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Markov Chain Monte Carlo (MCMC)

« Simple Monte Carlo methods (Rejection sampling
and importance sampling) are for evaluating
expectations of functions

— They suffer from severe limitations, particularly with high
dimensionality

« MCMC is a very general and powerful framework

— Markov refers to sequence of samples rather than the
model being Markovian

— Allows sampling from large class of distributions
— Scales well with dimensionality
— MCMC origin is in statistical physics (Metropolis 1949) ;
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Markov chains

First order Markov chain is a sequence of random
variables zU,....z™M such that

— conditional independence property holds:

(m+1)| (1) (m)) = (m+1)| (m) Each sample dependent
p(Z | 27500 2 ) p(Z | Z ) only on previous sample

Represented in a directed graph as a chain

« Markov chain specified by
— Distribution of initial variable p(z®)
— Conditional (transition) probabilities
T, (2M,20m+)) = p(z0m+D)|zm)
* Markov chain is homogeneous if all transition
probabilities are the same for all m
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Gibbs Sampling

* A simple and widely applicable MCMC
algorithm

— Special case of Metropolis-Hastings

 Consider distribution p(z)=p(z,,..,z;,)
from which we wish to sample

 \We have chosen an initial state for the Josiah Willard Gibbs
: 1839-1903
Markov chain Born New Haven CT
o : : First US PhD in Engg.
Each st_ep iInvolves replacing value of Developed
one variable by a value drawn from vector analysis,
crystallography and
p(Zi|Z\i) planetary orbits
where symbol z;denotes z,,..,z,, with z,
omitted

 Repeat procedure by cycling through
variables in some particular order 5
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Gibbs with Three Variables

Distribution p(z,,z,,z;) over three variables

At step t selected values are z,(, z,(¥ and z,¥
Replace z,¥ by new value z,**? obtained by
sampling from p(z,|z,%,z,(%)

Replace z,/¥ by value z,**? by sampling from
p(z|z,,z;Y)

— New value for z, is used straightaway

Update z; with a sample z;(**Y drawn from p(z;|z,*
+1), Zz(t-l—l) )

Cycle through three variables in turn
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Gibbs Sampling with M variables

* Initialize first sample: {z, i=1,..,M}
« Fort=1,..,T, T =no of samples
— Sample z,*~ p(z,|z,%,z,09, ..., z;,,?)
— Sample z,(*"V~ p(z,|z,(tV,z,¥, ..., z,,¥)

— Sample z"V~ p(z|z,*Y,..z, Y, z, (¥ ..., z),/V)

— Samp|e ZM(H])Np(ZM|Z](t+1),ZZ(t+1), . ZM_](H]))
* p(z,|z) is called a full conditional for variable j
JU 7
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Gibbs sampling and Graphical Models

* Practical Applicability of Gibbs :Q: Markov blanket
Sampl | ng for undirected graph

— depends on ease with which samples can
be drawn from p(z,|z
p( k| \k) Markov blanket

— |In the case of PGMs for directed graph

« Conditional distributions for nodes depe
only on variables in Markov blanket
— which are its neighbors in the graph

— Gibbs sampling is a distributed algorithm

* |t is not parallel since samples generated
sequentially 8



Machine Learning

Srihari

Gibbs Sampling for inferring parameters of GMM

* Full joint distribution r
p(x,2,7, 1, 2) = p(x|z, w, 7, ) p(2, 7, 11, 2) s
= p(x|2z, p, ) p(z, m)p(p, ) ; given z we dont need 7
= p(xlz, 1, D)p(z| Mp(m)p(w)p(E) P
— Using a semi-conjugate prior N
K
p(x,2, 7,11, %) = p(x|z, 1,5 (m] [ p(1,)p
k=1

= ﬁﬁ(wkN(xn |1, %)) )I xDzr(

n=1 k=1 =1

)ﬁN (| m, VIIW(S, | S,

V)

— IWis the inverse Wishart distribution

We need full conditionals (to obtain samples) for
— Discrete indicators, p(z,=1|x,,u,m.%)

— Mixing weights p(n|z) for z,,..7x

— Means p(u|2,,2,x)

— Covariances p(2, |y, z.x)

* Note that we know the values of x_
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Full Conditionals for Gibbs GMM

 Discrete Indicators

p(z, =k|x ,mpu,2) o WkN(Xn | ,uk,Zk)

* Mixing weights
{ak + ni:lf(zn - k):lH

p(m | z) = Dir

e Means
p(p, | X,,2,x)=N(u, |m, V)

« Covariances

p(X, | 1, 2,%x) = IW(Ek | Sk,yk)

Terms V,and S, are
sample statistics

10



Proof of Sampling

* To show that procedure samples from
given distribution

* First show that distribution p(z) is invariant
(or stationary) of each sampling step and
hence of whole Markov chain

* Second requirement is ergodicity
— Every state reachable from every other state

* The two requirements are formally defined
next

11
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Markov chain properties

« Marginal probability for a variable
— Expressed in terms of marginal probability of previous

sample is
S (m) sum of probs
over all values

* |nvariant or stationary of prev sample

variable in chain mtl mil) | (m m)~| | Probability of
p(z' +))=Zp(z( 12" p(z™)

— A distribution is invariant wrt a Markov chain if each
step leaves the marginal distribution invariant

— p*(z) is invariant if p*(2) = ZT(Z" Z)p*(2")| |1z 2=

p(zlz’)

» Required distribution p(z) is invariant if it satisfies
property of detailed balance

% N (7 ’ Two directions between
p (Z)T(Z’Z ) p (Z )T(Z ’Z) z and z’ are the same

Markov chain that respects detailed balance is reversible. 12



Ergodicity

* QOur goal is to use Markov chains to sample from a
given distribution

 We need to set up a Markov chain such that the
desired distribution is invariant
— Also, irrespective of choice of initial distribution p(z®),

— As m — o the distribution p(z™) converges to the
required invariant distribution p*(z)

* This property is called ergodicity
— And the invariant distribution is called the equilibrium

distribution

Ergodic also means no state has a zero probability of exit from it

And every state is reachable from every other state 13
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Gibbs sampling of two variables

« Two correlated Gaussian 1
variables

« Step size is governed by
standard deviation of
conditional distribution
—Is O(I)

— Leads to slow progress in

direction of elongation of the
jOint diStribution Conditional distribution of width /

Marginal distribution of width L
* No of steps needed to
obtain an independent
sample is O((L/l)?) 14
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Basic Metropolis Algorithm

* As with rejection and importance sampling use a
proposal distribution (simpler distribution)

« Maintain a record of current state zt)

 Proposal distribution ¢(z|z) depends on current
state (next sample depends on previous one)
— E.qg., g(zlz”) is a symmetric Gaussian with mean z® and
a small variance
« Thus sequence of samples zD, z?. .. forms a

Markov chain

* Write p(z)=ZL~(Z) where p(z) Is readily evaluated

P

* At each cycle generate candidate z* and test for
acceptance 1
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Metropolis Algorithm

* Assumes simple proposal

distribution, that is symmetric

— e.g., an isotropic Gaussian ¢(z), Gaussian p(z) whose
z,\z-) = qg(zlz,) for all z,, z one-standard deviation
9(24|2p) = q(25|2,) 4 7B contour is shown

 New sample z* from ¢(z) is accepted|, ——~—
with probabilit 520 | [l
P yA(Z*,Z(T))=min[1, p(z*) stG h

Z?J(Z(z-)) 2_std dev 0.2
/

— Done by choosing u ~ U(0,1) and
accepting if A(z*z¥)>u T NGRS
» |f accepted then z(tt)=z* N
» Otherwise: N N
— z*is discarded, Accepted steps ingreen

Rejected steps in red

— z(t*) js set to z¥ and

— another candidate drawn from g(z|z/t*?) 1o
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Inefficiency of Random Walk

Consider simple random walk
State space z consisting of integers with probabilities

pzt) =z9) =0.5 Stay in same state
p(zt) =z(9+]) = 0.251] Increase state by 1
p(tV =z9-1)=0.25 Decrease state by 1

If initial state is z(¥=0

— the expected state at time t will be zero, E[z(9]=0

« Similarly E[(z?)?] = ¢t/ 2

* Thus after t steps distance traveled is proportional to sqrt (¢)
Random walks are inefficient in exploring state-space
« MCMC algorithms try to avoid random walk behavior

17



Metropolis-Hastings Algorithm

* Generalizes Metropolis algorithm

— Proposal distribution is no longer a symmetric function
of arguments, i.e., q(z,|zy) .ne. q(zz|z,) for all z, z,

1.At step ¢, in which current state is z®¥ we
draw a sample z* from distribution ¢, (z|z%)
2.Accept with probability 4,(z*zY) where

| p(z*)q, (27 12%) k labels set of possible
T (g (25127 transitions considered

A (z*%,27) = rnin(

« Can show that p(z) is an invariant
distribution of the Markov chain defined by
Metropolis-Hastings Algorithm

— since detailed balance is satisfied

18
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Choice of Proposal Distribution for Metropolis-Hastings

« (Gaussian centered on
current state

« Keeping rejection rate low
Scale p of proposal distribution

should be of order o

* |Independent sample

No. of steps needed to get
independent sample is of

order (o, /O . )

max

Jmax

X
/

Isotropic Gaussian
proposal distribution

Correlated
Multivariate
Gaussian
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Slice Sampling

* Metropolis algorithm is sensitive to step
size
— Too small: slow decorrelation due to random
walk behavior
— Too large: inefficiency due to high rejection
rate
» Slice sampling provides an adaptive step
size to match the distribution

20
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lllustration of Slice

L)

* For given z(%, a value of u is
chosen uniformly in region
< u < pN(Z(t))

— which is a slice through the
distribution

» Since infeasible to sample
from slice, a new sample is
drawn from

Zmin <—Z <—Zmax

which contains the previous
value z(¥

/.
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