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(Logarithmically) Concave Univariate Function

A function p(θ) is concave if

p((1− t)x+ t y) ≥ (1− t)p(x) + t p(y)

for any 0 ≤ t ≤ 1.

x y

p(
x)

p(
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If p(x) is twice differentiabe, then p(x) is concave if and only if p′′(x) ≤ 0.
A function p(x) is log-concave if log p(x) is concave.
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Examples

X ∼ N(0, 1) has a log-concave density since

d2

dx2
log e−x

2/2 =
d2

dx2
− x2/2 =

d

dx
− x = −1.

X ∼ Ca(0, 1) has a non-log-concave density since
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Log-concave distributions

Log-concave distributions

normal
exponential
Uniform
Laplace
Gamma (shape parameter is ≥ 1)
Wishart (n ≥ p+ 1)
Dirichlet (all parameters ≥ 1)

Non-log-concave distributions

Log-normal
Student t
F -distribution
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Exponential distribution

An exponential distribution has pdf

p(θ; b) = be−bθ

and thus has log-density

log p(θ; b) = log(b)− bθ

which is trivially log-concave since

d2

dθ2
log(b)− bθ =

d

dθ
− b = 0 ≤ 0.

The exponential distribution, or exponential function, is unique in that it
matches the bound for the definition of log-concavity.
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Prior-posterior example

The product of log-concave functions is also log-concave since

log

(
n∏
i=1

pi(x)

)
=

n∑
i=1

log pi(x).

Assume
Yi

ind∼ N(θ, 1) and θ ∼ La(0, 1)

then the posterior

p(θ|y) ∝

[
n∏
i=1

N(yi; θ, 1)

]
La(θ; 0, 1)

is log-concave since - N(yi; θ, 1) is a log-concave function for θ for each yi
and - La(θ; 0, 1) is a log-concave distribution.
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Rejection sampling

Suppose we are interested in sampling from a target distribution p(θ|y)
using a proposal q(θ).
To use this algorithm, we must find

M ≥ p(θ|y)

q(θ)
∀θ

where the optimal M is supθp(θ|y)/q(θ).
Rejection sampling performs the following

1. Sample θ ∼ q(θ).

2. Accept θ as a draw from p(θ|y) with probability

1

M

p(θ|y)

q(θ)

otherwise return to step 1.
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Rejection sampling envelope

Target N+(0, 1) and proposal Exp(1).
Then √

2/πe−θ
2/2

e−θ
≤ 1.315489 = M
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Rejection sampling example
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Adaptive rejection sampling

Idea: build a piece-wise linear envelope to the log-density as a proposal
distribution

log density density

dn
or

m
(x

)
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Pseudo-algorithm for adaptive rejection sampling

1. Choose starting locations θ, call the set Θ

2. Construct piece-wise linear envelope log q(θ) to the log-density

a. Calculate log f(θ|y) and (log f(θ|y))′.
b. Find line intersections

3. Sample a proposed value θ∗ from the envelope q(θ)

a. Sample an interval
b. Sample a truncated (and possibly negative of an) exponential r.v.

4. Perform rejection sampling

a. Sample u ∼ Unif(0, 1)
b. Accept θ∗ if u ≤ f(θ∗|y)/q(θ∗).

5. If rejected, add θ∗ to Θ and return to 2.
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Adaptive rejection sampling (ARS) in R

library(ars)

f = function(x) -x^2/2 # log of standard normal density

fp = function(x) -x # derivative of log of standard normal density

x = ars(1e4, f, fp)

ARS samples
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ARS in R - non-log-concave density

f = function(x) log(1/(1+x^2)) # log of standard cauchy density

fp = function(x) -2*x/(1+x^2) # derivative of log of cauchy density

x = ars(1e4, f, fp)

##

## Error in sobroutine initial_...

## ifault= 5
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ARS in R - prior-posterior example

Yi
ind∼ N(θ, 1) and θ ∼ La(0, 1)

y = rnorm(10)

f = Vectorize(function(theta) sum(-(y-theta)^2/2) - abs(theta))

fp = Vectorize(function(theta) sum((y-theta)) - (theta>0) + (theta<0))

x = ars(1e4, f, fp)

Posterior for Normal data with Laplace prior on mean
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Comments on ARS

Derivative free ARS

Checking for log-concavity

Decreasing derivatives

Initial points for unbounded support:

initial derivative must be positive
final derivative must be negative

Lower bound for multiple samples

Connect points

Probability of acceptance increases at subsequent steps
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Adaptive rejection Metropolis sampling (ARMS)

Adaptive rejection sampling is only suitable for log-concave densities.
For non-log-concave densities adaptive rejection Metropolis sampling can
be used
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ARMS algorithm

1. Choose starting locations for θ, call the set Θ.

2. Construct piece-wise linear pseudo-envelope log q(θ) to log p(θ|y).

3. Sample θ∗ ∼ q(θ) and U ∼ Unif(0, 1).

a. If U ≤ p(θ∗|y)/q(θ∗), proceed to Step 4.
b. Otherwise, add θ∗ to Θ and return to 3.

4. Perform Metropolis step: Set θ(i) = θ∗ with probability

min

{
1,
p(θ∗|y)

p(θ(i)|y)

min{p(θ(i−1)|y), q(θ(i−1))}
min{p(θ∗|y), q(θ∗)}

}

otherwise set θ(i) = θ(i−1).
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ARMS pseudo-envelope
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ARMS in R

f = function(x,mean) -(x-mean)^2/2

x = dlm::arms(runif(1,3,17), f, function(x,mean) ((x-mean)>-7)*((x-mean)<7),

1e4, mean=10)

hist(x,101,prob=TRUE,main="Gaussian(10,1)")

curve(dnorm(x,10), add=TRUE, lwd=2, col='red')

Gaussian(10,1)
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Theoretical consideration of ARMS

ARMS is an independent Metropolis-Hastings algorithm

Proposal changes, due to updating q, i.e. adding more points in to Θ,
thus inhomogenous.
We need to stop updating q at some point to enforce homogeneity.
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