A Simple Gibbs Sampler

Biostatistics 615/815
Lecture 23
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Scheduling

Practice Exam

Review session
Next Monday, December 6

Final Assessment
Monday, December 13
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Optimization Strategies

Single Variable
Golden Search
Quadratic Approximations

Multiple Variables

Simplex Method
E-M Algorithm
\ Simulated Annealing
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Simulated Annealing

Stochastic Method

Sometimes takes up-hill steps
Avoids local minima

Solution is gradually frozen
Values of parameters with largest impact on

\ function values are fixed earlier /
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Gibbs Sampler

\_

Another MCMC Method

Update a single parameter at a time

Sample from conditional distribution
when other parameters are fixed
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Gibbs Sampler Algorithm

\_

Consider a particular choice of parameter values 9"

Define the next set of parameter values by :
a.Selecting component to update, say i

b.Sample value for 9+ from p(6. | x,6,,6,,..0._,,0

Increment ¢ and repeat previous steps.

1

ar-0)

/
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Alternative Algorithm

Consider a particular choice of parameter values "

Define the next set of parameter values by :
a. Update each component,1 .. &, in turn

b.Sample value for 6 from p(9, | x,6,,0,,...6,)
c. Sample value for 8 from p(6, | x,6,,6,,...0,)

z.Sample value for 6" from p(9, | x,0,,0,,..0, )

\ Increment ¢ and repeat previous steps. j
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Key Property:
Stationary Distribution

Suppose that (6”,6",...,6) ~ p(8,,6,,...,6, | x)
Then (81,6%,...,0") is distributed as
p616,,...,6,,x)p0,,...6, | x)=p(6,0,,..,6, | x)
In fact...

0% ~ p(0|x) = 0" ~ p(0]x)

Eventually, we expect the Gibbs sampler to sample parameter values
\ from their posterior distribution
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/Gibbs Sampling for
Mixture Distributions

Sample each of the mixture parameters
from conditional distribution

Dirichlet, Normal and Gamma distributions are
typical

Simple alternative is to sample the origin of
each observation
Assign observation to specific component

\_ /
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Sampling A Component

ﬂ-if(xj|¢i’77)
Zﬂ-lf(xj|¢l’77)

Pr(Z, =il|x; m@,n)=
Calculate the probability that the observation

originated from each component...

... use random number(s) to assign component

\ membership. How? /




/C Code: \

Sampling A Component

\_

int sample_group(double x, Int k,

double * probs, double * mean, double * sigma)

{
int group; double p = Random();

double Ik = dmix(x, k, probs, mean, sigma);

for (group = 0; group < k - 1; group++)

{
double pgroup = probs[group] *

dnorm(x, mean[group], sigma[group])/Ik;

IT (p < pgroup) return group;

P —= pgroup,
}

return k - 1; ‘////
ks
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Calculating Mixture Parameters

n = Zl Before_s_ampling a
7 =i new origin for an
observation...
Pi = ni/n
X = ij/”i ... update mixture
JZ= parameters given

current assignments
_ 2 =2

\ JZ=t Could be expensive!j
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Updating Parameters

{

int 1;

for (1 = O;
{

prob[i]
mean[ 1]

}
}

\_

void update_estimates(int k, int n,
double * prob, double * mean, double * sigma,
double * counts, double * sum, double * sumsqQ)

1 < k; 1++)

counts[1]/ n;
sum[i] 7/ counts[i];

sigma[i1] = sgrt((sumsqg[1] - mean[i]*mean[i1]*counts[i])

/ counts[i1] + le-7);
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Updating Mixture Parameters |

void remove_observation(double x, Int group,
double * counts, double * sum, double * sumsq)

{

counts[group] --;
sum[group] -= X;
sumsg[group] -= x * X;
+

void add observation(double x, iInt group,
double * counts, double * sum, double * sumsq)
{
counts[group] ++;
sum[group] += X;
sumsg[group] += x * X;

}

\_
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Selecting a Starting State

Must start with an assignment of
observations to groupings

Many alternatives are possible, | chose
to perform random assignments with
equal probabillities...

\_ /
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Starting State

~

void initial_state(int k, int * group,
double * counts, double * sum, double * sumsqQ)
{

int 1;
for (i = 0; i < k; i++)
counts[i1] = sum[i1] = sumsq[i1] = 0.0;

for (i = 0; 1 < nj; i++)
{
group[1] = Random() * k;

counts[group[i]] ++;
sum[group[i]] += data[i];
sumsq[group[i]] += data[i] * data[i];

L




-~

The Gibbs Sampler

Select Initial state

Repeat a large number of times:
Select an element
Update conditional on other elements

If appropriate, output summary for each
run...

/




Core of The Gibbs Sampler

/C Code: \

for (i = 0; i < 10000000; i++)
{
int 1d = rand() % n;
1T (counts[group[id]] < MIN_GROUP) continue;

update _estimates(k, n - 1, probs, mean, sigma,
counts, sum, sumsq);

add _observation(data[id], group[id], counts, sum, sumsq);

if ((i > BURN_IN) && (i % THIN_INTERVAL == 0))

/* Collect statistics */
\ }

initial _state(k, probs, mean, sigma, group, counts, sum, sumsq);

remove_observation(data[id], group[id], counts, sum, sumsq);

group[i1d] = sample_group(data[id], k, probs, mean, sigma);

/
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Gibbs Sampler:
Memory Allocation and Freeing

~

\_

void gibbs(int k, double * probs, double * mean, double * sigma)

{
int i, group = (int *) malloc(sizeof(int) * n);
double sum = alloc_vector(k);

*

*
double * sumsq = alloc vector(k);
double * counts = alloc vector(k);

/* Core of the Gibbs Sampler goes here */

free vector(sum, k);
free vector(sumsq, k);
free vector(counts, k);
free(group);

}
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Example Application
Old Faithful Eruptions (n = 272)

~

Old Faithful Eruptions
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Notes ...

My first few runs found excellent solutions
by fitting components accounting for very
few observations but with variance near O

Why?
Repeated values due to rounding
To avoid this, set MIN_ GROUP to 13 (5%)

\_ /
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Gibbs Sampler Burn-In
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Gibbs Sampler Burn-In

Mixture Means
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Gibbs Sampler After Burn-In
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Gibbs Sampler After Burn-In
Mean for First Component
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Gibbs Sampler After Burn-In
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Notes on Gibbs Sampler

Previous optimizers settled on a
minimum eventually

The Gibbs sampler continues wandering
through the stationary distribution...

Forever!

\_ /
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Drawing Inferences...

\_

To draw inferences, summarize parameter
values from stationary distribution

For example, might calculate the mean,
median, etc.

/
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Component Means
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Component Probabilities
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Overall Parameter Estimates

The means of the posterior distributions for the

three components were:
Frequencies of 0.073, 0.278 and 0.648
Means of 1.85, 2.08 and 4.28
Variances of 0.001, 0.065 and 0.182

Our previous estimates were:
Components contributing .160, 0.195 and 0.644
Component means are 1.856, 2.182 and 4.289
Variances are 0.00766, 0.0709 and 0.172

/
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Joint Distributions

~

Gibbs Sampler provides other interesting
Information and insights

For example, we can evaluate joint
distribution of two parameters...
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Component Probabilites
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Today ...

Introduction to Gibbs sampling

Generates posterior distributions of
parameters conditional on data

Provides insight into joint distributions

/
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A little bit of theory

\_

Highlight connection between Simulated
Annealing and the Gibbs sampler ...

Fill in some details of the Metropolis
algorithm




/Both Methods Are Markov \
Chains

The probabillity of any state being chosen
depends only on the previous state

Pr(S =i |S =i 4.8, =iy)=Pr(S =i |S _,=i_,)

States are updated according to transition
matrix with elements p,.. This matrix defines
Important properties, including periodicity and

\ irreducibility. /




/I\/Ietropolis—Hastings
Acceptance Probability

Letg, =q(propose S, =j|S, =1i)
Let z; and 7 ; be the relative probabilities of each state

The Metropolis - Hastings acceptance probability is :

a, = mm[l, 4 ) or a, = mln[l,’j ifg,=q,

1

7T.

1

T .
\ Only the ratio — must be known, not the actual values of =
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Metropolis-Hastings Equilibrium

If we use the Metropolis - Hastings algorithm to update
a Markov Chain, it will reach an equilibrium distribution
where Pr(S =i)=r,

For this to happen, the proposal density must allow all
states to communicate.

\_ /
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Gibbs Sampler

~

\_

The Gibbs sampler ensuresthat z,q, = 7 .q ;

( A
: 7 i
As a consequence, a,;, = min| 1

. iy
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Simulated Annealing

Given a temperature parameter r,

replace z, with 7” ="~

At high temperatures, the probability distribution is flattened
At low temperatures, larger weights are given to high probability states

\_ /
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Additional Reading

If you need a refresher on Gibbs sampling

Bayesian Methods for Mixture Distributions
M. Stephens (1997)

Numerical Analysis for Statisticians
Kenneth Lange (1999)
Chapter 24
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