

(t+1)~ p(zj|z1
(t+1),..zj-1

(t+1), zj+1
(t) …, zM

(t) ) 
– ….. 
– Sample zM

(t+1)~ p(zM|z1
(t+1),z2

(t+1),…, zM-1
(t+1) ) 

•  p(zj|z-j) is called a full conditional for variable j 
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Gibbs sampling and Graphical Models 

•  Practical Applicability of Gibbs 
sampling  
– depends on ease with which samples can 

be drawn from p(zk|z\k)  
–  In the case of PGMs 

•  Conditional distributions for nodes depend 
only on variables in Markov blanket 

– which are its neighbors in the graph 

– Gibbs sampling is a distributed algorithm 
•  It is not parallel since samples generated 

sequentially 

Markov blanket  
for undirected graph 

Markov blanket  
for directed graph 
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Gibbs Sampling for inferring parameters of GMM 
•  Full joint distribution 

 
–  Using a semi-conjugate prior 

–  IW is the inverse Wishart distribution 

•  We need full conditionals (to obtain samples)  for 
–  Discrete indicators, p(zn=1|xn,µ,π,Σ)  
–  Mixing weights p(π|z) for π1,..πK 

–  Means p(µk|Σk,z,x) 

–  Covariances p(Σk|µk,z,x) 

•  Note that we know the values of xn 
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Full Conditionals for Gibbs GMM 

•  Discrete Indicators 

•  Mixing weights 

•  Means 

•  Covariances 

10 

p(z
n
= k | x

n
,π,µ,Σ)∝ π

k
N x

n
| µ
k
,Σ
k( )

    
p(π | z) = Dir α

k
+ I z

n
= k( )

k=1

K

n=1

N

∑
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

    p(µk
|Σ

k
, z,x) = N(µ

k
| m

k
,V

k
)

    
p(Σ

k
| µ

k
,z, x) = IW Σ

k
|S

k
,ν

k( )

Terms Vk and Sk are  
sample statistics 
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Proof of Sampling 

•  To show that procedure samples from 
given distribution 

•  First show that distribution p(z) is invariant  
(or stationary) of each sampling step and 
hence of whole Markov chain 

•  Second requirement is ergodicity 
– Every state reachable from every other state 

•  The two requirements are formally defined 
next 
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Markov chain properties 
•  Marginal probability for a variable 

–  Expressed in terms of marginal probability of previous 
variable in chain 

•  Invariant or stationary 
–  A distribution is invariant  wrt a Markov chain if each 

step leaves the marginal distribution invariant 
–  p*(z) is invariant if 

•  Required distribution p(z) is invariant if it satisfies 
property of detailed balance 

 p*(z)T(z,z’)=p*(z’)T(z’,z) 
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Markov chain that respects detailed balance is reversible. 

Probability of 
sample is  
sum of probs 
over all values  
of prev sample 

T(z’,z)=
p(z|z’)

Two directions between 
z and z’ are the same 
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Ergodicity 

•  Our goal is to use Markov chains to sample from a 
given distribution 

•  We need to set up a Markov chain such that the 
desired distribution is invariant 
–  Also, irrespective of choice of initial distribution p(z(0)),  
–  As                  the distribution p(z(m)) converges to the 

required invariant distribution p*(z) 

•  This property is called ergodicity 
–  And the invariant distribution is called the equilibrium 

distribution 

m→∞

Ergodic also means no state has a zero probability of exit from it 
And every state is reachable from every other state 
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Gibbs sampling of two variables  
•  Two correlated Gaussian 

variables 
•  Step size is governed by 

standard deviation of 
conditional distribution 
–  Is O(l) 
– Leads to slow progress in 

direction of elongation of the 
joint distribution 

•  No of steps needed to 
obtain an independent 
sample is O((L/l)2) 

Conditional distribution of width l 
Marginal distribution of width L 
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Basic Metropolis Algorithm 
•  As with rejection and importance sampling use a 

proposal distribution (simpler distribution) 
•  Maintain a record of current state z(t) 

•  Proposal distribution q(z|z(t)) depends on current 
state (next sample depends on previous one) 
–  E.g., q(z|z(t)) is a symmetric Gaussian with mean z(t) and 

a small variance 
•  Thus sequence of samples z(1), z(2)… forms a 

Markov chain 
•  Write                      where          is readily evaluated 

•  At each cycle generate candidate z* and test for 
acceptance 

p(z) = 1
Zp

p(z) p(z)
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Metropolis Algorithm 
•  Assumes simple proposal 

distribution, that is symmetric 
–  e.g., an isotropic Gaussian q(z),  
q(zA|zB) = q(zB|zA) for all zA, zB 

•  New sample z* from q(z) is accepted 
with probability 

–  Done by choosing u ~ U(0,1) and 
accepting if A(z*,z(t))>u 

•  If accepted then z(t+1)=z*  
•  Otherwise:  

–  z* is discarded,  
–  z(t+1) is set to z(t) and  
–  another candidate drawn from q(z|z(t+1)) 

Accepted steps in green 
Rejected steps in red 
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Gaussian p(z) whose  
one-standard deviation  
contour is shown 

q(z) isotropic 
Gaussian with
std dev 0.2
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Inefficiency of Random Walk 
•  Consider simple random walk 
•  State space z consisting of  integers with probabilities 

    p(z(t+1) = z(t)) = 0.5 
    p(z(t+1) = z(t)+1) = 0.25I 
    p(z(t+1) = z(t) - 1) = 0.25 

•  If initial state is z(1)=0  
–  the expected state at time t will be zero,  E[z(t)] = 0 
•  Similarly E[(z(t))2] = t / 2 
•  Thus after t steps distance traveled is proportional to sqrt (t) 

•  Random walks are inefficient in exploring state-space 
•  MCMC algorithms try to avoid random walk behavior 

Stay in same state 

Increase state by 1 

Decrease state by 1 
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 Metropolis-Hastings Algorithm 
•  Generalizes Metropolis algorithm 

–  Proposal distribution is no longer a symmetric function 
of arguments, i.e.,  q(zA|zB) .ne. q(zB|zA) for all zA, zB 

1. At step t , in which current state is z(t) we 
draw a sample z* from distribution qk(z|z(t)) 

2. Accept with probability Ak(z*,z(t)) where 

•  Can show that p(z) is an invariant 
distribution of the Markov chain defined by 
Metropolis-Hastings Algorithm 
– since detailed balance is satisfied 

 
Ak (z*,z(τ ) ) = min 1,   

p(z*)qk (z
(τ ) | z*)

p(z(τ ) )qk (z* | z(τ ) )
⎛
⎝⎜

⎞
⎠⎟

k labels set of possible 
transitions considered 
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Choice of Proposal Distribution for Metropolis-Hastings 

•  Gaussian centered on 
current state 

•  Keeping rejection rate low 

•  Independent sample 
Isotropic Gaussian 
proposal distribution 

Correlated 
Multivariate 
Gaussian 

Scale ρ  of proposal distribution
should be of order σ min

No. of steps needed to get 
independent sample is of
order (σ max /σ min )
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Slice Sampling 

•  Metropolis algorithm is sensitive to step 
size 
– Too small: slow decorrelation due to random 

walk behavior 
– Too large: inefficiency due to high rejection 

rate  
•  Slice sampling provides an adaptive step 

size to match the distribution 
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Illustration of Slice 
•  For given z(t), a value of u is 

chosen uniformly in region 
0< u < p~(z(t)) 
–  which is a slice through the 

distribution 
•  Since infeasible to sample 

from slice, a new sample is 
drawn from  
 zmin < z < zmax  

 which contains the previous 
value z(t) 


