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Abstract

This technical report provides a tutorial on the theoretical details
of probabilistic topic modeling and gives practical steps on implement-
ing topic models such as Latent Dirichlet Allocation (LDA) through the
Markov Chain Monte Carlo approximate inference algorithm Gibbs Sam-
pling.

1 Introduction

Following its publication in 2003, Blei et al.’s Latent Dirichlet Allocation (LDA)
[3] has made topic modeling – a subfield of machine learning applied to ev-
erything from computational linguistics [4] to bioinformatics [8] and political
science [2] – one of the most popular and most successful paradigms for both
supervised and unsupervised learning. Despite topic modeling’s undisputed
popularity, however, it is for many – particularly newcomers – a di�cult area
to break into due to its relative complexity and the common practice of leav-
ing out implementation details in papers describing new models. While key
update equations and other details on inference are often included, the inter-
mediate steps used to arrive at these conclusions are often left out due to space
constraints, and what details are given are rarely enough to enable most re-
searchers to test the given results for themselves by implementing their own
version of the described model. The purpose of this technical report is to help
bridge the gap between the model definitions provided in research publications
and the practical implementations that are required for performing learning in
this exciting area. Ultimately, it is hoped that this tutorial will help enable the
reader to build his or her own novel topic models.

This technical report will describe what topic modeling is, how various mod-
els (LDA in particular) work, and most importantly, how to implement a work-
ing system to perform learning with topic models. Topic modeling as an area
will be introduced through the section on LDA, as it is the “original” topic model
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and its modularity allows the basics of the model to be used in more complicated
topic models.1 Following the introduction to topic modeling through LDA, the
problem of posterior inference will be discussed. This section will concentrate
first on the theory of the stochastic approximate inference technique Gibbs Sam-
pling and then it will discuss implementation details for building a topic model
Gibbs sampler.

2 Latent Dirichlet Allocation

LDA is a generative probabilistic model for collections of grouped discrete data
[3]. Each group is described as a random mixture over a set of latent topics where
each topic is a discrete distribution over the collection’s vocabulary. While LDA
is applicable to any corpus of grouped discrete data, from now on I will refer
to the standard NLP use case where a corpus is a collection of documents, and
the data are words. The generative process for a document collection D under
the LDA model is as follows:

1. For k = 1...K:

(a) �(k) ⇠ Dirichlet(�)

2. For each document d 2 D:

(a) ✓d ⇠ Dirichlet(↵)

(b) For each word wi 2 d:

i. zi ⇠ Discrete(✓d)

ii. wi ⇠ Disctete(�(zi))

where K is the number of latent topics in the collection, �(k) is a discrete
probability distribution over a fixed vocabulary that represents the kth topic
distribution, ✓d is a document-specific distribution over the available topics, zi is
the topic index for word wi, and ↵ and � are hyperparameters for the symmetric
Dirichlet distributions that the discrete distributions are drawn from.

The generative process described above results in the following joint distri-
bution:

p(w, z, ✓,�|↵,�) = p(�|�)p(✓|↵)p(z|✓)p(w|�z) (1)

The unobserved (latent) variables z, ✓, and � are what is of interest to us. Each
✓d is a low-dimensional representation of a document in “topic”-space, each zi
represents which topic generated the word instance wi, and each �(k) represents
a K ⇥ V matrix where �i,j = p(wi|zj). Therefore, one of the most interesting
aspects of LDA is that it can learn, in an unsupervised manner, words that

1While LDA is an extension to probabilistic latent semantic analysis [12] (which in turn has
ideological routes in the matrix factorization technique LSI), the topic modeling “revolution”
really took o↵ with the introduction of LDA likely due to its fully probabilistic grounding.
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“environment” “travel” “fantasy football”
emission travel game

environmental hotel yard
air roundtrip defense

permit fares allowed
plant special fantasy
facility o↵er point
unit city passing
epa visit rank
water miles against
station deal team

Table 1: Three topics learned using LDA on the Enron Email Dataset.

we would associate with certain topics, and this is expressed through the topic
distributions �. An example of the top 10 words for 3 topics learned using LDA
on the Enron email dataset2 is shown in Figure 1 (the topic labels are added
manually).

3 Inference

The key problem in topic modeling is posterior inference. This refers to reversing
the defined generative process and learning the posterior distributions of the
latent variables in the model given the observed data. In LDA, this amounts to
solving the following equation:

p(✓,�, z|w,↵,�) =
p(✓,�, z,w|↵,�)

p(w|↵,�) (2)

Unfortunately, this distribution is intractable to compute. The normalization
factor in particular, p(w|↵,�), cannot be computed exactly. All is not lost,
however, as there are a number of approximate inference techniques available
that we can apply to the problem including variational inference (as used in the
original LDA paper) and Gibbs Sampling (as we will use here).

3.1 Gibbs Sampling

3.1.1 Theory

Gibbs Sampling is one member of a family of algorithms from the Markov Chain
Monte Carlo (MCMC) framework [9]. The MCMC algorithms aim to construct
a Markov chain that has the target posterior distribution as its stationary dis-
tribution. In other words, after a number of iterations of stepping through the
chain, sampling from the distribution should converge to be close to sampling

2http://www.cs.cmu.edu/~enron/.
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from the desired posterior. Gibbs Sampling is based on sampling from condi-
tional distributions of the variables of the posterior.

For example, to sample x from the joint distribution p(x) = p(x1, ..., xm),
where there is no closed form solution for p(x), but a representation for the
conditional distributions is available, using Gibbs Sampling one would perform
the following (from [1]):

1. Randomly initialize each xi

2. For t = 1, ..., T :

2.1 xt+1
1 ⇠ p(x1|x(t)

2 , x(t)
3 , ..., x(t)

m )

2.2 xt+1
2 ⇠ p(x2|x(t+1)

1 , x(t)
3 , ..., x(t)

m )

2.m xt+1
m ⇠ p(xm|x(t+1)

1 , x(t+1)
2 , ..., x(t+1)

m�1 )

This procedure is repeated a number of times until the samples begin to con-
verge to what would be sampled from the true distribution. While convergence
is theoretically guaranteed with Gibbs Sampling, there is no way of knowing
how many iterations are required to reach the stationary distribution. There-
fore, diagnosing convergence is a real problem with the Gibbs Sampling ap-
proximate inference method. However, in practice it is quite powerful and has
fairly good performance. Typically, an acceptable estimation of convergence
can be obtained by calculating the log-likelihood or even, in some situations, by
inspection of the posteriors.

For LDA, we are interested in the latent document-topic portions ✓d, the
topic-word distributions �(z), and the topic index assignments for each word
zi. While conditional distributions – and therefore an LDA Gibbs Sampling
algorithm – can be derived for each of these latent variables, we note that both
✓d and �(z) can be calculated using just the topic index assignments zi (i.e. z is a
su�cient statistic for both these distributions).3 Therefore, a simpler algorithm
can be used if we integrate out the multinomial parameters and simply sample
zi. This is called a collapsed Gibbs sampler.

The collapsed Gibbs sampler for LDA needs to compute the probability of a
topic z being assigned to a word wi, given all other topic assignments to all other
words. Somewhat more formally, we are interested in computing the following
posterior up to a constant:

p(zi|z�i,↵,�,w) (3)

where z�i means all topic allocations except for zi. To begin, the rules of
conditional probability tell us that:

p(zi|z�i,↵,�,w) =
p(zi, z�i,w|↵,�)
p(z�i,w|↵,�) / p(zi, z�i,w|↵,�) = p(z,w|↵,�) (4)

3✓d,z = n(d,z)+↵P
|Z| n(d,z)+↵ , �z,w = n(z,w)+�P

|W | n(z,w)+� .
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We then have:

p(w, z|↵,�) =
Z Z

p(z,w, ✓,�|↵,�)d✓d� (5)

Following the LDA model defined in equation (1), we can expand the above
equation to get:

p(w, z|↵,�) =
Z Z

p(�|�)p(✓|↵)p(z|✓)p(w|�z)d✓d� (6)

Then, we group the terms that have dependent variables:

p(w, z|↵,�) =
Z

p(z|✓)p(✓|↵)d✓
Z

p(w|�z)p(�|�)d� (7)

Both terms are multinomials with Dirichlet priors. Because the Dirichlet dis-
tribution is conjugate to the multinomial distribution, our work is vastly sim-
plified; multiplying the two results in a Dirichlet distribution with an adjusted
parameter. Beginning with the first term, we have:

Z
p(z|✓)p(✓|↵)d✓ =

Z Y

i

✓d,zi
1

B(↵)

Y

k

✓↵k
d,kd✓d

=
1

B(↵)

Z Y

k

✓
nd,k+↵k

d,k d✓d

=
B(nd,· + ↵)

B(↵)
(8)

where nd,k is the number of times words in document d are assigned to topic k, a
· indicates summing over that index, and B(↵) is the multinomial beta function,

B(↵) =
Q

k �(↵k)
�(

P
k ↵k)

. Similarly, for the second term (calculating the likelihood of

words given certain topic assignments):

Z
p(w|�z)p(�|�)d� =

Z Y

d

Y

i

�zd,i,wd,i

Y

k

1

B(�)

Y

w

��w

k,wd�k

=
Y

k

1

B(�)

Z Y

w

�
�w+nk,w

k,w d�k

=
Y

k

B(nk,· + �)

B(�)
(9)

Combining equations (8) and (9), the expanded joint distribution is then:

p(w, z|↵,�) =
Y

d

B(nd,· + ↵)

B(↵)

Y

k

B(nk,· + �)

B(�)
(10)
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The Gibbs sampling equation for LDA can then be derived using the chain rule
(where we leave the hyperparameters ↵ and � out for clarity).4 Note that the
superscript (�i) signifies leaving the ith token out of the calculation:

p(zi|z(�i),w) =
p(w, z)

p(w, z(�i))
=

p(z)

p(z(�i))
· p(w|z)
p(w(�i)|z(�i))p(wi)

/
Y

d

B(nd,· + ↵)

B(n(�i)
d,· + ↵)

Y

k

B(nk,· + �)

B(n(�i)
k,· + �)

/
�(nd,k + ↵k)�(

PK
k=1 n

(�i)
d,k + ↵k)

�(n(�i)
d,k + ↵k)�(

PK
k=1 nd,k + ↵k)

·
�(nk,w + �w)�(

PW
w=1 n

(�i)
k,w + �w)

�(n(�i)
k,w + �w)�(

PW
w=1 nk,w + �w)

/ (n(�i)
d,k + ↵k)

n(�i)
k,w + �w

P
w0 n

(�i)
k,w0 + �w0

(11)

3.1.2 Implementation

Implementing an LDA collapsed Gibbs sampler is surprisingly straightforward.
It involves setting up the requisite count variables, randomly initializing them,
and then running a loop over the desired number of iterations where on each
loop a topic is sampled for each word instance in the corpus. Following the
Gibbs iterations, the counts can be used to compute the latent distributions ✓d
and �k.

The only required count variables include nd,k, the number of words assigned
to topic k in document d; and nk,w, the number of times word w is assigned
to topic k. However, for simplicity and e�ciency, we also keep a running count
of nk, the total number of times any word is assigned to topic k. Finally, in
addition to the obvious variables such as a representation of the corpus (w), we
need an array z which will contain the current topic assignment for each of the
N words in the corpus.

Because the Gibbs sampling procedure involves sampling from distributions
conditioned on all other variables (in LDA this of course includes all other cur-
rent topic assignments, but not the current one), before building a distribution
from equation (11), we must remove the current assignment from the equation.
We can do this by decrementing the counts associated with the current assign-
ment because the topic assignments in LDA are exchangeable (i.e. the joint
probability distribution is invariant to permutation). We then calculate the
(unnormalized) probability of each topic assignment using equation (11). This
discrete distribution is then sampled from and the chosen topic is set in the z

array and the appropriate counts are then incremented. See Algorithm 1 for
the full LDA Gibbs sampling procedure.

4For the full, nothing-left-out derivation, please see [5] and [11].
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Input: words w 2 documents d
Output: topic assignments z and counts nd,k, nk,w, and nk

begin

randomly initialize z and increment counters
foreach iteration do

for i = 0! N � 1 do

word w[i]
topic z[i]
nd,topic-=1; nword,topic-=1; ntopic-=1
for k = 0! K � 1 do

p(z = k|·) = (nd,k + ↵k)
nk,w+�w

nk+�⇥W

end

topic sample from p(z|·)
z[i] topic
nd,topic+=1; nword,topic+=1; ntopic+=1

end

end

return z, nd,k, nk,w, nk

end

Algorithm 1: LDA Gibbs Sampling

4 Extensions To LDA

While LDA – the “simplest” topic model – is useful in and of itself, a great
deal of novel research surrounds extending the basic LDA model to fit a specific
task or to improve the model by describing a more complex generative process
that results in a better model of the real world. There are countless papers
delineating such extensions and it is not my intention to go through them all
here. Instead, this section will outline some of the ways that LDA can and has
been extended with the goal of explaining how inference changes as a result of
additions to a model and how to implement those changes in a Gibbs sampler.

4.1 LDA With a Background Distribution

One of the principal problems with LDA is that for useful results, stop-words
must be removed in a pre-processing step. Without this filtering, very common
words such as the, of, to, and, a, etc. will pervade the learned topics, hiding the
statistical semantic word patterns that are of interest. While stop-word removal
does a good job at solving this problem, it is an ad hoc measure that results in a
model resting on a non-coherent theoretical basis. Further, stop-word removal
is not without problems. Stop-word lists must often be domain-dependent,
and there are inevitably cases where filtering results in under-coverage or over-
coverage, causing the model to continue being plagued by noise, or missing
patterns that may be of interest to us.

One approach to keep stop-words out of the topic distributions is to imag-
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ine all stop-words being generated by a “background” distribution [6, 7, 10].
The background distribution is the same as a topic – it is a discrete probability
distribution over the corpus vocabulary – but every document draws from the
background as well as the topics specific to that document. [7] and [10] use this
approach to separate high-content words from less-important words to perform
multi-document summarization. [6] uses a similar model for information re-
trieval where a word can either be generated from a background distribution, a
document-specific distribution, or one of T topic distributions shared amongst
all the documents. The generative process is similar to that of LDA, except
that there is a multinomial variable x associated with each word that is over the
three di↵erent “sources” of words. When x = 0, the background distribution
generates the word, when x = 1, the document-specific distribution generates
the word, and when x = 2, one of the topic distributions generates the word.

Here, we will describe a simpler model where only a background distribution
is added to LDA. A binomial variable x is associated with each word that
decides whether the word will be generated by the topic distributions or by the
background. The generative process is then:

1. ⇣ ⇠ Dirichlet(�)

2. For k = 1...K:

(a) �(k) ⇠ Dirichlet(�)

3. For each document d 2 D:

(a) ✓d ⇠ Dirichlet(↵)

(b) �d ⇠ Dirichlet(�)

(c) For each word wi 2 d:

i. xi ⇠ Discrete(�d)

ii. If x = 0:

A. wi ⇠ Discrete(⇣)

iii. Else:

A. zi ⇠ Discrete(✓d)

B. wi ⇠ Disctete(�(zi))

where ⇣ is the background distribution, and �d is a document-specific binomial
sampled from a Dirichlet prior �.

Developing a Gibbs sampler for this model is similar to the LDA imple-
mentation, but we have to be careful about when counts are incremented and
decremented. We only adjust the background-based counts when the back-
ground was sampled as the word generator, and we only adjust the topic counts
when it is the converse. We must update the x-based counts each time, however,
because we sample the route that led to the word being generated each time.
The sampler must compute the probability not only of a topic being chosen
for the given document and the probability of that topic generating the given
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word, it must also compute the probability that the model is in the topic-model
state. This too, however, is straightforward to implement. A distribution of
T + 1 components can be created for each word (on each iteration) where the
first component corresponds to the background distribution generating the word
and the other T are the probabilities for each topic having generated the word.

5 Conclusion

LDA and other topic models are an exciting development in machine learn-
ing and the surface has only been scratched on their potential in a number of
diverse fields. This report has sought to aid researchers new to the field in
both understanding the mathematical underpinnings of topic modeling and in
implementing algorithms to make use of this new pattern recognition paradigm.
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 Explaining the Gibbs Sampler
 GEORGE CASELLA and EDWARD I. GEORGE*

 Computer-intensive algorithms, such as the Gibbs sam-
 pler, have become increasingly popular statistical tools,

 both in applied and theoretical work. The properties of

 such algorithms, however, may sometimes not be ob-
 vious. Here we give a simple explanation of how and
 why the Gibbs sampler works. We analytically establish

 its properties in a simple case and provide insight for

 more complicated cases. There are also a number of
 examples.

 KEY WORDS: Data augmentation; Markov chains;
 Monte Carlo methods; Resampling techniques.

 1. INTRODUCTION

 The continuing availability of inexpensive, high-speed

 computing has already reshaped many approaches to

 statistics. Much work has been done on algorithmic

 approaches (such as the EM algorithm; Dempster, Laird,
 and Rubin 1977), or resampling techniques (such as the
 bootstrap; Efron 1982). Here we focus on a different
 type of computer-intensive statistical method, the Gibbs

 sampler.

 The Gibbs sampler enjoyed an initial surge of pop-

 ularity starting with the paper of Geman and Geman

 (1984), who studied image-processing models. The roots
 of the method, however, can be traced back to at least

 Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller

 (1953), with further development by Hastings (1970).
 More recently, Gelfand and Smith (1990) generated
 new interest in the Gibbs sampler by revealing its po-

 tential in a wide variety of conventional statistical

 problems.

 The Gibbs sampler is a technique for generating ran-
 dom variables from a (marginal) distribution indirectly,
 without having to calculate the density. Although

 straightforward to describe, the mechanism that drives
 this scheme may seem mysterious. The purpose of this

 article is to demystify the workings of these algorithms

 by exploring simple cases. In such cases, it is easy to
 see that Gibbs sampling is based only on elementary

 properties of Markov chains.

 Through the use of techniques like the Gibbs sam-

 pler, we are able to avoid difficult calculations, replac-

 ing them instead with a sequence of easier calculations.

 These methodologies have had a wide impact on prac-

 tical problems, as discussed in Section 6. Although most

 applications of the Gibbs sampler have been in Bayesian
 models, it is also extremely useful in classical (likeli-
 hood) calculations [see Tanner (1991) for many ex-
 amples]. Furthermore, these calculational methodolo-

 gies have also had an impact on theory. By freeing

 statisticians from dealing with complicated calculations,
 the statistical aspects of a problem can become the main
 focus. This point is wonderfully illustrated by Smith and

 Gelfand (1992).

 In the next section we describe and illustrate the ap-

 plication of the Gibbs sampler in bivariate situations.

 Section 3 is a detailed development of the underlying
 theory, given in the simple case of a 2 x 2 table with
 multinomial sampling. From this detailed development,
 the theory underlying general situations is more easily
 understood, and is also outlined. Section 4 elaborates
 the role of the Gibbs sampler in relating conditional
 and marginal distributions and illustrates some higher
 dimensional generalizations. Section 5 describes many
 of the implementation issues surrounding the Gibbs
 sampler, and Section 6 contains a discussion and de-
 scribes many applications.

 2. ILLUSTRATING THE GIBBS SAMPLER

 Suppose we are given a joint density f(x, Yi, ..

 yp), and are interested in obtaining characteristics of
 the marginal density

 f(x) = J. f(x, Yi, , yp) dyi... dyp, (2. 1)

 such as the mean or variance. Perhaps the most natural

 and straightforward approach would be to calculate f(x)
 and use it to obtain the desired characteristic. However,
 there are many cases where the integrations in (2.1) are
 extremely difficult to perform, either analytically or nu-
 merically. In such cases the Gibbs sampler provides an
 alternative method for obtaining f(x).

 Rather than compute or approximate f(x) directly,
 the Gibbs sampler allows us effectively to generate a

 sample X1, . . . , Xi, - f(x) without requiring f(x). By
 simulating a large enough sample, the mean, variance,
 or any other characteristic of f(x) can be calculated to
 the desired degree of accuracy.

 It is important to realize that, in effect, the end result
 of any calculations, although based on simulations, are
 the population quantities. For example, to calculate the

 mean of f(x), we could use (1/m)Lm=1 Xi, and the fact
 that

 1 m

 lim- X- xf(x) dx = EX. (2.2)
 in- m - =1 Mx

 *George Casella is Professor, Biometrics Unit, Cornell University,
 Ithaca, NY 14853. The research of this author was supported by
 National Science Foundation Grant DMS 89-0039. Edward I. George
 is Professor, Department of MSIS, The University of Texas at Austin,
 TX 78712. The authors thank the editors and referees, whose com-
 ments led to an improved version of this article.
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 Thus, by taking m large enough, any population char-

 acteristic, even the density itself, can be obtained to

 any degree of accuracy.

 To understand the workings of the Gibbs sampler,

 we first explore it in the two-variable case. Starting with
 a pair of random variables (X, Y), the Gibbs sampler
 generates a sample from f(x) by sampling instead from

 the conditional distributions f(x I y) and f(y I x), dis-
 tributions that are often known in statistical models.

 This is done by generating a "Gibbs sequence" of ran-

 dom variables

 YO, XO, Yl, Xl, Y2, X2, . .. , Yk, Xk. (2.3)

 The initial value YO = y' is specified, and the rest of
 (2.3) is obtained iteratively by alternately generating
 values from

 Xji, f (x Y, = y l)

 yi,+ 1 f (Y Xi, = xi,). (2.4)
 We refer to this generation of (2.3) as Gibbs sampling.
 It turns out that under reasonably general conditions,

 the distribution of Xk converges to f(x) (the true mar-
 ginal of X) as k -- oo. Thus, for k large enough, the
 final observation in (2.3), namely Xk = xk, is effec-
 tively a sample point from f(x).

 The convergence (in distribution) of the Gibbs se-
 quence (2.3) can be exploited in a variety of ways to
 obtain an approximate sample from f(x). For example,

 Gelfand and Smith (1990) suggest generating m inde-
 pendent Gibbs sequences of length k, and then using

 the final value of Xk from each sequence. If k is chosen
 large enough, this yields an approximate iid sample

 from f(x). Methods for choosing such k, as well as

 alternative approaches to extracting information from
 the Gibbs sequence, are discussed in Section 5. For the
 sake of clarity and consistency, we have used only the
 preceding approach in all of the illustrative examples
 that follow.

 Example 1. For the following joint distribution of
 X and Y,

 f(x, y) o(f)yx+al(l - y)n-x+f3l,

 x = 0, 1, ...,n O? y 1, (2.5)

 suppose we are interested in calculating some charac-
 teristics of the marginal distribution f(x) of X. The Gibbs
 sampler allows us to generate a sample from this mar-
 ginal as follows. From (2.5) it follows (suppressing the
 overall dependence on n, a, and ,3) that

 f(x I y) is Binomial (n, y) (2.6a)

 f(y I x) is Beta (x + a, n - x + /8). (2.6b)
 If we now apply the iterative scheme (2.4) to the dis-

 tributions (2.6), we can generate a sample X1, X2, . . .

 Xm fromf(x) and use this sample to estimate any desired
 characteristic.

 As the reader may have already noticed, Gibbs sam-

 pling is actually not needed in this example, since f(x)

 can be obtained analytically from (2.5) as

 f(x) = (naF(a + /3) r(x + a)r(n - x + /3)
 \x Fr(a)r(,/3) rF(a + 3 + n)

 x = 0, 1, . . ., n, (2.7)

 the beta-binomial distribution. Here, characteristics of

 f(x) can be directly obtained from (2.7), either analyt-
 ically or by generating a sample from the marginal and

 not fussing with the conditional distributions. However,

 this simple situation is useful for illustrative purposes.

 Figure 1 displays histograms of two samples x1, .

 xm of size m = 500 from the beta-binomial distribution

 of (2.7) with n = 16, a = 2, and /3 = 4.
 The two histograms are very similar, giving credence

 to the claim that the Gibbs scheme for random variable

 generation is indeed generating variables from the mar-

 ginal distribution.

 One feature brought out by Example -1 is that the
 Gibbs sampler is really not needed in any bivariate
 situation where the joint distribution f(x, y) can be

 calculated, since f(x) = f(x, y)If(y I x). However, as
 the next example shows, Gibbs sampling may be indis-

 pensable in situations wheref(x, y),f(x), orf(y) cannot
 be calculated.

 Example 2. Suppose X and Y have conditional dis-
 tributions that are exponential distributions restricted
 to the interval (0, B), that is,

 f(x y) oc ye Yx, 0 < x < B < oo (2.8a)

 f(y x) oxxex-Y, 0< y < B < oo, (2.8b)

 where B is a known positive constant. The restriction
 to the interval (0, B) ensures that the marginal f(x)
 exists. Although the form of this marginal is not easily
 calculable, by applying the Gibbs sampler to the con-
 ditionals in (2.8) any characteristic of f(x) can be ob-
 tained.

 70
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 Figure 1. Comparison of Two Histograms of Samples of Size
 m = 500 From the Beta-Binomial Distribution With n = 16, a = 2,

 and ,8 = 4. The black histogram sample was obtained using Gibbs
 sampling with k = 10. The white histogram sample was generated

 directly from the beta-binomial distribution.
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 In Figure 2 we display a histogram of a sample of
 size m = 500 from f(x) obtained by using the final
 values from Gibbs sequences of length k = 15.

 In Section 4 we see that if B is not finite, then the
 densities in (2.8) are not a valid pair of conditional
 densities in the sense that there is no joint density

 f(x, y) to which they correspond, and the Gibbs se-
 quence fails to converge.

 Gibbs sampling can be used to estimate the density
 itself by averaging the final conditional densities from

 each Gibbs sequence. From (2.3), just as the values

 Xk = x4 yield a realization of X1, , -X f(x), the
 values Yk = yk yield a realization of Y1, Y Y, -
 f(y). Moreover, the average of the conditional densities

 f(x I Yk = yk) will be a close approximation to f(x),
 and we can estimate f(x) with

 I 1 m29
 f(x) =-E f(x I yi), (2.9)

 where Yl, , ym is the sequence of realized values of
 final Y observations from each Gibbs sequence. The
 theory behind the calculation in (2.9) is that the ex-
 pected value of the conditional density is

 E[f(x I Y)] = ff(x I y)f(y) dy = f(x), (2.10)

 a calculation mimicked by (2.9), since Yi, , ym ap-
 proximate a sample from f(y). For the densities in (2.8),
 this estimate of f(x) is shown in Figure 2.

 Example 1 (continued): The density estimate meth-
 odology of (2.9) can also be used in discrete distribu-
 tions, which we illustrate for the beta-binomial of Ex-

 ample 1. Using the observations generated to construct
 Figure 1, we can, analogous to (2.9), estimate the mar-

 ginal probabilities of X using

 m1 m
 P(X = x) = - E P(X = x I Y, = yi). (2.11)

 m i=1

 0
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 Figure 2. Histogram for x of a Sample of Size m = 500 From
 the Pair of Conditional Distributions in (2.8), With B = 5, Obtained
 Using Gibbs Sampling With k = 15 Along With an Estimate of the
 Marginal Density Obtained From Equation (2.9) (solid line). The
 dashed line is the true marginal density, as explained in Section
 4.1.

 0.12

 0.1

 0.08

 0.06

 0.04

 0.02

 o C\J CO ' L) (0 rI- o Q a C\J CV) o cO (D

 Figure 3. Comparison of Two Probability Histograms of the Beta-
 Binomial Distribution With n = 16, ct = 2, and f3 = 4. The black
 histogram represents estimates of the marginal distribution of X
 using Equation (2.11), based on a sample of Size m = 500 from
 the pair of conditional distributions in (2.6). The Gibbs sequence
 had length k = 10. The white histogram represents the exact beta-
 binomial probabilities.

 Figure 3 displays these probability estimates overlayed
 with the exact beta-binomial probabilities for compar-

 ison.

 The density estimates (2.9) and (2.11) illustrate an

 important aspect of using the Gibbs sampler to evaluate

 characteristics of f(x). The quantities f(x I Yl),
 f(x I ym), calculated using the simulated values Yl,
 y y,m carry more information about f(x) than x1, .
 xm alone, and will yield better estimates. For example,

 an estimate of the mean of f(x) is (1/m) IT 1 xi, but a
 better estimate is (1/m) ET l E(X I yi), as long as these
 conditional expectations are obtainable. The intuition

 behind this feature is the Rao-Blackwell theorem (il-
 lustrated by Gelfand and Smith 1990), and established

 analytically by Liu, Wong, and Kong (1991).

 3. A SIMPLE CONVERGENCE PROOF

 It is not immediately obvious that a random variable

 with distribution f(x) can be produced by the Gibbs
 sequence of (2.3) or that the sequence even converges.
 That this is so relies on the Markovian nature of the

 iterations, which we now develop in detail for the simple

 case of a 2 x 2 table with multinomial sampling.
 Suppose X and Y are each (marginally) Bernoulli

 random variables with joint distribution

 x
 0 1

 0 Pi P2

 y

 1 P3 P4

 Pi 0, Pi + P2 + P3 + P4 1,
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 or, in terms of the joint probability function,

 pfxy(0,0) fx,y(1,0)] _ [P1 P2]
 fx,y(0,1) fx,y(11)] LP3 P42

 For this distribution, the marginal distribution of x is
 given by

 fx = [fx(0) fL(1)] = [Pl + P3 P2 + P4], (3.1)

 a Bernoulli distribution with success probability P2 +

 P4.
 The conditional distributions of X I Y = y and Y I X

 = x are straightforward to calculate. For example the

 distribution of X I Y = 1 is Bernoulli with success prob-
 ability P41P3 + p4). All of the conditional probabilities
 can be expressed in two matrices,

 Pi P3

 A Pl1+P3 Pl1+P31 -l P2 P4

 P2 + P4 P2 + P4
 and

 [ Pi P2
 Axly P + P2 Pl + P2

 P3 + P4 P3 + P4_

 where Aylx has the conditional probabilities of Y given
 X = x, and Aylx has the conditional probabilities of X
 given Y = y.

 The iterative sampling scheme applied to this distri-
 bution yields (2.3) as a sequence of O's and l's. The

 matrices AXIY and Aylx may be thought of as transition
 matrices giving the probabilities of getting to x states
 from y states and vice versa, that is, P(X = x Y =

 y) = probability of going from state y to state x.
 If we are only interested in generating the marginal

 distribution of X, we are mainly concerned with the X'

 sequence from (2.3). To go from XO -> X1 we have to
 go through Yl, so the iteration sequence is
 XO -> Y-> X, and XO -> X1 forms a Markov chain
 with transition probability

 P(X1 = Xi I Xo = xo) = > P(X1 = Xi I Y1 = Y)
 y

 x P(Yi = y I XO = xo). (3.2)

 The transition probability matrix of the X' sequence,

 AXIX, is given by

 AXIX = Ay,xAxly,

 and now we can easily calculate the probability distri-

 bution of any Xk in the sequence. That is, the transition
 matrix that gives P(Xk, = Xk I XO = xo) is (Axlx)k. Fur-
 thermore, if we write

 fk = [fk(O) fk(1)]

 to denote the marginal probability distribution of Xk,
 then for any k,

 fk = fAx = (f0Ax1;')Ax1x = fk _lAXIX. (3 .3)

 It is well known (see, for example, Hoel, Port, and

 Stone 1972), that as long as all the entries of AXIX are
 positive, then (3.3) implies that for any initial proba-

 bility fo, as k -> ??, fk converges to the unique distri-
 bution f that is a stationary point of (3.3), and satisfies

 fAxlx = f. (3.4)

 Thus, if the Gibbs sequence converges, the f that
 satisfies (3.4) must be the marginal distribution of X.
 Intuitively, there is nowhere else for this iteration to

 go; in the long run we will get X's in the proportion
 dictated by the marginal distribution. However, it is

 straightforward to check that (3.4) is satisfied by fx of
 (3.1), that is,

 fxAxlx = fxAYIXAXIY = fx

 As k -> oo, the distribution of Xk gets closer to fx, so if
 we stop the iteration scheme (2.3) at a large enough

 value of k, we can assume that the distribution of Xk
 is approximately fx. Moreover, the larger the value of
 k, the better the approximation. This topic is discussed
 further in Section 5.

 The algebra for the 2 x 2 case immediately works
 for any n X m joint distribution of X's and Y's. We
 can analogously define the n X n transition matrix

 AXIX whose stationary distribution will be the marginal
 distribution of X. If either (or both) of X and Y are
 continuous, then the finite dimensional arguments will
 not work. However, with suitable assumptions, all of
 the theory still goes through, so the Gibbs sampler still
 produces a sample from the marginal distribution of X.

 Equation (3.2) would now represent the conditional
 density of X1 given X0, and could be written

 fxilxb(xl I xo) = f fX&1yj(x1 I y)fYi1XJ(Y I xo) dy.

 (Sometimes it is helpful to use subscripts to denote the
 density.) Then, step by step, we could write the con-

 ditional densities of X21X6, X3IX6, X4|X6, * * . Similar to
 the k-step transition matrix (Axlx)k, we derive an "in-
 finite transition matrix" with entries that satisfy the
 relationship

 fxkixA(x Ixo) = fXklXk_c(X I t)fxk-Ix0(t I xo) dt, (3.5)

 which is the continuous version of (3.3). The density

 fx-klxkl represents a one-step transition, and the other
 two densities play the role of fk and fk- 1. As k -> oo, it
 again follows that the stationary point of (3.5) is the

 marginal density of X, the density to which fxklxk, con-
 verges.

 4. CONDITIONALS DETERMINE MARGINALS

 Gibbs sampling can be thought of as a practical im-
 plementation of the fact that knowledge of the condi-

 tional distributions is sufficient to determine a joint

 distribution (if it exists!). In the bivariate case, the de-
 rivation of the marginal from the conditionals is fairly
 straightforward. Complexities in the multivariate case,
 however, make these connections more obscure. We

 170 The American Statistician, August 1992, Vol. 46, No. 3

This content downloaded from 155.33.16.124 on Wed, 28 Mar 2018 14:56:31 UTC
All use subject to http://about.jstor.org/terms

joint

Gibbs

i=

sample sample

K esteps &
fl

Ky1
->nextindkt L O

8
&Axx

-Yvonne

Exwcind
+/Y
-
-

&

fK = stamples obtaine
· after Ktres Gibbs rounds



- ↳*XX = AyIx Axk-und (Y(x) crd(x/)(2steps) ⑭

I

#

3[ Pipe E.[PoltPa PIT
a P3 TP4 Axlx
--

B P3P4
-- --4Pipz + (TP3) (P3TP4) (TT2)+ (p+P3) (P3 +P )

-

&f
-

(PstP4 I TRP2FTP) IPipF PPPs-
-
Gibbs Eh (Markor Temergenc *

next old. Axx => Ex convergent (Stationar)fX = Ex -
dist forX
*=****** rity? Ex=marginal of

?

[PAP3 42t] · *x[PITPs P2TPL]
-

1 x 2
2 + 2 -2 I

-2 P3 P2
- #=
PITP2 P3 +P4 t

PHP2 +P4(
vion.
I2

· isiP2PI P4P3
+ P2t- t -

& PStP4



 begin with some illustrations in the bivariate case and
 then investigate higher dimensional cases.

 4.1 The Bivariate Case

 Suppose that, for two random variables X and Y, we
 know the conditional densities fxly(x I y) and
 fylx(y I x). We can determine the marginal density of
 X, fx(x), and hence the joint density of X and Y, through
 the following argument. By definition,

 fx(x) = fxy(x, y) dy,

 where fxy(x, y) is the (unknown) joint density. Now
 using the fact that fxy(x, y) = fxly(x I y)fy(y), we have

 fx(x) = f fxly(x I y)fy(y) dy,

 and if we similarly substitute for fy(y), we have

 fx(x) = f fxly(x I y) f fyix(y | t)fx(t) dt dy

 = f [f fxly(x I y Ix(y t) dylfx(t) dt

 = f h(x, t)fx(t) dt, (4.1)

 where h(x, t) = [f fxly(x I y)fyIx(y I t) dy]. Equation
 (4.1) defines a fixed point integral equation for which
 fx(x) is a solution. The fact that it is a unique solution
 is explained by Gelfand and Smith (1990).

 Equation (4.1) is the limiting form of the Gibbs it-
 eration scheme, illustrating how sampling from condi-
 tionals produces a marginal distribution. As k -- oo in
 (3.5),

 fX|IXJ(X I xo) -- fx(x)

 and

 fxkixi_1 (x I t) --h (x, t), (4.2)
 and thus (4.1) is the limiting form of (3.5).

 Although the joint distribution of X and Y determines
 all of the conditionals and marginals, it is not always
 the case that a set of proper conditional distributions
 will determine a proper marginal distribution (and hence
 a proper joint distribution). The next example shows
 this.

 Example 2 (continued): Suppose that B =oo in (2.8),
 so that X and Y have the conditional densities

 f(x l y) = ye Yx, O < x < o? (4.3a)

 f(yI x) = xex-Yx, 0 <y <0 (4.3b)

 Applying (4.1), the marginal distribution of X is the
 solution to

 fx(x) = [I ye-Yxte-Y dyjfx(t) dt

 = I[(x + t)21fx(t) dt. (4.4)

 Substituting fx(t) = lit into (4.4) yields

 1 1 X [ t) 2 dt
 solving (4.4). Although this is a solution, llx is not a
 density function. When the Gibbs sampler is applied to

 the conditional densities in (4.3), convergence breaks
 down. It does not give an approximation to llx, in fact,
 we do not get a sample of random variables from a

 marginal distribution. A histogram of such random vari-

 ables is given in Figure 4, which vaguely mimics a graph

 of f(x) = 1/x.
 It was pointed out by Trevor Sweeting (personal com-

 munication) that Equation (4.1) can be solved-using the
 truncated exponential densities in (2.8). Evaluating the

 constant in the conditional densities gives f(xly) =
 ye-Yxl(l - e-BY), 0 < x < B, with a similar expression

 for f(ylx). Substituting these functions into (4.1) yields
 the solution f(x) oc (1 - e - Bx)lx. This density (properly
 normalized) is the dashed line in Figure 2.

 The Gibbs sampler fails when B = o? above because

 f fx(x)dx = 00, and there is no convergence as described
 in (4.2). In a sense, we can say that a sufficient condition
 for the convergence in (4.2) to occur is that fx(x) is a
 proper density, that is f fx(x)dx < oo. One way to guar-
 antee this is to restrict the conditional densities to lie

 in a compact interval, as was done in (2.8). General
 convergence conditions needed for the Gibbs sampler

 (and other algorithms) are explored in detail by Scher-
 vish and Carlin (1990), and rates of convergence are
 also discussed by Roberts and Polson (1990).

 4.2 More Than Two Variables

 As the number of variables in a problem increase,

 the relationship between conditionals, marginals, and

 joint distributions becomes more complex. For exam-
 ple, the relationship conditional x marginal = joint
 does not hold for all of the conditionals and marginals.
 This means that there are many ways to set up a fixed-
 point equation like (4.1), and it is possible to use dif-
 ferent sets of conditional distributions to calculate the

 a

 0

 (0

 4 8 1 2 1 6 20 24

 Figure 4. Histogram of a Sample of Size m = 500 From the Pair
 of Conditional Distributions in (4.3), Obtained Using Gibbs Sampling
 With k = 10.
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 marginal of interest. Such methodologies are part of

 the general techniques of substitution sampling (see
 Gelfand and Smith 1990, for an explanation). Here we
 merely illustrate two versions of this technique.

 In the case of two variables, all substitution sampling

 algorithms are the same. The three variable case, how-
 ever, is sufficiently complex to illustrate the differences

 between algorithms, yet sufficiently simple to allow us
 to write things out in detail. Generalizing to cases of
 more than three variables is reasonably straightforward.

 Suppose we would like to calculate the marginal dis-
 tribution fx(x) in a problem with random variables X,
 Y, and Z. A fixed-point integral equation like (4.1) can
 be derived if we consider the pair (Y, Z) as a single
 random variable. We have

 fx(x) = fffx1yz(xIY,z)fYz1x(Y,zIt)dydzlfx(t)dt, (4.5)

 analogous to (4.1). Cycling between fxlyz and fyzlx would
 again result in a sequence of random variables con-
 verging in distribution to fx(x). This is the idea behind
 the Data Augmentation Algorithm of Tanner and Wong

 (1987). By sampling iteratively from fxlyz and fyzlx,
 they show how to obtain successively better approxi-
 mations to fx(x).

 In contrast, the Gibbs sampler would sample itera-

 tively from fxlyz, ftyxz, and fzlxy. That is, the jth it-
 eration would be

 X, ~f(x I Yi- yi,, Z, = Z,'

 Y,'+ f(y I =xix'Z, =z1')

 Z>+1 ~'f(z I Xi' =x,, Y?+i = Y;,+1) (4.6)
 The iteration scheme of (4.6) produces a Gibbs se-
 quence

 YO', Z', XO', Yl, Z', X1', Y2, Z', X2, . ,(4-7)

 with the property that, for large k, Xk= x, is effec-
 tively a sample point from f(x). Although it is not im-
 mediately evident, the iteration in (4.6) will also solve
 the fixed-point equation (4.5). In fact, a defining char-
 acteristic of the Gibbs sampler is that it always uses the
 full set of univariate conditionals to define the iteration.
 Besag (1974) established that this set is sufficient to
 determine the joint (and any marginal) distribution, and
 hence can be used to solve (4.5).

 As an example of a three-variable Gibbs problem,
 we look at a generalization of the distribution examined
 in Example 1.

 Example 3. In the distribution (2.5), we now let n
 be the realization of a Poisson random variable with

 mean A, yielding the joint distribution

 f(x, y, n) o ( X+a-10 - V)nx+13- e- A

 x ,1 ., ,O<y<1 n =1, 2,... (4.8)

 Again, suppose we are interested in the marginal dis-

 tribution of X. Unlike Example 1, here we cannot cal-
 culate the marginal distribution of X in closed form.

 However, from (4.8) it is reasonably straightforward to
 calculate the three conditional densities. Suppressing
 dependence on A, a, and f3,

 f(x y, n) is binomial (n, y)

 f(y x, n) is beta (x + a, n - x + 13)

 f(n I x, y) oc e-(l)A [(1 - y .v

 n = x,x + 1, . (4.9)

 If we now apply the iterative scheme (4.6) to the dis-

 tributions in (4.9), we can generate a sequence X1, X2,

 . . ., Xm from f(x) and use this sequence to estimate
 the desired characteristic. The density estimate of

 P(X = x), using Equation (2.11) can also be con-
 structed. This is done and is given in Figure 5. This

 figure can be compared to Figure 3, but here there is
 a longer right tail from the Poisson variability.

 The model (4.9) can have practical applications. For

 example, conditional on n and y, let x represent the
 number of successful hatchings from n insect eggs, where
 each egg has success probability y. Both n and y fluc-
 tuate across insects, which is modeled in their respective
 distributions, and the resulting marginal distribution of
 X is a typical number of successful hatchings among all
 insects.

 5. EXTRACTING INFORMATION FROM

 GIBBS SEQUENCE

 Some of the more important issues in Gibbs sampling
 surround the implementation and comparison of the
 various approaches to extracting information from the

 Gibbs sequence in (2.3). These issues are currently a
 topic of much debate and research.

 5.1 Detecting Convergence

 As illustrated in Section 3, the Gibbs sampler gen-
 erates a Markov chain of random variables which con-

 verge to the distribution of interest f(x). Many of the

 0

 0

 0

 (0
 0

 ? 2 6 10 1 4 1 8

 Figure 5. Estimates of Probabilities of the Marginal Distribution
 of X Using Equation (2. 11), Based on a Sample of Size m = 500
 From the Three Conditional Distributions in (4.9) With A = 16, ae
 2, and:1 = 4. The Gibbs sequences had length k =10.
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 popular approaches to extracting information from the

 Gibbs sequence exploit this property by selecting some

 large value for k, and then treating any X, for j -k as
 a sample from f(x). The problem then becomes that of
 choosing the appropriate value of k.

 A general strategy for choosing such k is to monitor

 the convergence of some aspect of the Gibbs sequence.
 For example, Gelfand and Smith (1990) and Gelfand,

 Hills, Racine-Poor, and Smith (1990) suggest monitor-
 ing density estimates from m independent Gibbs se-
 quences, and choosing k to be the first point at which
 these densities appear to be the same under a "felt-tip

 pen test." Tanner (1991) suggests monitoring a se-
 quence of weights that measure the discrepancy be-

 tween the sampled and the desired distribution. Gew-
 eke (in press) suggests monitoring based on time series
 considerations. Unfortunately, such monitoring ap-
 proaches are not foolproof, illustrated by Gelman and
 Rubin (1991). An alternative may be to choose k based
 on theoretical considerations, as in Raftery and Ban-

 field (1990). M.T. Wells (personal communication) has
 suggested a connection between selecting k and the
 cooling parameter in simulated annealing.

 5.2 Approaches to Sampling the Gibbs Sequence

 A natural alternative to sampling the kth or final
 value from many independent repetitions of the Gibbs

 sequence, as we did in Section 2, is to generate one
 long Gibbs sequence and then extract every rth obser-
 vation (see Geyer, in press). For r large enough, this

 would also yield an approximate iid sample from f(x).
 An advantage of this approach is that it lessens the
 dependence on initial values. A potential disadvantage
 is that the Gibbs sequence may stay in a small subset

 of the sample space for a long time (see Gelman and
 Rubin 1991).

 For large, computationally expensive problems, a less

 wasteful approach to exploiting the Gibbs sequence is

 to use all realizations of Xj' for j < k, as in George and
 McCulloch (1991). Although the resulting data will be

 dependent, it will still be the case that the empirical
 distribution of X, converges to f(x). Note that from this
 point of view one can see that the "efficiency of the

 Gibbs sampler" is determined by the rate of this con-
 vergence. Intuitively, this convergence rate will be fast-

 est when X, moves rapidly through the sample space,

 a characteristic that may be thought of as mixing. Varia-
 tions on these and other approaches to exploiting the

 Gibbs sequence have been suggested by Gelman and
 Rubin (1991), Geyer (in press), Muller (1991), Ritter
 and Tanner (1990), and Tierney (1991).

 6. DISCUSSION

 Both the Gibbs sampler and the Data Augmentation

 Algorithm have found widespread use in practical prob-

 lems and can be used by either the Bayesian or classical

 statisticianl. For the Bayesian, the Gibbs sampler is mainly
 used to generate posterior distributions, whereas for

 the classical statistician a major use is for calculation of

 the likelihood function and characteristics of likelihood
 estimators.

 Although the theory behind Gibbs sampling is taken
 from Markov chain theory, there is also a connection
 to "incomplete data" theory, such as that which forms
 the basis of the EM algorithm. Indeed, both Gibbs
 sampling and the EM algorithm seem to share common
 underlying structure. The recent book by Tanner (1991)
 provides explanations of all these algorithms and gives
 many illustrative examples.

 The usefulness of the Gibbs sampler increases greatly
 as the dimension of a problem increases. This is because
 the Gibbs sampler allows us to avoid calculating inte-
 grals like (2.1), which can be prohibitively difficult in
 high dimensions. Moreover, calculations of the high
 dimensional integral can be replaced by a series of one-
 dimensional random variable generations, as in (4.6).
 Such generations can in many cases be accomplished
 efficiently (see Devroye 1986; Gilks and Wild 1992;
 Ripley 1987).

 The ultimate value of the Gibbs sampler lies in its
 practical potential. Now that the groundwork has been
 laid in the pioneering papers of Geman and Geman
 (1984), Tanner and Wong (1987), and Gelfand and Smith
 (1990), research using the Gibbs sampler is exploding.
 A partial (and incomplete) list includes applications to
 generalized linear models [Dellaportas and Smith (1990),
 who implement the Gilks and Wild methodology, and
 Zeger and Rizaul Karim (1991)]; to mixture models
 (Diebolt and Robert 1990; Robert 1990; to evaluating
 computing algorithms (Eddy and Schervish 1990); to
 general normal data models (Gelfand, Hill, -and Lee
 1992); to DNA sequence modeling (Churchill and
 Casella 1991; Geyer and Thompson, in press); to ap-
 plications in HIV modeling (Lange, Carlin, and Gel-
 fand 1990); to outlier problems (Verdinelli and Was-
 serman 1990); to logistic regression (Albert and Chib
 1991); to supermarket scanner data modeling (Blattberg
 and George 1991); to constrained parameter estimation
 (Gelfand et al. 1992); and to capture-recapture mod-
 eling (George and Robert 1991).

 [Received December 1990. Revised September 1991.]
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