
Adaptive rejection sampling
Rejection sampling (RS) is a useful method for sampling intractable distributions. It de�nes an

envelope function which upper-bounds the target unnormalised probability density to be sampled. It

then proceeds to sample points in the area under the envelope, rejecting those points which fall above
the target and accepting the rest. The accepted points are independent and identically distributed

samples from the target distribution. There are two important issues with RS. The �rst is that if the

envelope is a very loose upper bound, then most samples will be rejected and the scheme will be slow.
The second is that for rejection sampling to work, we must be certain that the envelope is an upper

bound to the target, which in practice may be a challenging task.

Adaptive rejection sampling (ARS) [GW92] is an e�cient method for sampling log-concave targets,

which deals with both of these issues. It is origially de�ned for univariate distributions, but can also be
extended to multivariate distributions via Gibbs sampling.[Bis06] ARS maintains an envelope which

adapts as more points are sampled, becoming a progressively tighter bound to the target, thereby

avoiding the ine�ciency of regular RS. Further, the way that ARS constructs this envelope guarantees
that the envelope is in fact an upper bound to the target, which sidesteps the second di�culty described

above.

An adaptive envelope function
Suppose we wish to sample from a log-concave univariate distribution with unnormalised distribution

function . Whereas RS de�nes a �xed envelope, ARS will de�ne an envelope that upper bounds

and adapts its shape as the sampling procedure progresses. By adapting its shape, using the infromation

that is log-concave, the envelope reduces the probability of future rejections. In addition the envelope

function, ARS can use an optional function which lower bounds , called the squeezing function. The

squeezing function can be used to avoid evaluating in the rejection step, which can be especially

useful if is computationally expensive to evaluate.

Given the an ordered set of points , ARS de�nes the log-envelope to be the

minimum over the tangents to at these points. The log-squeezing function is de�ned to be

the piecewise linear function which joins the points inside the interval and is equal

to outside this innterval. Examples of envelope and squeezing functions are shown below.

De�nition (Abscissa set, envelope function and squeezing function) Let be a univariate log-

concave function, with non-zero domain . An abscissa set is an ordered

set of points in such that

The envelope function de�ned by is

where are piecewise exponential functions such that

f gu f

f

gl f

f

f

< <. . . <x1 x2 xK log gu

h = log f

(,h())xk xk [,]x1 xK

−∞

f(x)

D = {x : f(x) > 0} TK

D

= { < <. . . < }.Tk x1 x2 xK

(x)gu Tk

(x) = (x)gu min
k

gu,k

(x), k = 1, 2, . . . ,Kgu,k

() = f() and () = log ().gu,k xk xk g ′
u,k

xk f ′ xk

 Contents

An adaptive envelope function

Adaptive rejection sampling

Conclusions

References

The squeezing function de�ned by is

where are piecewise exponential functions such that

Below are functions implementing the necessary calculations to determine the envelope and squeezing

functions, all of which are cheap operations. The functions take in points at input locations and

corresponding and values and carry out computations in log-space, before exponentiating the

result at the end.

Now let’s de�ne a log unnormalised Gaussian log density, and use this to illustrate the envelope and

squeezing function de�ned by an abcissa set with three points.

(x)gl Tk

(x) = {gl
(x)mink gl,k

0

 if ≤ x ≤ ,x1 xk
 otherwise.

(x), k = 1, 2, . . . ,K − 1gu,k

() = f() and () = log f().gl,k xk xk gl,k xk+1 xk+1

x

h h′

def g_u(x, xs, hs, dhdxs):

 z, _ = compute_points_of_intersection_and_intercepts(xs, hs, dhdxs)

 i = np.searchsorted(z, x)

 return np.exp(dhdxs[i] * (x - xs[i]) + hs[i])

def g_l(x, xs, hs):

 if all(x < xs) or all(x > xs):

 return 0.

 else:

 i = np.searchsorted(xs, x)

 m = (hs[i] - hs[i-1]) / (xs[i] - xs[i-1])

 return np.exp(hs[i-1] + (x - xs[i-1]) * m)

def compute_points_of_intersection_and_intercepts(x, h, dhdx):

 # y-intercepts c of envelope function line segments, intersection points z

 c = h - dhdx * x

 z = (c[1:] - c[:-1]) / (dhdx[:-1] - dhdx[1:])

 return z, c

def log_gaussian(mean, variance):

 return lambda x : (- 0.5 * (x - mean) ** 2 / variance, - (x - mean) / variance)

Adaptive rejection sampling
As observed above, by vitrue of the log-concavity of , the envelope and squeezing functions de�ned in

this way are upper and lower bounds to . If we then sample a point at random from the area under

, and this point also happens to be in the area under , then the point is uniformly distributed in the

area under , and is an exact sample from the target distribution. Further, if the point happened to lie

in the area under the squeezing function , it is certain to also lie in the area under , so we need not

check this latter condition explicitly. This shortcut is particularly useful if the function is expensive to

evaluate, because it avoids some of the evaluations of . Combining these checks, we arrive at the ARS

algorithm below.

Algorithm (Adaptive Rejection Sampling) Given a univariate un-normalised probability density

, perform the following initialisation, sampling and update steps:

1. Initialise an abscissa set , such that and , as well as the

corresponding envelope and squeezing functions and . This can be e�ciently achieved

by starting from an initial guess and stepping out in steps of exponentially increasing size.

2. Sample

The log unnormalised density to illustrate

log_prob = log_gaussian(0., 1.)

Points in the abcissa set and corresponding log-probabilities and gradients

xs = np.array([-1., 0.1, 1.5])

hs, dhdxs = log_prob(xs)

Locations to plot the log unnorm. density and envelope/squeezing functions

x_plot = np.linspace(-2, 2, 200)

log_probs = [log_prob(x)[0] for x in x_plot]

gu = [g_u(x, xs, hs, dhdxs) for x in x_plot]

gl = [g_l(x, xs, hs) for x in x_plot]

Plot the log unnormalised density, the envelope and squeezing functions

plt.figure(figsize=(6, 3))

plt.scatter(xs, hs, color='k', zorder=3)

plt.plot(x_plot, log_probs, color='black', label='$\log~f = h$')

plt.plot(x_plot, np.log(gu), color='red', label='$\log~g_u$')

Handle the case of negatively infinite gl, for plotting presentation

floored_log_gl = np.log(np.maximum(np.array(gl), np.ones_like(gl) * 1e-9))

plt.plot(x_plot, floored_log_gl, color='green', label='$\log~g_l$')

Plot formatting

plt.xlim([-2, 2])

plt.ylim([-3, 1])

plt.xticks([])

plt.yticks([])

plt.xlabel('x', fontsize=18)

plt.ylabel('$\log~f(x)$', fontsize=18)

plt.legend()

plt.show()

f

f

gu f

f

gl f

f

f

f(x)

Tk () > 0f ′ x1 () < 0f ′ xk

gu gl

∼ and z ∼ Unifrom(0, 1),x′ (x)gu

∫ ()dgu x′ x′

and perform the following squeezing and rejection tests. If

holds, then accept otherwise perform the following rejection test

If this holds, accept the point and otherwise reject it.

3. If was accepted at the squeezing test, go to step 2 immediately. Otherwise insert into

 to obtain , update the piecewise exponential functions and accordingly and

then return to step 2.

Below are functions which implement envelope sampling, that is drawing

The �rst function determines the left and right limits as well as the the unnormalised probabilities

 of each piecewise exponential. The second samples uniformly from the area under the

envelope function .

If we draw samples from the envelope de�ned by the three previous points without the rejection step,
we obtain the following distribution.

z ≤
()gl x

′

()gu x′

x′

z ≤
h()x′

()gu x′

x′ x′

Tk Tk+1 gl gu

∼ .x′ (x)gu

∫ ()dgu x′ x′

∫ ()dgu,k x′ x′

gu

def envelope_limits_and_unnormalised_probabilities(xs, hs, dhdxs):

 # Compute the points of intersection of the lines making up the envelope

 z, c = compute_points_of_intersection_and_intercepts(xs, hs, dhdxs)

 # Left-right endpoints for each piece in the piecewise envelope

 limits = np.concatenate([[float('-inf')], z, [float('inf')]])

 limits = np.stack([limits[:-1], limits[1:]], axis=-1)

 probs = (np.exp(dhdxs * limits[:, 1]) - np.exp(dhdxs * limits[:, 0])) * np.exp(c)

 # Catch any intervals where dhdx was zero

 idx_nonzero = np.where(dhdxs != 0.)

 probs[idx_nonzero] = probs[idx_nonzero] / dhdxs[idx_nonzero]

 idx_zero = np.where(dhdxs == 0.)

 probs[idx_zero] = ((limits[:, 1] - limits[:, 0]) * np.exp(c))[idx_zero]

 return limits, probs

def sample_envelope(xs, hs, dhdxs):

 limits, probs = envelope_limits_and_unnormalised_probabilities(xs, hs, dhdxs)

 probs = probs / np.sum(probs)

 # Randomly chosen interval in which the sample lies

 i = np.random.choice(np.arange(probs.shape[0]), p=probs)

 # Sample u = Uniform(0, 1)

 u = np.random.uniform()

 # Invert i^th piecewise exponential CDF to get a sample from that interval

 if dhdxs[i] == 0.:

 return u * (limits[i, 1] - limits[i, 0]) + limits[i, 0]

 else:

 x = np.log(u * np.exp(dhdxs[i] * limits[i, 1]) \

 + (1 - u) * np.exp(dhdxs[i] * limits[i, 0]))

 x = x / dhdxs[i]

 return x

We still need to add the initialisation of the abcissa set, the (optional) squeezing test and the rejection

test. For the initialisation step, we can start from an initial point, and search to the left and to the right

in exponentially increasing step sizes, until we �nd a point on the left side with positive and a point

on the right with negative , and use these as end-points of the abscissa set. The following function

adaptive_rejection_sampling implements this initialisation step together with the squeezing and
rejection tests.

x_plot = np.linspace(-4., 4., 200)

_, probs = envelope_limits_and_unnormalised_probabilities(xs, hs, dhdxs)

samples = [sample_envelope(xs, hs, dhdxs) for i in range(10000)]

gu = [g_u(x, xs, hs, dhdxs) / np.sum(probs) for x in x_plot]

Plot samples and envelope

plt.figure(figsize=(6, 3))

plt.plot(x_plot,

 gu,

 color='red',

 label='Normalised g_u')

plt.hist(samples,

 density=True,

 bins=100,

 color='gray',

 alpha=0.5,

 label='Envelope samples')

Plot formatting

plt.title('', fontsize=20)

plt.xlim([-4, 4])

plt.ylim([0, 0.5])

plt.xticks([])

plt.yticks([])

plt.xlabel('x', fontsize=18)

plt.ylabel('$f(x)~/~Z$', fontsize=18)

plt.legend()

plt.show()

h′

h′

This approach to initialising the abcissa set does not have any tunable parameters, except x0. Any

initialisation method which guarantees and will give a valid abcissa set and this

method is only a speci�c choice. Changing the x0 value used to the does not signi�cantly a�ect the
e�ciency of ARS, since the initialisation method will terminate quickly because of the exponentially

increasing step sizes. This implementation assumes that the domain of , that is the set of points

where is non-zero, is all of . If this is not the case, then this initialisation function will fail. A more

robust initialisation method could use boolean comparisons of values instead of values, setting

 outside , but for the purposes of exposition, this illustration assumes that and does

not bother further with this technical point. Putting the initialisation step together with the squeezing

and rejection steps, we arrive at the complete ARS algorithm below.

Now we can �nally use this function to sample from the example standard Gaussian distribution.

def initialise_abcissa(x0, log_unnorm_prob):

 # Expand to the left/right until the abcissa is correctly initialised

 xs = np.array([x0])

 hs, dhdxs = log_unnorm_prob(xs)

 dx = -1.

 while True:

 if dx < 0. and dhdxs[0] > 0.:

 dx = 1.

 elif dx > 0. and dhdxs[-1] < 0.:

 break

 insert_idx = 0 if dx < 0 else len(xs)

 x = xs[0 if dx < 0 else -1] + dx

 h, dhdx = log_unnorm_prob(x)

 xs = np.insert(xs, insert_idx, x)

 hs = np.insert(hs, insert_idx, h)

 dhdxs = np.insert(dhdxs, insert_idx, dhdx)

 dx = dx * 2

 return xs, hs, dhdxs

() > 0h′ x1 () < 0x′ xK

D f

f R

h′ h

h = −∞ D D = R

def adaptive_rejection_sampling(x0, log_unnorm_prob, num_samples):

 xs, hs, dhdxs = initialise_abcissa(x0=x0, log_unnorm_prob=log_unnorm_prob)

 samples = []

 while len(samples) < num_samples:

 x = sample_envelope(xs, hs, dhdxs)

 gl = g_l(x, xs, hs)

 gu = g_u(x, xs, hs, dhdxs)

 # Squeezing test

 u = np.random.rand()

 if u * gu <= gl:

 samples.append(x)

 h, dhdx = log_unnorm_prob(x)

 # Rejection test

 if u * gu <= np.exp(h):

 samples.append(x)

 i = np.searchsorted(xs, x)

 xs = np.insert(xs, i, x)

 hs = np.insert(hs, i, h)

 dhdxs = np.insert(dhdxs, i, dhdx)

 return samples

Conclusions
ARS is an e�cient method for sampling log-concave univariate distributions. Although very e�ective for

log-concave one-dimensional di�erentiable distributions, the algorithm presented here has two
shortcomings. First, this algorithm requires gradients of the objective with respect to the input variable.

These may be expensive to compute or perhaps even may not exist if is nowhere di�erentiable. For

this, there exists a modi�ed version of ARS[Gil92] which builds the envelope in a way that does not

require gradients. The present page presented the gradient-based method because this is nicer for

illustrative purposes. Second, although many distributions of practical interest are log-concave, there are
many others which are not. In this case, the ARS algorithm does not apply since the envelope is not

guaranteed to entirely contain the probability distribution. For this, there exists an extension of ARS for

non-log-concave distributions called the adaptive rejection Metropolis algorithm[GBT95] (ARMS).
ARMS also builds an envelope and uses it to propose samples, which are then accepted or rejected

np.random.seed(0)

target_mean = 0.

target_variance = 1.

x0 = 1.

num_samples = 10000

log_unnorm_prob = log_gaussian(mean=target_mean, variance=target_variance)

samples = adaptive_rejection_sampling(x0=x0, log_unnorm_prob=log_unnorm_prob,

num_samples=num_samples)

Log probabilites for plotting the target

x_plot = np.linspace(-4, 4, 200)

log_probs = [np.exp(log_prob(x)[0]) / (2 * np.pi) ** 0.5 for x in x_plot]

Plot samples and target

plt.figure(figsize=(6, 3))

plt.hist(samples,

 density=True,

 bins=50,

 color='gray',

 alpha=0.5,

 label='Samples')

plt.plot(x_plot,

 log_probs,

 color='black',

 label='Normalised $f(x)$')

Plot formatting

plt.xlim([-4, 4])

plt.ylim([0, 0.5])

plt.xticks([])

plt.yticks([])

plt.xlabel('x', fontsize=18)

plt.ylabel('$f(x)~/~Z$', fontsize=18)

plt.legend()

plt.show()

f

using a Metropolis-Hastings step to ensure that the samples are distributed according to the target.

Note that in general, ARMS does not produce independent samples from the target, due to the
Metropolis-Hastings accept/reject step. For log-concave functions, ARMS reduces to ARS.

References
[Bis06]

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[GW92]

W. R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 41(2):337–348, 1992.

[Gil92]

Wally R Gilks. Derivative-free adaptive rejection sampling for gibbs sampling. Bayesian

Statistics, 1992.

[GBT95]
Wally R Gilks, Nicky G Best, and KKC Tan. Adaptive rejection metropolis sampling within gibbs

sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4):455–472,

1995

