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Overview
Adaptive squeezed rejection sampling is a method of drawing points from a target distribution, and goes a step
further than rejection sampling by utilizing an automatic envelope generation strategy for squeezed rejection
sampling.

Suppose we are interested in drawing points from , a concave function. Let  denote another density from
which we know how to sample and for which we can easily calculate . Let  denote an envelope such that

 for which  for a given constant . It is simpler to generate this envelope
function in the log space. Take  points on  and connect their tangent lines to determine .
This ensures that when exponentiated, the envelope function encompasses .

We will also define a squeeze function  such that  for which . Using the selected
points from generating the envelope function, connect the points to determine . This ensures that when
exponentiated, the squeeze function is below .

Then adaptive rejection sampling can be completed in the following steps:

1. Sample  ~ 
2. Sample  ~ 
3. If , keep 

4. If  and , keep 
5. Otherwise, reject 
6. Repeat for desired sample size

Demonstration
Suppose we would like to estimate  where  has density proportional to 

Target Function

Let the target function be 

Then 

Envelope Function
Select points , , , , and ,  from 
By computing the tangent lines at each point, finding the points of intersection, and merging the functions, we get
the log of the envelope function,
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Exponentiate to get the envelope function,

Squeezing Function
Let the log of the squeezing function be  if 

Exponentiate to get the squeezing function  if 

logf <- function(x) {      
  -abs(x^3)/3
}
loge <- function(x) {        
  ifelse( (x>-2/3)&(x<2/3), 0, 2/3-abs(x) );
}
logs <- function(x) {            
  ifelse( (x>-1)&(x<1), -abs(x)/3, NA );
}

f <- function(x) {         
  exp(logf(x))
}
e <- function(x) {     
  exp(loge(x));
}
s <- function(x) { 
  exp(logs(x));
}

par(mfrow=c(1,2))
curve(logf(x), from = -2, to = 2, col = "blue")
curve(loge(x), add = T)
curve(logs(x), add = T, col = "red")
abline(v = -1, lty = 3,col = "red")
abline(v = 1, lty = 3,col = "red")

curve(f(x), from = -2, to = 2, col = "blue")
curve(e(x), add = T)
curve(s(x), add = T, col = "red")
abline(v = -1, lty = 3,col = "red")
abline(v = 1, lty = 3,col = "red")
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Finding Inverse CDF 

So the normalizing constant is 

Then the CDF of  is

Take the inverse of ,

Ginv <- function(u) {
  ifelse(u<3/10, log(u*10/3)-2/3, ifelse(u>7/10, 2/3-log((1-u)*10/3),(u-1/2)*10/3));
}
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Adaptive Rejection Sampling
Below is a function for performing rejection sampling with a sample size of  points.

# adaptive rejection sampling function
ars <- function(n) { 
  x <- rep(NA, n);
  # number of points accepted
  ct <- 0;
  # number of points sampled
  total <- 0;
  # number of points caught by squeeze
  squeeze <- 0;    
  
  while(ct < n) {
    y <- Ginv(runif(1));
    u <- runif(1);
    # check squeeze range
    if(y > -1 && y < 1) {
      # under squeeze
      if(u < s(y)/e(y)) {
          ct <- ct + 1;
          x[ct] <- y;
          squeeze <- squeeze + 1;
      }
      # above squeeze
      else {
        # under f
        if(u < f(y)/e(y)) {
          ct <- ct + 1;
          x[ct]<-y;
        } 
      }
    }
    # outside squeeze but under f
    else if(u < f(y)/e(y)) {
      ct <- ct + 1;
      x[ct] <- y;
    }
    
    total <- total + 1;
  }
  
  list(x = x, acratio_sx = squeeze/total, acratio = ct/total);
}

Choose a sample size of 100,000. Below are a few points drawn using this method.

𝑛
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samp_size = 100000
set.seed(920)
ars_points <- ars(samp_size)
head(ars_points$x)

## [1]  0.2950836  1.3434853  1.1435056 -1.3004348 -0.3099414  0.1288534

The theoretical evelope ratio is , the proportion of points in  that are in .

integrate(f, lower = -Inf, upper = Inf)$value / integrate(e, lower = -Inf, upper = Inf)
$value

## [1] 0.7727395

For this simulation, the envelope ratio is

ars_points$acratio

## [1] 0.7754643

The theoretical squeeze ratio is , the proportion of points in  that are in .

integrate(s, lower = -1, upper = 1)$value / integrate(e, lower = -Inf, upper = Inf)$valu
e

## [1] 0.5102436

For this simulation, the squeeze ratio is

ars_points$acratio_sx

## [1] 0.512706

Calculate 
Now that we have our points from the sample, square each accepted x, and take the mean to get .

mean(ars_points$x^2)

## [1] 0.7762001
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