
Adaptive Squeezed Rejection Sampling
Amy Chen
October 23, 2018

Overview
Adaptive squeezed rejection sampling is a method of drawing points from a target distribution, and goes a step
further than rejection sampling by utilizing an automatic envelope generation strategy for squeezed rejection
sampling.

Suppose we are interested in drawing points from , a concave function. Let denote another density from
which we know how to sample and for which we can easily calculate . Let denote an envelope such that

 for which for a given constant . It is simpler to generate this envelope
function in the log space. Take points on and connect their tangent lines to determine .
This ensures that when exponentiated, the envelope function encompasses .

We will also define a squeeze function such that for which . Using the selected
points from generating the envelope function, connect the points to determine . This ensures that when
exponentiated, the squeeze function is below .

Then adaptive rejection sampling can be completed in the following steps:

1. Sample ~
2. Sample ~
3. If , keep

4. If and , keep
5. Otherwise, reject
6. Repeat for desired sample size

Demonstration
Suppose we would like to estimate where has density proportional to

Target Function

Let the target function be

Then

Envelope Function
Select points , , , , and , from
By computing the tangent lines at each point, finding the points of intersection, and merging the functions, we get
the log of the envelope function,

𝑓(𝑥) 𝑔
𝑔(𝑥) 𝑒

𝑒(𝑥) = ≥ 𝑓(𝑥)∀𝑥𝑔(𝑥)
𝛼 𝑓(𝑥) > 0 𝛼 ≤ 1

𝑛 𝑙𝑜𝑔(𝑓(𝑥)) 𝑙𝑜𝑔(𝑒(𝑥))
𝑓(𝑥)

𝑠(𝑥) 𝑠(𝑥) ≤ 𝑓(𝑥)∀𝑥 𝑓(𝑥) > 0
𝑙𝑜𝑔(𝑠(𝑥))

𝑓(𝑥)

𝑌 𝑔
𝑈 𝑈𝑛𝑖𝑓(0, 1)

𝑈 ≤ 𝑠(𝑌)
𝑒(𝑌) 𝑌

𝑈 > 𝑠(𝑌)
𝑒(𝑌) 𝑈 ≤ 𝑓(𝑌)

𝑒(𝑌) 𝑌
𝑌

𝑆 = 𝐸[]𝑥2 𝑋 𝑞(𝑥) = 𝑒
−|𝑥|3

3

𝑓(𝑥) = 𝑒
−|𝑥|3

3

𝑙𝑜𝑔(𝑓(𝑥)) = −|𝑥|3

3

(−1 −)13 (0 0) (1 −)13 𝑙𝑜𝑔(𝑓(𝑥))

7/31/24, 1:30 PM Adaptive Squeezed Rejection Sampling

https://amyanchen.github.io/files/Adaptive_Rejection_Sampling 1/5

Exponentiate to get the envelope function,

Squeezing Function
Let the log of the squeezing function be if

Exponentiate to get the squeezing function if

logf <- function(x) {
 -abs(x^3)/3
}
loge <- function(x) {
 ifelse((x>-2/3)&(x<2/3), 0, 2/3-abs(x));
}
logs <- function(x) {
 ifelse((x>-1)&(x<1), -abs(x)/3, NA);
}

f <- function(x) {
 exp(logf(x))
}
e <- function(x) {
 exp(loge(x));
}
s <- function(x) {
 exp(logs(x));
}

par(mfrow=c(1,2))
curve(logf(x), from = -2, to = 2, col = "blue")
curve(loge(x), add = T)
curve(logs(x), add = T, col = "red")
abline(v = -1, lty = 3,col = "red")
abline(v = 1, lty = 3,col = "red")

curve(f(x), from = -2, to = 2, col = "blue")
curve(e(x), add = T)
curve(s(x), add = T, col = "red")
abline(v = -1, lty = 3,col = "red")
abline(v = 1, lty = 3,col = "red")

𝑙𝑜𝑔(𝑒(𝑥)) = {
0
− |𝑥|2

3

if − < 𝑥 <2
3

2
3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑒(𝑥) = {
1

− |𝑥|𝑒
2
3

if − < 𝑥 <2
3

2
3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑙𝑜𝑔(𝑠(𝑥)) = − |𝑥|
3 −1 < 𝑥 < 1

𝑠(𝑥) = 𝑒−
|𝑥|
3 −1 < 𝑥 < 1

7/31/24, 1:30 PM Adaptive Squeezed Rejection Sampling

https://amyanchen.github.io/files/Adaptive_Rejection_Sampling 2/5

Finding Inverse CDF

So the normalizing constant is

Then the CDF of is

Take the inverse of ,

Ginv <- function(u) {
 ifelse(u<3/10, log(u*10/3)-2/3, ifelse(u>7/10, 2/3-log((1-u)*10/3),(u-1/2)*10/3));
}

𝐺−1

𝑒(𝑥) 𝑑𝑥 = 𝑑𝑥 + 𝑑𝑥 + 𝑑𝑥 =∫ ∞
−∞ ∫ − 2

3
−∞ 𝑒 +𝑥2

3 ∫
2
3

− 2
3

𝑒0 ∫ ∞
2
3
𝑒 −𝑥2
3 10

3
3
10

𝑔

𝐺(𝑥) =

⎧

⎩
⎨⎪⎪

3
10 𝑒

+𝑥2
3

𝑥 +3
10

1
2

1 − 3
10 𝑒

−𝑥2
3

if 𝑥 < − 2
3

if − ≤ 𝑥 ≤2
3

2
3

if 𝑥 > 2
3

𝐺(𝑥)

(𝑢) =𝐺−1

⎧

⎩
⎨⎪⎪
𝑙𝑜𝑔(𝑢) −10

3
2
3

(𝑢 −)10
3

1
2

− 𝑙𝑜𝑔((1 − 𝑢))2
3

10
3

if 0 < 𝑢 < 3
10

− ≤ 𝑢 ≤3
10

7
10

< 𝑢 < 17
10

7/31/24, 1:30 PM Adaptive Squeezed Rejection Sampling

https://amyanchen.github.io/files/Adaptive_Rejection_Sampling 3/5

Adaptive Rejection Sampling
Below is a function for performing rejection sampling with a sample size of points.

adaptive rejection sampling function
ars <- function(n) {
 x <- rep(NA, n);
 # number of points accepted
 ct <- 0;
 # number of points sampled
 total <- 0;
 # number of points caught by squeeze
 squeeze <- 0;

 while(ct < n) {
 y <- Ginv(runif(1));
 u <- runif(1);
 # check squeeze range
 if(y > -1 && y < 1) {
 # under squeeze
 if(u < s(y)/e(y)) {
 ct <- ct + 1;
 x[ct] <- y;
 squeeze <- squeeze + 1;
 }
 # above squeeze
 else {
 # under f
 if(u < f(y)/e(y)) {
 ct <- ct + 1;
 x[ct]<-y;
 }
 }
 }
 # outside squeeze but under f
 else if(u < f(y)/e(y)) {
 ct <- ct + 1;
 x[ct] <- y;
 }

 total <- total + 1;
 }

 list(x = x, acratio_sx = squeeze/total, acratio = ct/total);
}

Choose a sample size of 100,000. Below are a few points drawn using this method.

𝑛

7/31/24, 1:30 PM Adaptive Squeezed Rejection Sampling

https://amyanchen.github.io/files/Adaptive_Rejection_Sampling 4/5

samp_size = 100000
set.seed(920)
ars_points <- ars(samp_size)
head(ars_points$x)

[1] 0.2950836 1.3434853 1.1435056 -1.3004348 -0.3099414 0.1288534

The theoretical evelope ratio is , the proportion of points in that are in .

integrate(f, lower = -Inf, upper = Inf)$value / integrate(e, lower = -Inf, upper = Inf)
$value

[1] 0.7727395

For this simulation, the envelope ratio is

ars_points$acratio

[1] 0.7754643

The theoretical squeeze ratio is , the proportion of points in that are in .

integrate(s, lower = -1, upper = 1)$value / integrate(e, lower = -Inf, upper = Inf)$valu
e

[1] 0.5102436

For this simulation, the squeeze ratio is

ars_points$acratio_sx

[1] 0.512706

Calculate
Now that we have our points from the sample, square each accepted x, and take the mean to get .

mean(ars_points$x^2)

[1] 0.7762001

𝑓(𝑥) 𝑑𝑥∫ ∞
−∞

𝑒(𝑥) 𝑑𝑥∫ ∞
−∞

𝑓 𝑒

𝑠(𝑥) 𝑑𝑥∫ 1
−1

𝑒(𝑥) 𝑑𝑥∫ ∞
−∞

𝑠 𝑒

𝐸[]𝑥2

𝐸[]𝑥2

7/31/24, 1:30 PM Adaptive Squeezed Rejection Sampling

https://amyanchen.github.io/files/Adaptive_Rejection_Sampling 5/5

