A Simple Gibbs Sampler

Biostatistics 615/815 Lecture 23

Scheduling

Practice Exam

- Review session
 - Next Monday, December 6
- Final Assessment
 - Monday, December 13

Optimization Strategies

- Single Variable
 - Golden Search
 - Quadratic Approximations
- Multiple Variables
 - Simplex Method
 - E-M Algorithm
 - Simulated Annealing

Simulated Annealing

Stochastic Method

- Sometimes takes up-hill steps
 - Avoids local minima
- Solution is gradually frozen
 - Values of parameters with largest impact on function values are fixed earlier

Gibbs Sampler

Another MCMC Method

Update a single parameter at a time

 Sample from conditional distribution when other parameters are fixed

Gibbs Sampler Algorithm

Consider a particular choice of parameter values $\mathbf{\theta}^{(t)}$

Define the next set of parameter values by:

- a. Selecting component to update, say i
- b. Sample value for $\theta_i^{(t+1)}$ from $p(\theta_i \mid x, \theta_1, \theta_2, ..., \theta_{i-1}, \theta_{i+1}, ..., \theta_k)$

Increment *t* and repeat previous steps.

Alternative Algorithm

Consider a particular choice of parameter values $\mathbf{\theta}^{(t)}$

Define the next set of parameter values by:

- a. Update each component, 1 ... k, in turn
- b. Sample value for $\theta_1^{(t+1)}$ from $p(\theta_1 | x, \theta_2, \theta_3, ..., \theta_k)$
- c. Sample value for $\theta_2^{(t+1)}$ from $p(\theta_2 \mid x, \theta_1, \theta_3, ..., \theta_k)$

. . .

z. Sample value for $\theta_k^{(t+1)}$ from $p(\theta_k \mid x, \theta_1, \theta_3, ..., \theta_{k-1})$

Increment *t* and repeat previous steps.

Key Property: Stationary Distribution

Suppose that $(\theta_1^{(t)}, \theta_2^{(t)}, ..., \theta_k^{(t)}) \sim p(\theta_1, \theta_2, ..., \theta_k \mid x)$

Then $(\theta_1^{(t+1)}, \theta_2^{(t)}, ..., \theta_k^{(t)})$ is distributed as

$$p(\theta_1 | \theta_2, ..., \theta_k, x) p(\theta_2, ..., \theta_k | x) = p(\theta_1, \theta_2, ..., \theta_k | x)$$

In fact...

$$\mathbf{\theta}^{(t)} \sim p(\mathbf{\theta} \mid x) \Rightarrow \mathbf{\theta}^{(t+1)} \sim p(\mathbf{\theta} \mid x)$$

Eventually, we expect the Gibbs sampler to sample parameter values from their posterior distribution

Gibbs Sampling for Mixture Distributions

- Sample each of the mixture parameters from conditional distribution
 - Dirichlet, Normal and Gamma distributions are typical
- Simple alternative is to sample the *origin* of each observation
 - Assign observation to specific component

Sampling A Component

$$\Pr(Z_j = i \mid x_j, \boldsymbol{\pi}, \boldsymbol{\varphi}, \boldsymbol{\eta}) = \frac{\pi_i f(x_j \mid \phi_i, \boldsymbol{\eta})}{\sum_{l} \pi_l f(x_j \mid \phi_l, \boldsymbol{\eta})}$$

- Calculate the probability that the observation originated from each component...
- ... use random number(s) to assign component membership. How?

C Code: Sampling A Component

```
int sample_group(double x, int k,
                 double * probs, double * mean, double * sigma)
   int group; double p = Random();
   double lk = dmix(x, k, probs, mean, sigma);
   for (group = 0; group < k - 1; group++)</pre>
      double pgroup = probs[group] *
                       dnorm(x, mean[group], sigma[group])/lk;
      if (p < pgroup) return group;</pre>
      p -= pgroup;
   return k - 1;
```

Calculating Mixture Parameters

$$n_{i} = \sum_{j:Z_{j}=i} 1$$

$$p_{i} = n_{i}/n$$

$$\bar{x}_{i} = \sum_{j:Z_{j}=i} x_{j}/n_{i}$$

$$s_{i} = \left(\sum_{j:Z_{j}=i} x_{j}^{2} - n_{i}\bar{x}_{i}^{2}\right)/n_{i}$$

- Before sampling a new origin for an observation...
- ... update mixture parameters given current assignments
- Could be expensive!

C Code: Updating Parameters

C Code: Updating Mixture Parameters II

Selecting a Starting State

 Must start with an assignment of observations to groupings

 Many alternatives are possible, I chose to perform random assignments with equal probabilities...

C Code: Starting State

```
void initial_state(int k, int * group,
             double * counts, double * sum, double * sumsq)
   int i;
   for (i = 0; i < k; i++)
      counts[i] = sum[i] = sumsq[i] = 0.0;
   for (i = 0; i < n; i++)
      group[i] = Random() * k;
      counts[group[i]] ++;
      sum[group[i]] += data[i];
      sumsq[group[i]] += data[i] * data[i];
```

The Gibbs Sampler

- Select initial state
- Repeat a large number of times:
 - Select an element
 - Update conditional on other elements
- If appropriate, output summary for each run...

C Code: Core of The Gibbs Sampler

```
initial state(k, probs, mean, sigma, group, counts, sum, sumsg);
for (i = 0; i < 10000000; i++)
   int id = rand() % n;
   if (counts[group[id]] < MIN GROUP) continue;</pre>
   remove observation(data[id], group[id], counts, sum, sumsq);
   update estimates(k, n - 1, probs, mean, sigma,
                              counts, sum, sumsq);
   group[id] = sample_group(data[id], k, probs, mean, sigma);
   add_observation(data[id], group[id], counts, sum, sumsq);
   if ((i > BURN IN) && (i % THIN INTERVAL == 0))
      /* Collect statistics */
```

Gibbs Sampler: Memory Allocation and Freeing

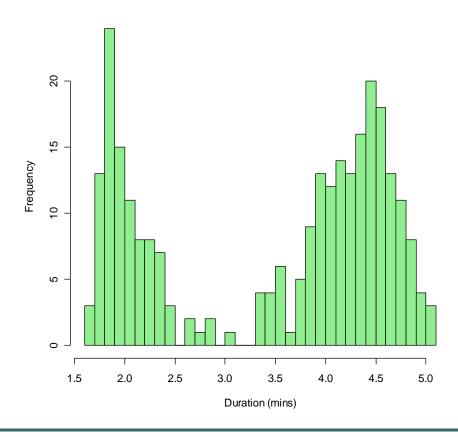
```
void gibbs(int k, double * probs, double * mean, double * sigma)
{
  int i, * group = (int *) malloc(sizeof(int) * n);
  double * sum = alloc_vector(k);
  double * sumsq = alloc_vector(k);
  double * counts = alloc_vector(k);

/* Core of the Gibbs Sampler goes here */

free_vector(sum, k);
  free_vector(sumsq, k);
  free_vector(counts, k);
  free(group);
}
```

Example Application Old Faithful Eruptions (n = 272)

Old Faithful Eruptions



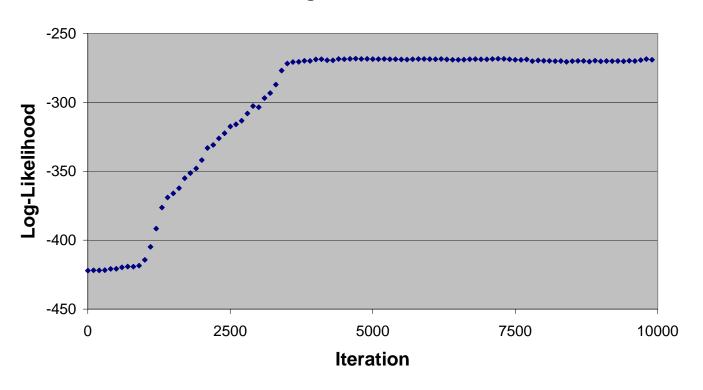
Notes ...

 My first few runs found excellent solutions by fitting components accounting for very few observations but with variance near 0

- Why?
 - Repeated values due to rounding
 - To avoid this, set MIN_GROUP to 13 (5%)

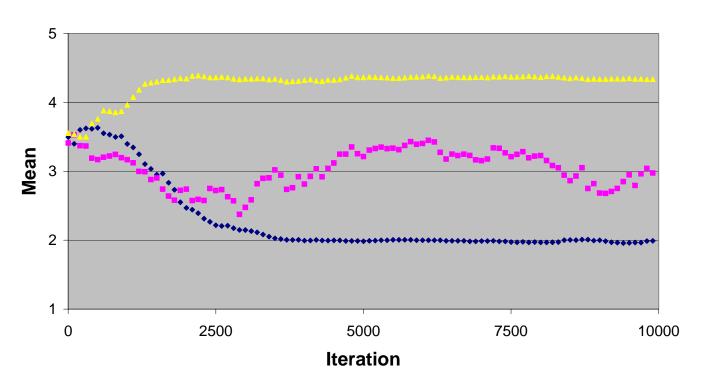
Gibbs Sampler Burn-In

LogLikelihood

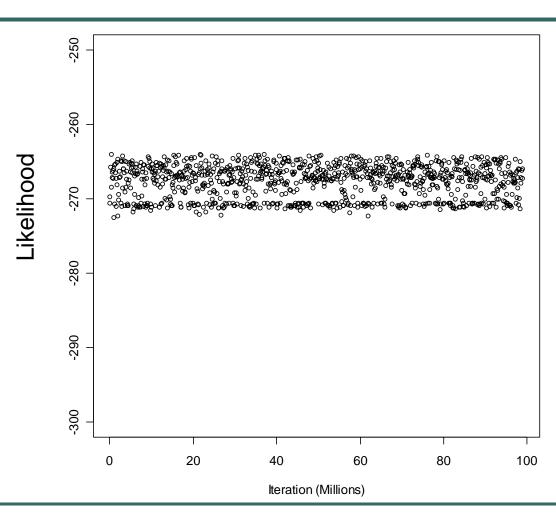


Gibbs Sampler Burn-In

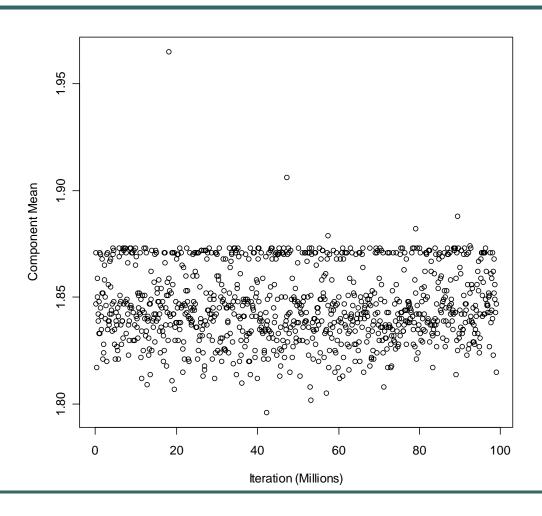
Mixture Means



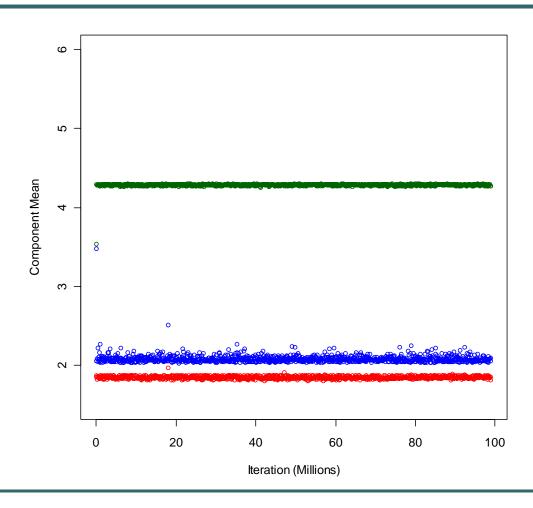
Gibbs Sampler After Burn-In Likelihood



Gibbs Sampler After Burn-In Mean for First Component



Gibbs Sampler After Burn-In



Notes on Gibbs Sampler

Previous optimizers settled on a minimum eventually

 The Gibbs sampler continues wandering through the stationary distribution...

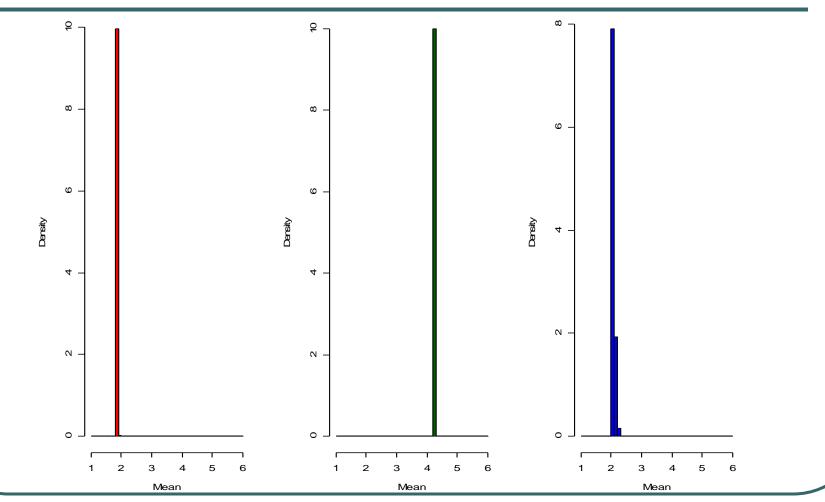
Forever!

Drawing Inferences...

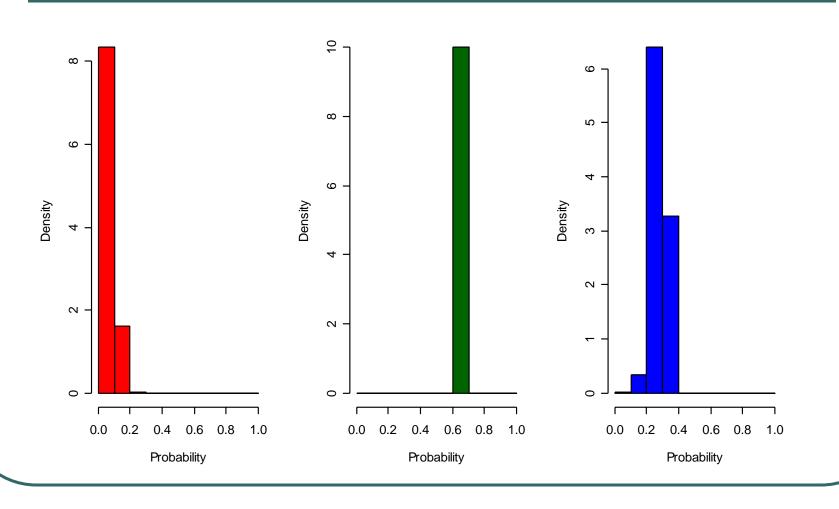
 To draw inferences, summarize parameter values from stationary distribution

 For example, might calculate the mean, median, etc.

Component Means



Component Probabilities



Overall Parameter Estimates

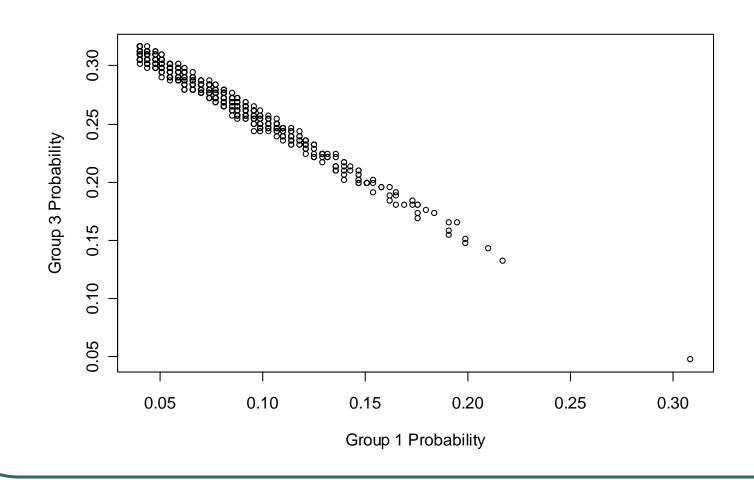
- The means of the posterior distributions for the three components were:
 - Frequencies of 0.073, 0.278 and 0.648
 - Means of 1.85, 2.08 and 4.28
 - Variances of 0.001, 0.065 and 0.182
- Our previous estimates were:
 - Components contributing .160, 0.195 and 0.644
 - Component means are 1.856, 2.182 and 4.289
 - Variances are 0.00766, 0.0709 and 0.172

Joint Distributions

Gibbs Sampler provides other interesting information and insights

 For example, we can evaluate joint distribution of two parameters...

Component Probabilites



Today ...

Introduction to Gibbs sampling

 Generates posterior distributions of parameters conditional on data

Provides insight into joint distributions

A little bit of theory

 Highlight connection between Simulated Annealing and the Gibbs sampler ...

 Fill in some details of the Metropolis algorithm

Both Methods Are Markov Chains

 The probability of any state being chosen depends only on the previous state

$$Pr(S_n = i_n \mid S_{n-1} = i_{n-1},...,S_0 = i_0) = Pr(S_n = i_n \mid S_{n-1} = i_{n-1})$$

 States are updated according to transition matrix with elements p_{ij}. This matrix defines important properties, including periodicity and irreducibility.

Metropolis-Hastings Acceptance Probability

Let
$$q_{ij} = q$$
(propose $S_{n+1} = j \mid S_n = i$)

Let π_i and π_j be the relative probabilities of each state

The Metropolis - Hastings acceptance probability is:

$$a_{ij} = \min\left(1, \frac{\pi_j q_{ji}}{\pi_i q_{ij}}\right)$$
 or $a_{ij} = \min\left(1, \frac{\pi_j}{\pi_i}\right)$ if $q_{ij} = q_{ji}$

Only the ratio $\frac{\pi_j}{\pi_i}$ must be known, not the actual values of π

Metropolis-Hastings Equilibrium

If we use the Metropolis - Hastings algorithm to update a Markov Chain, it will reach an equilibrium distribution where $\Pr(S = i) = \pi_i$

For this to happen, the proposal density must allow all states to communicate.

Gibbs Sampler

The Gibbs sampler ensures that $\pi_i q_{ij} = \pi_j q_{ji}$

As a consequence,
$$a_{ij} = \min \left(1, \frac{\pi_j q_{ji}}{\pi_i q_{ij}} \right) = 1$$

Simulated Annealing

Given a temperature parameter τ ,

replace
$$\pi_i$$
 with $\pi_i^{(\tau)} = \frac{\pi_i^{\frac{1}{\tau}}}{\sum_j \pi_j^{\frac{1}{\tau}}}$

At high temperatures, the probability distribution is flattened At low temperatures, larger weights are given to high probability states

Additional Reading

- If you need a refresher on Gibbs sampling
 - Bayesian Methods for Mixture Distributions
 M. Stephens (1997)

http://www.stat.washington.edu/stephens/

- Numerical Analysis for Statisticians
 - Kenneth Lange (1999)
 - Chapter 24