MCMC and Gibbs Sampling

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. Markov Chain Monte Carlo
- 2. Markov Chains
- 3. Gibbs Sampling
- 4. Basic Metropolis Algorithm
- 5. Metropolis-Hastings Algorithm
- 6. Slice Sampling

Markov Chain Monte Carlo (MCMC)

- Simple Monte Carlo methods (Rejection sampling and importance sampling) are for evaluating expectations of functions
 - They suffer from severe limitations, particularly with high dimensionality
- MCMC is a very general and powerful framework
 - Markov refers to sequence of samples rather than the model being Markovian
 - Allows sampling from large class of distributions
 - Scales well with dimensionality
 - MCMC origin is in statistical physics (Metropolis 1949)

Markov chains

- First order Markov chain is a sequence of random variables $z^{(1)}, \dots, z^{(M)}$ such that
 - conditional independence property holds:

 $p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(1)}, ..., \mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(m)})$

Each sample dependent only on previous sample

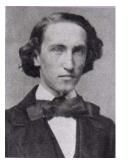
- Represented in a directed graph as a chain
- Markov chain specified by
 - Distribution of initial variable $p(z^{(0)})$
 - Conditional (transition) probabilities

 $T_m(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}) = p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(m)})$

• Markov chain is homogeneous if all transition probabilities are the same for all *m*

Gibbs Sampling

- A simple and widely applicable MCMC algorithm
 - Special case of Metropolis-Hastings
- Consider distribution $p(z)=p(z_1,..,z_M)$ from which we wish to sample
- We have chosen an initial state for the Markov chain
- Each step involves replacing value of one variable by a value drawn from p(z_i|z_{\i}) where symbol z_{\i} denotes z₁,..,z_M with z_i omitted
- Repeat procedure by cycling through variables in some particular order



Josiah Willard Gibbs 1839-1903 Born New Haven CT First US PhD in Engg. Developed vector analysis, crystallography and planetary orbits

Gibbs with Three Variables

- Distribution $p(z_1, z_2, z_3)$ over three variables
- At step t selected values are $z_1^{(t)}$, $z_2^{(t)}$ and $z_3^{(t)}$
- Replace $z_1^{(t)}$ by new value $z_1^{(t+1)}$ obtained by sampling from $p(z_1|z_2^{(t)},z_3^{(t)})$
- Replace $z_2^{(t)}$ by value $z_2^{(t+1)}$ by sampling from $p(z_2|z_1^{(t+1)}, z_3^{(t)})$

- New value for z_1 is used straightaway

- Update z_3 with a sample $z_3^{(t+1)}$ drawn from $p(z_3|z_1^{(t+1)}, z_2^{(t+1)})$
- Cycle through three variables in turn

—

—

Gibbs Sampling with M variables

- Initialize first sample: $\{z_i, i=1,..,M\}$
- For t=1,..,T, T = no of samples
 - Sample $z_1^{(t+1)} \sim p(z_1 | z_2^{(t)}, z_3^{(t)}, ..., z_M^{(t)})$
 - Sample $z_2^{(t+1)} \sim p(z_2 | z_1^{(t+1)}, z_3^{(t)}, ..., z_M^{(t)})$
 - Sample $z_j^{(t+1)} \sim p(z_j | z_1^{(t+1)}, ..., z_{j-1}^{(t+1)}, z_{j+1}^{(t)}, ..., z_M^{(t)})$
 - Sample $z_M^{(t+1)} \sim p(z_M | z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{M-1}^{(t+1)})$
- $p(z_j|z_j)$ is called a *full conditional* for variable j_{j_1}

Gibbs sampling and Graphical Models

 Practical Applicability of Gibbs sampling

Markov blanket for undirected graph

- depends on ease with which samples can be drawn from $p(z_k|z_{\setminus k})$
- In the case of PGMs
 - Conditional distributions for nodes deper only on variables in Markov blanket
 - which are its neighbors in the graph
- Gibbs sampling is a distributed algorithm
 - It is not parallel since samples generated sequentially

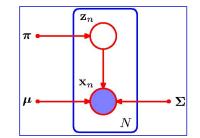
Markov blanket for directed graph

Gibbs Sampling for inferring parameters of GMM

• Full joint distribution

 $p(\mathbf{x}, \mathbf{z}, \pi, \mu, \Sigma) = p(\mathbf{x} | \mathbf{z}, \mu, \pi, \Sigma) p(\mathbf{z}, \pi, \mu, \Sigma)$ = $p(\mathbf{x} | \mathbf{z}, \mu, \Sigma) p(\mathbf{z}, \pi) p(\mu, \Sigma)$; given \mathbf{z} we dont need π = $p(\mathbf{x} | \mathbf{z}, \mu, \Sigma) p(\mathbf{z} | \pi) p(\pi) p(\mu) p(\Sigma)$

- Using a semi-conjugate prior



$$\begin{split} p(\mathbf{x}, \mathbf{z}, \pi, \mu, \Sigma) &= p(\mathbf{x} | \mathbf{z}, \mu, \Sigma) p(\mathbf{z} \mid \pi) p(\pi) \prod_{k=1}^{K} p(\mu_{k}) p(\Sigma_{k}) \\ &= \left(\prod_{n=1}^{N} \prod_{k=1}^{K} \left(\pi_{k} N(\mathbf{x}_{n} \mid \mu_{k}, \Sigma_{k}) \right)^{I(z_{n}=k)} \right) \times Dir\left(\pi \mid \alpha\right) \prod_{k=1}^{K} N(\mu_{k} \mid m_{0}, V_{0}) IW(\Sigma_{k} \mid S_{0}, \nu_{0}) \end{split}$$

- *IW* is the inverse Wishart distribution

· We need full conditionals (to obtain samples) for

- Discrete indicators, $p(\mathbf{z}_n = 1 | \mathbf{x}_n, \mu, \pi, \Sigma)$
- Mixing weights $p(\pi|z)$ for $\pi_l, ..., \pi_K$
- Means $p(\mu_k | \Sigma_k, \mathbf{z}, \mathbf{x})$
- Covariances $p(\Sigma_k | \mu_k, \mathbf{z}, \mathbf{x})$
- Note that we know the values of x_n

Full Conditionals for Gibbs GMM

Discrete Indicators

 $\left| p(\mathbf{x}_{_{n}} = k \mid \mathbf{x}_{_{n}}, \pi, \mu, \Sigma) \propto \pi_{_{k}} N\left(\mathbf{x}_{_{n}} \mid \mu_{_{k}}, \Sigma_{_{k}}\right) \right|$

• Mixing weights

$$p(\pi \mid \mathbf{z}) = Dir\left[\left\{\alpha_k + \sum_{n=1}^{N} I\left(\mathbf{z}_n = k\right)_{k=1}^{K}\right\}\right]$$

Means

 $p(\boldsymbol{\mu}_{\!_{k}} \mid \boldsymbol{\Sigma}_{\!_{k}}, \mathbf{z}, \mathbf{x}) = N(\boldsymbol{\mu}_{\!_{k}} \mid \mathbf{m}_{\!_{k}}, V_{\!_{k}})$

Terms V_k and S_k are sample statistics

Covariances

$$p(\boldsymbol{\Sigma}_{\!_{\boldsymbol{k}}} \mid \boldsymbol{\mu}_{\!_{\boldsymbol{k}}}, \boldsymbol{z}, \mathbf{x}) = IW\!\left(\boldsymbol{\Sigma}_{\!_{\boldsymbol{k}}} \mid \boldsymbol{S}_{\!_{\boldsymbol{k}}}, \boldsymbol{\nu}_{\!_{\boldsymbol{k}}}\right)$$

Proof of Sampling

- To show that procedure samples from given distribution
- First show that distribution p(z) is invariant (or stationary) of each sampling step and hence of whole Markov chain
- Second requirement is ergodicity
 - Every state reachable from every other state
- The two requirements are formally defined next

Markov chain properties

- Marginal probability for a variable
 - Expressed in terms of marginal probability of previous variable in chain $p(z^{(m+1)}) = \sum_{z^{(m)}} p(z^{(m+1)} | z^{(m)}) p(z^{(m)})$
 - Probability of sample is sum of probs over all values of prev sample

T(z',z) =

p(z|z')

- Invariant or <u>stationary</u>
 - A distribution is invariant wrt a Markov chain if each step leaves the marginal distribution invariant

-
$$p^*(z)$$
 is invariant if $p^*(z) = \sum_{z'} T(z', z) p^*(z')$

• Required distribution p(z) is invariant if it satisfies property of <u>detailed balance</u> $p^*(z)T(z,z')=p^*(z')T(z',z)$ Two directions between z and z' are the same

Markov chain that respects detailed balance is reversible.

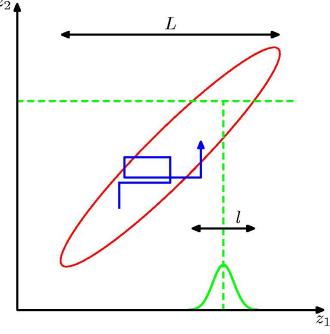
Ergodicity

- Our goal is to use Markov chains to sample from a given distribution
- We need to set up a Markov chain such that the desired distribution is invariant
 - Also, irrespective of choice of initial distribution $p(z^{(0)})$,
 - As $m \rightarrow \infty$ the distribution $p(z^{(m)})$ converges to the required invariant distribution $p^*(z)$
- This property is called *ergodicity*
 - And the invariant distribution is called the *equilibrium* distribution

Ergodic also means no state has a zero probability of exit from it And every state is reachable from every other state

Gibbs sampling of two variables

- Two correlated Gaussian variables
- Step size is governed by standard deviation of conditional distribution
 - **Is** *O(l)*
 - Leads to slow progress in direction of elongation of the joint distribution
- No of steps needed to obtain an independent sample is O((L/l)²)



Conditional distribution of width *l* Marginal distribution of width *L*

Basic Metropolis Algorithm

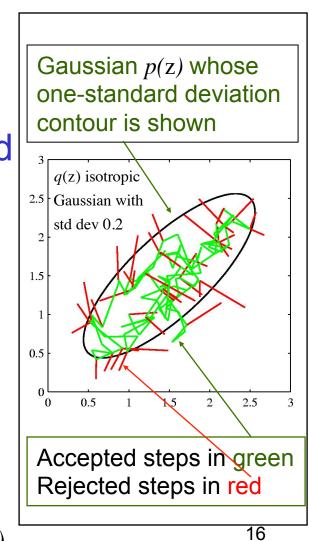
- As with rejection and importance sampling use a *proposal* distribution (simpler distribution)
- Maintain a record of current state $z^{(t)}$
- Proposal distribution $q(z|z^{(t)})$ depends on current state (next sample depends on previous one)
 - E.g., $q(z|z^{(t)})$ is a symmetric Gaussian with mean $z^{(t)}$ and a small variance
- Thus sequence of samples $z^{(1)}, z^{(2)}...$ forms a Markov chain

• Write
$$p(z) = \frac{1}{Z_p} \tilde{p}(z)$$
 where $\tilde{p}(z)$ is readily evaluated

 At each cycle generate candidate z* and test for acceptance

Metropolis Algorithm

- Assumes simple proposal distribution, that is symmetric – e.g., an isotropic Gaussian q(z), $q(z_A|z_B) = q(z_B|z_A)$ for all z_A , z_B
- New sample z^* from q(z) is accepted with probability $A(z^*, z^{(\tau)}) = \min\left(1, \frac{\widetilde{p}(z^*)}{\widetilde{p}(z^{(\tau)})}\right)$
 - Done by choosing $u \sim U(0,1)$ and accepting if $A(z^*, z^{(t)}) > u$
- If accepted then $z^{(t+1)}=z^*$
- Otherwise:
 - z* is discarded,
 - $z^{(t+1)}$ is set to $z^{(t)}$ and
 - another candidate drawn from $q(z|z^{(t+1)})$



Inefficiency of Random Walk

- Consider simple random walk
- State space *z* consisting of integers with probabilities

 $p(z^{(t+1)} = z^{(t)}) = 0.5$ $p(z^{(t+1)} = z^{(t)} + 1) = 0.25I$ $p(z^{(t+1)} = z^{(t)} - 1) = 0.25$

Stay in same state

Increase state by 1

Decrease state by 1

- If initial state is $z^{(l)}=0$
 - the expected state at time *t* will be zero, $E[z^{(t)}] = 0$
 - Similarly $E[(z^{(t)})^2] = t/2$
 - Thus after t steps distance traveled is proportional to sqrt (t)
- Random walks are inefficient in exploring state-space
 - MCMC algorithms try to avoid random walk behavior

Metropolis-Hastings Algorithm

Generalizes Metropolis algorithm

1

- Proposal distribution is no longer a symmetric function of arguments, i.e., $q(z_A|z_B)$.ne. $q(z_B|z_A)$ for all z_A , z_B
- 1.At step *t* , in which current state is $z^{(t)}$ we draw a sample z^* from distribution $q_k(z|z^{(t)})$
- **2.**Accept with probability $A_k(z^*, z^{(t)})$ where

 $A_{k}(z^{*}, z^{(\tau)}) = \min\left(1, \frac{\tilde{p}(z^{*})q_{k}(z^{(\tau)} | z^{*})}{\tilde{p}(z^{(\tau)})q_{k}(z^{*} | z^{(\tau)})}\right)$

k labels set of possible transitions considered

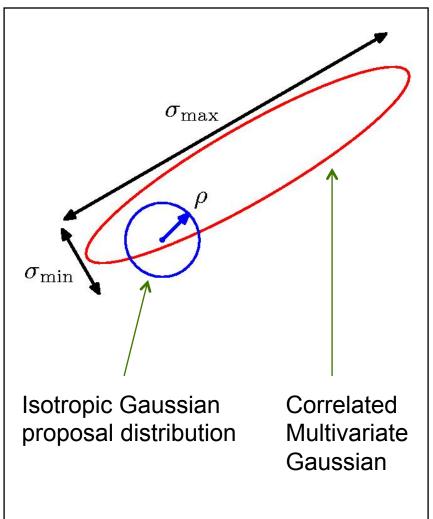
 Can show that p(z) is an invariant distribution of the Markov chain defined by Metropolis-Hastings Algorithm

- since detailed balance is satisfied

Choice of Proposal Distribution for Metropolis-Hastings

- Gaussian centered on current state
- Keeping rejection rate low Scale ρ of proposal distribution should be of order σ_{\min}
- Independent sample

No. of steps needed to get independent sample is of order ($\sigma_{max} / \sigma_{min}$)



Slice Sampling

- Metropolis algorithm is sensitive to step size
 - Too small: slow decorrelation due to random walk behavior
 - Too large: inefficiency due to high rejection rate
- Slice sampling provides an adaptive step size to match the distribution

Illustration of Slice

- For given $z^{(t)}$, a value of u is chosen uniformly in region $0 \le u \le p^{\sim}(z^{(t)})$
 - which is a slice through the distribution
- Since infeasible to sample from slice, a new sample is drawn from

$$z_{min} \leq z \leq z_{max}$$

which contains the previous value $z^{(t)}$

