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Module L101: Machine Learning for Language Processing

Introduction to Probabilistic Topic Models

• We want to find themes (or topics) in documents

– useful for e.g. search or browsing

• We don’t want to do supervised topic classification

– rather not fix topics in advance nor do manual annotation

• Need an approach which automatically teases out the topics

• This is essentially a clustering problem - can think of both words and documents
as being clustered
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Module L101: Machine Learning for Language Processing

Key Assumptions behind the LDA Topic Model

• Documents exhibit multiple topics (but typically not many)

• LDA is a probabilistic model with a corresponding generative process

– each document is assumed to be generated by this (simple) process

• A topic is a distribution over a fixed vocabulary

– these topics are assumed to be generated first, before the documents

• Only the number of topics is specified in advance
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Module L101: Machine Learning for Language Processing

The Generative Process

To generate a document:

1. Randomly choose a distribution over topics

2. For each word in the document

a. randomly choose a topic from the distribution over topics
b. randomly choose a word from the corresponding topic (distribution over the

vocabulary)

• Note that we need a distribution over a distribution (for step 1)

• Note that words are generated independently of other words (unigram bag-of-
words model)
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The Generative Process more Formally

• Some notation:

– β1:K are the topics where each βk is a distribution over the vocabulary
– θd are the topic proportions for document d
– θd,k is the topic proportion for topic k in document d
– zd are the topic assignments for document d
– zd,n is the topic assignment for word n in document d
– wd are the observed words for document d

• The joint distribution (of the hidden and observed variables):

p(β1:K, θ1:D, z1:D, w1:D) =
K
∏

i=1

p(βi)
D
∏

d=1

p(θd)
N
∏

n=1

p(zd,n|θd)p(wd,n|β1:K, zd,n)
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Plate Diagram of the Graphical Model

• Note that only the words are observed (shaded)

• α and η are the parameters of the respective dirichlet distributions (more later)

• Note that the topics are generated (not shown in earlier pseudo code)

• Plates indicate repetition

Picture from Blei 2012
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Multinomial Distribution

• Multinomial distribution: xi ∈ {0, . . . , n}

P (x|θ) =
n!

∏d
i=1

xi!

d
∏

i=1

θ
xi
i , n =

d
∑

i=1

xi,

d
∑

i=1

θi = 1, θi ≥ 0

• When n = 1 the multinomial distribution simplifies to

P (x|θ) =
d
∏

i=1

θ
xi
i ,

d
∑

i=1

θi = 1, θi ≥ 0

– a unigram language model with 1-of-V coding (d = V the vocabulary size)

– xi indicates word i of the vocabulary observed, xi =

{

1, word i observed
0, otherwise

– θi = P (wi) the probability that word i is seen
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Module L101: Machine Learning for Language Processing

The Dirichlet Distribution

• Dirichlet (continuous) distribution with parameters α

p(x|α) =
Γ(

∑d
i=1

αi)
∏d

i=1
Γ(αi)

d
∏

i=1

x
αi−1

i ; for “observations”:
d

∑

i=1

xi = 1, xi ≥ 0

• Γ() is the Gamma distribution

• Conjugate prior to the multinomial distribution
(form of posterior p(θ|D,M) is the same as the prior p(θ|M))
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Module L101: Machine Learning for Language Processing

Dirichlet Distribution Example

(6,2,2) (3,7,5)

(6,2,6)(2,3,4)

• Parameters: (α1,α2,α3)
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Parameter Estimation

• Main variables of interest:

– βk: distribution over vocabulary for topic k
– θd,k: topic proportion for topic k in document d

• Could try and get these directly, eg using EM (Hoffmann, 1999), but this
approach not very successful

• One common technique is to estimate the posterior of the word-topic
assignments, given the observed words, directly (whilst marginalizing out
β and θ)
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Gibbs Sampling

• Gibbs sampling is an example of a Markov Chain Monte Carlo (MCMC)
technique

• Markov chain in this instance means that we sample from each variable one at
a time, keeping the current values of the other variables fixed
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Posterior Estimate

• The Gibbs sampler produces the following estimate, where, following Steyvers
and Griffiths:

– zi is the topic assigned to the ith token in the whole collection;
– di is the document containing the ith token;
– wi is the word type of the ith token;
– z

−i is the set of topic assignments of all other tokens;
– · is any remaining information such as the α and η hyperparameters:

P (zi = j|z
−i, wi, di, ·) ∝

CWT
wij

+ η
∑W

w=1
CWT

wj +Wη

CDT
dij

+ α
∑T

t=1
CDT

dit
+ Tα

where CWT and CDT are matrices of counts (word-topic and document-topic)
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Posterior Estimates of β and θ

βij =
CWT

ij + η
∑W

k=1
CWT

kj +Wη
θdj =

CDT
dj + α

∑T
k=1

CDT
dk + Tα

• Using the count matrices as before, where βij is the probability of word type i
for topic j, and θdj is the proportion of topic j in document d
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Abstract
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of

discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each
item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in
turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of
text modeling, the topic probabilities provide an explicit representation of a document. We present
efficient approximate inference techniques based on variational methods and an EM algorithm for
empirical Bayes parameter estimation. We report results in document modeling, text classification,
and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI
model.

1. Introduction

In this paper we consider the problem of modeling text corpora and other collections of discrete
data. The goal is to find short descriptions of the members of a collection that enable efficient
processing of large collections while preserving the essential statistical relationships that are useful
for basic tasks such as classification, novelty detection, summarization, and similarity and relevance
judgments.

Significant progress has been made on this problem by researchers in the field of informa-
tion retrieval (IR) (Baeza-Yates and Ribeiro-Neto, 1999). The basic methodology proposed by
IR researchers for text corpora—a methodology successfully deployed in modern Internet search
engines—reduces each document in the corpus to a vector of real numbers, each of which repre-
sents ratios of counts. In the popular tf-idf scheme (Salton and McGill, 1983), a basic vocabulary
of “words” or “terms” is chosen, and, for each document in the corpus, a count is formed of the
number of occurrences of each word. After suitable normalization, this term frequency count is
compared to an inverse document frequency count, which measures the number of occurrences of a

c©2003 David M. Blei, Andrew Y. Ng and Michael I. Jordan.
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word in the entire corpus (generally on a log scale, and again suitably normalized). The end result
is a term-by-document matrix X whose columns contain the tf-idf values for each of the documents
in the corpus. Thus the tf-idf scheme reduces documents of arbitrary length to fixed-length lists of
numbers.

While the tf-idf reduction has some appealing features—notably in its basic identification of sets
of words that are discriminative for documents in the collection—the approach also provides a rela-
tively small amount of reduction in description length and reveals little in the way of inter- or intra-
document statistical structure. To address these shortcomings, IR researchers have proposed several
other dimensionality reduction techniques, most notably latent semantic indexing (LSI) (Deerwester
et al., 1990). LSI uses a singular value decomposition of the X matrix to identify a linear subspace
in the space of tf-idf features that captures most of the variance in the collection. This approach can
achieve significant compression in large collections. Furthermore, Deerwester et al. argue that the
derived features of LSI, which are linear combinations of the original tf-idf features, can capture
some aspects of basic linguistic notions such as synonymy and polysemy.

To substantiate the claims regarding LSI, and to study its relative strengths and weaknesses, it is
useful to develop a generative probabilistic model of text corpora and to study the ability of LSI to
recover aspects of the generative model from data (Papadimitriou et al., 1998). Given a generative
model of text, however, it is not clear why one should adopt the LSI methodology—one can attempt
to proceed more directly, fitting the model to data using maximum likelihood or Bayesian methods.

A significant step forward in this regard was made by Hofmann (1999), who presented the
probabilistic LSI (pLSI) model, also known as the aspect model, as an alternative to LSI. The pLSI
approach, which we describe in detail in Section 4.3, models each word in a document as a sample
from a mixture model, where the mixture components are multinomial random variables that can be
viewed as representations of “topics.” Thus each word is generated from a single topic, and different
words in a document may be generated from different topics. Each document is represented as
a list of mixing proportions for these mixture components and thereby reduced to a probability
distribution on a fixed set of topics. This distribution is the “reduced description” associated with
the document.

While Hofmann’s work is a useful step toward probabilistic modeling of text, it is incomplete
in that it provides no probabilistic model at the level of documents. In pLSI, each document is
represented as a list of numbers (the mixing proportions for topics), and there is no generative
probabilistic model for these numbers. This leads to several problems: (1) the number of parame-
ters in the model grows linearly with the size of the corpus, which leads to serious problems with
overfitting, and (2) it is not clear how to assign probability to a document outside of the training set.

To see how to proceed beyond pLSI, let us consider the fundamental probabilistic assumptions
underlying the class of dimensionality reduction methods that includes LSI and pLSI. All of these
methods are based on the “bag-of-words” assumption—that the order of words in a document can
be neglected. In the language of probability theory, this is an assumption of exchangeability for the
words in a document (Aldous, 1985). Moreover, although less often stated formally, these methods
also assume that documents are exchangeable; the specific ordering of the documents in a corpus
can also be neglected.

A classic representation theorem due to de Finetti (1990) establishes that any collection of ex-
changeable random variables has a representation as a mixture distribution—in general an infinite
mixture. Thus, if we wish to consider exchangeable representations for documents and words, we
need to consider mixture models that capture the exchangeability of both words and documents.
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LATENT DIRICHLET ALLOCATION

This line of thinking leads to the latent Dirichlet allocation (LDA) model that we present in the
current paper.

It is important to emphasize that an assumption of exchangeability is not equivalent to an as-
sumption that the random variables are independent and identically distributed. Rather, exchange-
ability essentially can be interpreted as meaning “conditionally independent and identically dis-
tributed,” where the conditioning is with respect to an underlying latent parameter of a probability
distribution. Conditionally, the joint distribution of the random variables is simple and factored
while marginally over the latent parameter, the joint distribution can be quite complex. Thus, while
an assumption of exchangeability is clearly a major simplifying assumption in the domain of text
modeling, and its principal justification is that it leads to methods that are computationally efficient,
the exchangeability assumptions do not necessarily lead to methods that are restricted to simple
frequency counts or linear operations. We aim to demonstrate in the current paper that, by taking
the de Finetti theorem seriously, we can capture significant intra-document statistical structure via
the mixing distribution.

It is also worth noting that there are a large number of generalizations of the basic notion of
exchangeability, including various forms of partial exchangeability, and that representation theo-
rems are available for these cases as well (Diaconis, 1988). Thus, while the work that we discuss in
the current paper focuses on simple “bag-of-words” models, which lead to mixture distributions for
single words (unigrams), our methods are also applicable to richer models that involve mixtures for
larger structural units such as n-grams or paragraphs.

The paper is organized as follows. In Section 2 we introduce basic notation and terminology.
The LDA model is presented in Section 3 and is compared to related latent variable models in
Section 4. We discuss inference and parameter estimation for LDA in Section 5. An illustrative
example of fitting LDA to data is provided in Section 6. Empirical results in text modeling, text
classification and collaborative filtering are presented in Section 7. Finally, Section 8 presents our
conclusions.

2. Notation and terminology

We use the language of text collections throughout the paper, referring to entities such as “words,”
“documents,” and “corpora.” This is useful in that it helps to guide intuition, particularly when
we introduce latent variables which aim to capture abstract notions such as topics. It is important
to note, however, that the LDA model is not necessarily tied to text, and has applications to other
problems involving collections of data, including data from domains such as collaborative filtering,
content-based image retrieval and bioinformatics. Indeed, in Section 7.3, we present experimental
results in the collaborative filtering domain.

Formally, we define the following terms:
• A word is the basic unit of discrete data, defined to be an item from a vocabulary indexed by

{1, . . . ,V}. We represent words using unit-basis vectors that have a single component equal to
one and all other components equal to zero. Thus, using superscripts to denote components,
the vth word in the vocabulary is represented by aV -vector w such that wv = 1 and wu = 0 for
u != v.

• A document is a sequence of N words denoted by w = (w1,w2, . . . ,wN), where wn is the nth
word in the sequence.

• A corpus is a collection ofM documents denoted by D = {w1,w2, . . . ,wM}.
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We wish to find a probabilistic model of a corpus that not only assigns high probability to
members of the corpus, but also assigns high probability to other “similar” documents.

3. Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic idea is
that documents are represented as random mixtures over latent topics, where each topic is charac-
terized by a distribution over words.1

LDA assumes the following generative process for each document w in a corpus D:

1. Choose N ∼ Poisson(ξ).

2. Choose θ∼ Dir(α).

3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ).
(b) Choose a word wn from p(wn |zn,β), a multinomial probability conditioned on the topic

zn.

Several simplifying assumptions are made in this basic model, some of which we remove in subse-
quent sections. First, the dimensionality k of the Dirichlet distribution (and thus the dimensionality
of the topic variable z) is assumed known and fixed. Second, the word probabilities are parameter-
ized by a k×V matrix β where βi j = p(wj = 1 |zi = 1), which for now we treat as a fixed quantity
that is to be estimated. Finally, the Poisson assumption is not critical to anything that follows and
more realistic document length distributions can be used as needed. Furthermore, note that N is
independent of all the other data generating variables (θ and z). It is thus an ancillary variable and
we will generally ignore its randomness in the subsequent development.

A k-dimensional Dirichlet random variable θ can take values in the (k−1)-simplex (a k-vector
θ lies in the (k−1)-simplex if θi ≥ 0, ∑ki=1θi = 1), and has the following probability density on this
simplex:

p(θ |α) =
Γ
(
∑ki=1αi

)

∏ki=1Γ(αi)
θα1−1

1 · · ·θαk−1
k , (1)

where the parameter α is a k-vector with components αi > 0, and where Γ(x) is the Gamma function.
The Dirichlet is a convenient distribution on the simplex — it is in the exponential family, has finite
dimensional sufficient statistics, and is conjugate to the multinomial distribution. In Section 5, these
properties will facilitate the development of inference and parameter estimation algorithms for LDA.

Given the parameters α and β, the joint distribution of a topic mixture θ, a set of N topics z, and
a set of N words w is given by:

p(θ,z,w |α,β) = p(θ |α)
N

∏
n=1
p(zn |θ)p(wn |zn,β), (2)

1. We refer to the latent multinomial variables in the LDA model as topics, so as to exploit text-oriented intuitions, but
we make no epistemological claims regarding these latent variables beyond their utility in representing probability
distributions on sets of words.
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LATENT DIRICHLET ALLOCATION

α z wθ

β

M
N

Figure 1: Graphical model representation of LDA. The boxes are “plates” representing replicates.
The outer plate represents documents, while the inner plate represents the repeated choice
of topics and words within a document.

where p(zn |θ) is simply θi for the unique i such that zin = 1. Integrating over θ and summing over
z, we obtain the marginal distribution of a document:

p(w |α,β) =
∫
p(θ |α)

(
N

∏
n=1
∑
zn
p(zn |θ)p(wn |zn,β)

)

dθ. (3)

Finally, taking the product of the marginal probabilities of single documents, we obtain the proba-
bility of a corpus:

p(D |α,β) =
M

∏
d=1

∫
p(θd |α)

(
Nd

∏
n=1
∑
zdn
p(zdn |θd)p(wdn |zdn,β)

)

dθd .

The LDA model is represented as a probabilistic graphical model in Figure 1. As the figure
makes clear, there are three levels to the LDA representation. The parameters α and β are corpus-
level parameters, assumed to be sampled once in the process of generating a corpus. The variables
θd are document-level variables, sampled once per document. Finally, the variables zdn and wdn are
word-level variables and are sampled once for each word in each document.

It is important to distinguish LDA from a simple Dirichlet-multinomial clustering model. A
classical clustering model would involve a two-level model in which a Dirichlet is sampled once
for a corpus, a multinomial clustering variable is selected once for each document in the corpus,
and a set of words are selected for the document conditional on the cluster variable. As with many
clustering models, such a model restricts a document to being associated with a single topic. LDA,
on the other hand, involves three levels, and notably the topic node is sampled repeatedly within the
document. Under this model, documents can be associated with multiple topics.

Structures similar to that shown in Figure 1 are often studied in Bayesian statistical modeling,
where they are referred to as hierarchical models (Gelman et al., 1995), or more precisely as con-
ditionally independent hierarchical models (Kass and Steffey, 1989). Such models are also often
referred to as parametric empirical Bayes models, a term that refers not only to a particular model
structure, but also to the methods used for estimating parameters in the model (Morris, 1983). In-
deed, as we discuss in Section 5, we adopt the empirical Bayes approach to estimating parameters
such as α and β in simple implementations of LDA, but we also consider fuller Bayesian approaches
as well.
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3.1 LDA and exchangeability

A finite set of random variables {z1, . . . ,zN} is said to be exchangeable if the joint distribution is
invariant to permutation. If π is a permutation of the integers from 1 to N:

p(z1, . . . ,zN) = p(zπ(1), . . . ,zπ(N)).

An infinite sequence of random variables is infinitely exchangeable if every finite subsequence is
exchangeable.

De Finetti’s representation theorem states that the joint distribution of an infinitely exchangeable
sequence of random variables is as if a random parameter were drawn from some distribution and
then the random variables in question were independent and identically distributed, conditioned on
that parameter.

In LDA, we assume that words are generated by topics (by fixed conditional distributions) and
that those topics are infinitely exchangeable within a document. By de Finetti’s theorem, the prob-
ability of a sequence of words and topics must therefore have the form:

p(w,z) =
∫
p(θ)

(
N

∏
n=1
p(zn |θ)p(wn |zn)

)
dθ,

where θ is the random parameter of a multinomial over topics. We obtain the LDA distribution
on documents in Eq. (3) by marginalizing out the topic variables and endowing θ with a Dirichlet
distribution.

3.2 A continuous mixture of unigrams

The LDA model shown in Figure 1 is somewhat more elaborate than the two-level models often
studied in the classical hierarchical Bayesian literature. By marginalizing over the hidden topic
variable z, however, we can understand LDA as a two-level model.

In particular, let us form the word distribution p(w |θ,β):

p(w |θ,β) =∑
z
p(w |z,β)p(z |θ).

Note that this is a random quantity since it depends on θ.
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Figure 2: An example density on unigram distributions p(w |θ,β) under LDA for three words and
four topics. The triangle embedded in the x-y plane is the 2-D simplex representing all
possible multinomial distributions over three words. Each of the vertices of the trian-
gle corresponds to a deterministic distribution that assigns probability one to one of the
words; the midpoint of an edge gives probability 0.5 to two of the words; and the centroid
of the triangle is the uniform distribution over all three words. The four points marked
with an x are the locations of the multinomial distributions p(w |z) for each of the four
topics, and the surface shown on top of the simplex is an example of a density over the
(V −1)-simplex (multinomial distributions of words) given by LDA.

We now define the following generative process for a document w:

1. Choose θ∼ Dir(α).

2. For each of the N words wn:

(a) Choose a word wn from p(wn |θ,β).

This process defines the marginal distribution of a document as a continuous mixture distribution:

p(w |α,β) =
∫
p(θ |α)

(
N

∏
n=1
p(wn |θ,β)

)
dθ,

where p(wn |θ,β) are the mixture components and p(θ |α) are the mixture weights.
Figure 2 illustrates this interpretation of LDA. It depicts the distribution on p(w |θ,β) which is

induced from a particular instance of an LDA model. Note that this distribution on the (V − 1)-
simplex is attained with only k+kV parameters yet exhibits a very interesting multimodal structure.
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w
M

N

(a) unigram

z w
M

N

(b) mixture of unigrams

z w
M

Nd

(c) pLSI/aspect model

Figure 3: Graphical model representation of different models of discrete data.

4. Relationship with other latent variable models

In this section we compare LDA to simpler latent variable models for text—the unigram model, a
mixture of unigrams, and the pLSI model. Furthermore, we present a unified geometric interpreta-
tion of these models which highlights their key differences and similarities.

4.1 Unigram model

Under the unigram model, the words of every document are drawn independently from a single
multinomial distribution:

p(w) =
N

∏
n=1
p(wn).

This is illustrated in the graphical model in Figure 3a.

4.2 Mixture of unigrams

If we augment the unigram model with a discrete random topic variable z (Figure 3b), we obtain a
mixture of unigrams model (Nigam et al., 2000). Under this mixture model, each document is gen-
erated by first choosing a topic z and then generating N words independently from the conditional
multinomial p(w |z). The probability of a document is:

p(w) =∑
z
p(z)

N

∏
n=1
p(wn |z).
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When estimated from a corpus, the word distributions can be viewed as representations of topics
under the assumption that each document exhibits exactly one topic. As the empirical results in
Section 7 illustrate, this assumption is often too limiting to effectively model a large collection of
documents.

In contrast, the LDA model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there are k− 1 parameters associated
with p(z) in the mixture of unigrams, versus the k parameters associated with p(θ |α) in LDA.

4.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing (pLSI) is another widely used document model (Hofmann,
1999). The pLSI model, illustrated in Figure 3c, posits that a document label d and a word wn are
conditionally independent given an unobserved topic z:

p(d,wn) = p(d)∑
z
p(wn |z)p(z |d).

The pLSI model attempts to relax the simplifying assumption made in the mixture of unigrams
model that each document is generated from only one topic. In a sense, it does capture the possibility
that a document may contain multiple topics since p(z |d) serves as the mixture weights of the topics
for a particular document d. However, it is important to note that d is a dummy index into the list
of documents in the training set. Thus, d is a multinomial random variable with as many possible
values as there are training documents and the model learns the topic mixtures p(z |d) only for those
documents on which it is trained. For this reason, pLSI is not a well-defined generative model of
documents; there is no natural way to use it to assign probability to a previously unseen document.

A further difficulty with pLSI, which also stems from the use of a distribution indexed by train-
ing documents, is that the number of parameters which must be estimated grows linearly with the
number of training documents. The parameters for a k-topic pLSI model are k multinomial distri-
butions of size V and M mixtures over the k hidden topics. This gives kV + kM parameters and
therefore linear growth in M. The linear growth in parameters suggests that the model is prone
to overfitting and, empirically, overfitting is indeed a serious problem (see Section 7.1). In prac-
tice, a tempering heuristic is used to smooth the parameters of the model for acceptable predic-
tive performance. It has been shown, however, that overfitting can occur even when tempering is
used (Popescul et al., 2001).

LDA overcomes both of these problems by treating the topic mixture weights as a k-parameter
hidden random variable rather than a large set of individual parameters which are explicitly linked to
the training set. As described in Section 3, LDA is a well-defined generative model and generalizes
easily to new documents. Furthermore, the k+ kV parameters in a k-topic LDA model do not grow
with the size of the training corpus. We will see in Section 7.1 that LDA does not suffer from the
same overfitting issues as pLSI.

4.4 A geometric interpretation

A good way of illustrating the differences between LDA and the other latent topic models is by
considering the geometry of the latent space, and seeing how a document is represented in that
geometry under each model.
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Figure 4: The topic simplex for three topics embedded in the word simplex for three words. The
corners of the word simplex correspond to the three distributions where each word (re-
spectively) has probability one. The three points of the topic simplex correspond to three
different distributions over words. The mixture of unigrams places each document at one
of the corners of the topic simplex. The pLSI model induces an empirical distribution on
the topic simplex denoted by x. LDA places a smooth distribution on the topic simplex
denoted by the contour lines.
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Figure 5: (Left) Graphical model representation of LDA. (Right) Graphical model representation
of the variational distribution used to approximate the posterior in LDA.

All four of the models described above—unigram, mixture of unigrams, pLSI, and LDA—
operate in the space of distributions over words. Each such distribution can be viewed as a point on
the (V −1)-simplex, which we call the word simplex.

The unigram model finds a single point on the word simplex and posits that all words in the
corpus come from the corresponding distribution. The latent variable models consider k points on
the word simplex and form a sub-simplex based on those points, which we call the topic simplex.
Note that any point on the topic simplex is also a point on the word simplex. The different latent
variable models use the topic simplex in different ways to generate a document.

• The mixture of unigrams model posits that for each document, one of the k points on the word
simplex (that is, one of the corners of the topic simplex) is chosen randomly and all the words
of the document are drawn from the distribution corresponding to that point.

• The pLSI model posits that each word of a training document comes from a randomly chosen
topic. The topics are themselves drawn from a document-specific distribution over topics,
i.e., a point on the topic simplex. There is one such distribution for each document; the set of
training documents thus defines an empirical distribution on the topic simplex.

• LDA posits that each word of both the observed and unseen documents is generated by a
randomly chosen topic which is drawn from a distribution with a randomly chosen parameter.
This parameter is sampled once per document from a smooth distribution on the topic simplex.

These differences are highlighted in Figure 4.

5. Inference and Parameter Estimation

We have described the motivation behind LDA and illustrated its conceptual advantages over other
latent topic models. In this section, we turn our attention to procedures for inference and parameter
estimation under LDA.
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5.1 Inference

The key inferential problem that we need to solve in order to use LDA is that of computing the
posterior distribution of the hidden variables given a document:

p(θ,z |w,α,β) =
p(θ,z,w |α,β)
p(w |α,β)

.

Unfortunately, this distribution is intractable to compute in general. Indeed, to normalize the distri-
bution we marginalize over the hidden variables and write Eq. (3) in terms of the model parameters:

p(w |α,β) =
Γ(∑iαi)
∏iΓ(αi)

∫ ( k

∏
i=1

θαi−1
i

)(
N

∏
n=1

k

∑
i=1

V

∏
j=1

(θiβi j)w
j
n

)

dθ,

a function which is intractable due to the coupling between θ and β in the summation over latent
topics (Dickey, 1983). Dickey shows that this function is an expectation under a particular extension
to the Dirichlet distribution which can be represented with special hypergeometric functions. It has
been used in a Bayesian context for censored discrete data to represent the posterior on θ which, in
that setting, is a random parameter (Dickey et al., 1987).

Although the posterior distribution is intractable for exact inference, a wide variety of approxi-
mate inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation, and Markov chain Monte Carlo (Jordan, 1999). In this section we describe a simple
convexity-based variational algorithm for inference in LDA, and discuss some of the alternatives in
Section 8.

5.2 Variational inference

The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to ob-
tain an adjustable lower bound on the log likelihood (Jordan et al., 1999). Essentially, one considers
a family of lower bounds, indexed by a set of variational parameters. The variational parameters
are chosen by an optimization procedure that attempts to find the tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider simple modifications
of the original graphical model in which some of the edges and nodes are removed. Consider in
particular the LDA model shown in Figure 5 (left). The problematic coupling between θ and β
arises due to the edges between θ, z, and w. By dropping these edges and the w nodes, and endow-
ing the resulting simplified graphical model with free variational parameters, we obtain a family
of distributions on the latent variables. This family is characterized by the following variational
distribution:

q(θ,z |γ,φ) = q(θ |γ)
N

∏
n=1
q(zn |φn), (4)

where the Dirichlet parameter γ and the multinomial parameters (φ1, . . . ,φN) are the free variational
parameters.

Having specified a simplified family of probability distributions, the next step is to set up an
optimization problem that determines the values of the variational parameters γ and φ. As we show
in Appendix A, the desideratum of finding a tight lower bound on the log likelihood translates
directly into the following optimization problem:

(γ∗,φ∗) = arg min
(γ,φ)

D(q(θ,z |γ,φ) ‖ p(θ,z |w,α,β)). (5)
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(1) initialize φ0
ni := 1/k for all i and n

(2) initialize γi := αi+N/k for all i
(3) repeat
(4) for n= 1 to N
(5) for i= 1 to k
(6) φt+1

ni := βiwn exp(Ψ(γti))
(7) normalize φt+1

n to sum to 1.
(8) γt+1 := α+∑Nn=1φ

t+1
n

(9) until convergence

Figure 6: A variational inference algorithm for LDA.

Thus the optimizing values of the variational parameters are found by minimizing the Kullback-
Leibler (KL) divergence between the variational distribution and the true posterior p(θ,z |w,α,β).
This minimization can be achieved via an iterative fixed-point method. In particular, we show in
Appendix A.3 that by computing the derivatives of the KL divergence and setting them equal to
zero, we obtain the following pair of update equations:

φni ∝ βiwn exp{Eq[log(θi) |γ]} (6)
γi = αi+∑Nn=1φni. (7)

As we show in Appendix A.1, the expectation in the multinomial update can be computed as follows:

Eq[log(θi) |γ] =Ψ(γi)−Ψ
(
∑kj=1 γ j

)
, (8)

where Ψ is the first derivative of the logΓ function which is computable via Taylor approxima-
tions (Abramowitz and Stegun, 1970).

Eqs. (6) and (7) have an appealing intuitive interpretation. The Dirichlet update is a poste-
rior Dirichlet given expected observations taken under the variational distribution, E[zn |φn]. The
multinomial update is akin to using Bayes’ theorem, p(zn |wn) ∝ p(wn |zn)p(zn), where p(zn) is
approximated by the exponential of the expected value of its logarithm under the variational distri-
bution.

It is important to note that the variational distribution is actually a conditional distribution,
varying as a function of w. This occurs because the optimization problem in Eq. (5) is conducted
for fixed w, and thus yields optimizing parameters (γ∗,φ∗) that are a function of w. We can write
the resulting variational distribution as q(θ,z |γ∗(w),φ∗(w)), where we have made the dependence
on w explicit. Thus the variational distribution can be viewed as an approximation to the posterior
distribution p(θ,z |w,α,β).

In the language of text, the optimizing parameters (γ∗(w),φ∗(w)) are document-specific. In
particular, we view the Dirichlet parameters γ∗(w) as providing a representation of a document in
the topic simplex.

We summarize the variational inference procedure in Figure 6, with appropriate starting points
for γ and φn. From the pseudocode it is clear that each iteration of variational inference for LDA
requires O((N+ 1)k) operations. Empirically, we find that the number of iterations required for a
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single document is on the order of the number of words in the document. This yields a total number
of operations roughly on the order of N2k.

5.3 Parameter estimation

In this section we present an empirical Bayes method for parameter estimation in the LDA model
(see Section 5.4 for a fuller Bayesian approach). In particular, given a corpus of documents D =
{w1,w2, . . . ,wM}, we wish to find parameters α and β that maximize the (marginal) log likelihood
of the data:

!(α,β) =
M

∑
d=1

log p(wd |α,β).

As we have described above, the quantity p(w |α,β) cannot be computed tractably. However,
variational inference provides us with a tractable lower bound on the log likelihood, a bound which
we can maximize with respect to α and β. We can thus find approximate empirical Bayes estimates
for the LDA model via an alternating variational EM procedure that maximizes a lower bound with
respect to the variational parameters γ and φ, and then, for fixed values of the variational parameters,
maximizes the lower bound with respect to the model parameters α and β.

We provide a detailed derivation of the variational EM algorithm for LDA in Appendix A.4.
The derivation yields the following iterative algorithm:

1. (E-step) For each document, find the optimizing values of the variational parameters {γ∗d ,φ∗d :
d ∈ D}. This is done as described in the previous section.

2. (M-step) Maximize the resulting lower bound on the log likelihood with respect to the model
parameters α and β. This corresponds to finding maximum likelihood estimates with expected
sufficient statistics for each document under the approximate posterior which is computed in
the E-step.

These two steps are repeated until the lower bound on the log likelihood converges.
In Appendix A.4, we show that the M-step update for the conditional multinomial parameter β

can be written out analytically:

βi j ∝
M

∑
d=1

Nd

∑
n=1

φ∗dniw
j
dn. (9)

We further show that the M-step update for Dirichlet parameter α can be implemented using an
efficient Newton-Raphson method in which the Hessian is inverted in linear time.

5.4 Smoothing

The large vocabulary size that is characteristic of many document corpora creates serious problems
of sparsity. A new document is very likely to contain words that did not appear in any of the
documents in a training corpus. Maximum likelihood estimates of the multinomial parameters
assign zero probability to such words, and thus zero probability to new documents. The standard
approach to coping with this problem is to “smooth” the multinomial parameters, assigning positive
probability to all vocabulary items whether or not they are observed in the training set (Jelinek,
1997). Laplace smoothing is commonly used; this essentially yields the mean of the posterior
distribution under a uniform Dirichlet prior on the multinomial parameters.
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Figure 7: Graphical model representation of the smoothed LDA model.

Unfortunately, in the mixture model setting, simple Laplace smoothing is no longer justified as a
maximum a posteriori method (although it is often implemented in practice; cf. Nigam et al., 1999).
In fact, by placing a Dirichlet prior on the multinomial parameter we obtain an intractable posterior
in the mixture model setting, for much the same reason that one obtains an intractable posterior in
the basic LDA model. Our proposed solution to this problem is to simply apply variational inference
methods to the extended model that includes Dirichlet smoothing on the multinomial parameter.

In the LDA setting, we obtain the extended graphical model shown in Figure 7. We treat β as
a k×V random matrix (one row for each mixture component), where we assume that each row
is independently drawn from an exchangeable Dirichlet distribution.2 We now extend our infer-
ence procedures to treat the βi as random variables that are endowed with a posterior distribution,
conditioned on the data. Thus we move beyond the empirical Bayes procedure of Section 5.3 and
consider a fuller Bayesian approach to LDA.

We consider a variational approach to Bayesian inference that places a separable distribution on
the random variables β, θ, and z (Attias, 2000):

q(β1:k,z1:M ,θ1:M |λ,φ,γ) =
k

∏
i=1

Dir(βi |λi)
M

∏
d=1
qd(θd ,zd |φd ,γd),

where qd(θ,z |φ,γ) is the variational distribution defined for LDA in Eq. (4). As is easily verified,
the resulting variational inference procedure again yields Eqs. (6) and (7) as the update equations
for the variational parameters φ and γ, respectively, as well as an additional update for the new
variational parameter λ:

λi j = η+
M

∑
d=1

Nd

∑
n=1

φ∗dniw
j
dn.

Iterating these equations to convergence yields an approximate posterior distribution on β, θ, and z.
We are now left with the hyperparameter η on the exchangeable Dirichlet, as well as the hy-

perparameter α from before. Our approach to setting these hyperparameters is again (approximate)
empirical Bayes—we use variational EM to find maximum likelihood estimates of these parameters
based on the marginal likelihood. These procedures are described in Appendix A.4.

2. An exchangeable Dirichlet is simply a Dirichlet distribution with a single scalar parameter η. The density is the same
as a Dirichlet (Eq. 1) where αi = η for each component.
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6. Example

In this section, we provide an illustrative example of the use of an LDA model on real data. Our
data are 16,000 documents from a subset of the TREC AP corpus (Harman, 1992). After removing
a standard list of stop words, we used the EM algorithm described in Section 5.3 to find the Dirichlet
and conditional multinomial parameters for a 100-topic LDA model. The top words from some of
the resulting multinomial distributions p(w |z) are illustrated in Figure 8 (top). As we have hoped,
these distributions seem to capture some of the underlying topics in the corpus (and we have named
them according to these topics).

As we emphasized in Section 4, one of the advantages of LDA over related latent variable mod-
els is that it provides well-defined inference procedures for previously unseen documents. Indeed,
we can illustrate how LDA works by performing inference on a held-out document and examining
the resulting variational posterior parameters.

Figure 8 (bottom) is a document from the TREC AP corpus which was not used for parameter
estimation. Using the algorithm in Section 5.1, we computed the variational posterior Dirichlet
parameters γ for the article and variational posterior multinomial parameters φn for each word in the
article.

Recall that the ith posterior Dirichlet parameter γi is approximately the ith prior Dirichlet pa-
rameter αi plus the expected number of words which were generated by the ith topic (see Eq. 7).
Therefore, the prior Dirichlet parameters subtracted from the posterior Dirichlet parameters indicate
the expected number of words which were allocated to each topic for a particular document. For
the example article in Figure 8 (bottom), most of the γi are close to αi. Four topics, however, are
significantly larger (by this, we mean γi−αi ≥ 1). Looking at the corresponding distributions over
words identifies the topics which mixed to form this document (Figure 8, top).

Further insight comes from examining the φn parameters. These distributions approximate
p(zn |w) and tend to peak towards one of the k possible topic values. In the article text in Figure 8,
the words are color coded according to these values (i.e., the ith color is used if qn(zin = 1) > 0.9).
With this illustration, one can identify how the different topics mixed in the document text.

While demonstrating the power of LDA, the posterior analysis also highlights some of its lim-
itations. In particular, the bag-of-words assumption allows words that should be generated by the
same topic (e.g., “William Randolph Hearst Foundation”) to be allocated to several different top-
ics. Overcoming this limitation would require some form of extension of the basic LDA model;
in particular, we might relax the bag-of-words assumption by assuming partial exchangeability or
Markovianity of word sequences.

7. Applications and Empirical Results

In this section, we discuss our empirical evaluation of LDA in several problem domains—document
modeling, document classification, and collaborative filtering.

In all of the mixture models, the expected complete log likelihood of the data has local max-
ima at the points where all or some of the mixture components are equal to each other. To avoid
these local maxima, it is important to initialize the EM algorithm appropriately. In our experiments,
we initialize EM by seeding each conditional multinomial distribution with five documents, reduc-
ing their effective total length to two words, and smoothing across the whole vocabulary. This is
essentially an approximation to the scheme described in Heckerman and Meila (2001).
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000

donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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Num. topics (k) Perplexity (Mult. Mixt.) Perplexity (pLSI)
2 22,266 7,052
5 2.20×108 17,588
10 1.93×1017 63,800
20 1.20×1022 2.52×105

50 4.19×10106 5.04×106

100 2.39×10150 1.72×107

200 3.51×10264 1.31×107

Table 1: Overfitting in the mixture of unigrams and pLSI models for the AP corpus. Similar behav-
ior is observed in the nematode corpus (not reported).

7.1 Document modeling

We trained a number of latent variable models, including LDA, on two text corpora to compare the
generalization performance of these models. The documents in the corpora are treated as unlabeled;
thus, our goal is density estimation—we wish to achieve high likelihood on a held-out test set. In
particular, we computed the perplexity of a held-out test set to evaluate the models. The perplexity,
used by convention in language modeling, is monotonically decreasing in the likelihood of the test
data, and is algebraicly equivalent to the inverse of the geometric mean per-word likelihood. A
lower perplexity score indicates better generalization performance.3 More formally, for a test set of
M documents, the perplexity is:

perplexity(Dtest) = exp
{
−∑Md=1 log p(wd)

∑Md=1Nd

}
.

In our experiments, we used a corpus of scientific abstracts from the C. Elegans community (Av-
ery, 2002) containing 5,225 abstracts with 28,414 unique terms, and a subset of the TREC AP corpus
containing 16,333 newswire articles with 23,075 unique terms. In both cases, we held out 10% of
the data for test purposes and trained the models on the remaining 90%. In preprocessing the data,
we removed a standard list of 50 stop words from each corpus. From the AP data, we further
removed words that occurred only once.

We compared LDA with the unigram, mixture of unigrams, and pLSI models described in Sec-
tion 4. We trained all the hidden variable models using EM with exactly the same stopping criteria,
that the average change in expected log likelihood is less than 0.001%.

Both the pLSI model and the mixture of unigrams suffer from serious overfitting issues, though
for different reasons. This phenomenon is illustrated in Table 1. In the mixture of unigrams model,
overfitting is a result of peaked posteriors in the training set; a phenomenon familiar in the super-
vised setting, where this model is known as the naive Bayes model (Rennie, 2001). This leads to a

3. Note that we simply use perplexity as a figure of merit for comparing models. The models that we compare are all
unigram (“bag-of-words”) models, which—as we have discussed in the Introduction—are of interest in the informa-
tion retrieval context. We are not attempting to do language modeling in this paper—an enterprise that would require
us to examine trigram or other higher-order models. We note in passing, however, that extensions of LDA could be
considered that involve Dirichlet-multinomial over trigrams instead of unigrams. We leave the exploration of such
extensions to language modeling to future work.

1010



LATENT DIRICHLET ALLOCATION

0 10 20 30 40 50 60 70 80 90 100
1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Number of Topics

Pe
rp

le
xi

ty

Smoothed Unigram 
Smoothed Mixt. Unigrams
LDA
Fold in pLSI

0 20 40 60 80 100 120 140 160 180 200
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Number of Topics

Pe
rp

le
xi

ty

Smoothed Unigram
Smoothed Mixt. Unigrams
LDA
Fold in pLSI

Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram
model, mixture of unigrams, and pLSI.
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nearly deterministic clustering of the training documents (in the E-step) which is used to determine
the word probabilities in each mixture component (in the M-step). A previously unseen document
may best fit one of the resulting mixture components, but will probably contain at least one word
which did not occur in the training documents that were assigned to that component. Such words
will have a very small probability, which causes the perplexity of the new document to explode.
As k increases, the documents of the training corpus are partitioned into finer collections and thus
induce more words with small probabilities.

In the mixture of unigrams, we can alleviate overfitting through the variational Bayesian smooth-
ing scheme presented in Section 5.4. This ensures that all words will have some probability under
every mixture component.

In the pLSI case, the hard clustering problem is alleviated by the fact that each document is
allowed to exhibit a different proportion of topics. However, pLSI only refers to the training doc-
uments and a different overfitting problem arises that is due to the dimensionality of the p(z|d)
parameter. One reasonable approach to assigning probability to a previously unseen document is by
marginalizing over d:

p(w) =∑
d

N

∏
n=1
∑
z
p(wn |z)p(z |d)p(d).

Essentially, we are integrating over the empirical distribution on the topic simplex (see Figure 4).
This method of inference, though theoretically sound, causes the model to overfit. The document-

specific topic distribution has some components which are close to zero for those topics that do not
appear in the document. Thus, certain words will have very small probability in the estimates of
each mixture component. When determining the probability of a new document through marginal-
ization, only those training documents which exhibit a similar proportion of topics will contribute
to the likelihood. For a given training document’s topic proportions, any word which has small
probability in all the constituent topics will cause the perplexity to explode. As k gets larger, the
chance that a training document will exhibit topics that cover all the words in the new document
decreases and thus the perplexity grows. Note that pLSI does not overfit as quickly (with respect to
k) as the mixture of unigrams.

This overfitting problem essentially stems from the restriction that each future document exhibit
the same topic proportions as were seen in one or more of the training documents. Given this
constraint, we are not free to choose the most likely proportions of topics for the new document. An
alternative approach is the “folding-in” heuristic suggested by Hofmann (1999), where one ignores
the p(z|d) parameters and refits p(z|dnew). Note that this gives the pLSI model an unfair advantage
by allowing it to refit k−1 parameters to the test data.

LDA suffers from neither of these problems. As in pLSI, each document can exhibit a different
proportion of underlying topics. However, LDA can easily assign probability to a new document;
no heuristics are needed for a new document to be endowed with a different set of topic proportions
than were associated with documents in the training corpus.

Figure 9 presents the perplexity for each model on both corpora for different values of k. The
pLSI model and mixture of unigrams are suitably corrected for overfitting. The latent variable
models perform better than the simple unigram model. LDA consistently performs better than the
other models.
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Figure 10: Classification results on two binary classification problems from the Reuters-21578
dataset for different proportions of training data. Graph (a) is EARN vs. NOT EARN.
Graph (b) is GRAIN vs. NOT GRAIN.

7.2 Document classification

In the text classification problem, we wish to classify a document into two or more mutually ex-
clusive classes. As in any classification problem, we may wish to consider generative approaches
or discriminative approaches. In particular, by using one LDA module for each class, we obtain a
generative model for classification. It is also of interest to use LDA in the discriminative framework,
and this is our focus in this section.

A challenging aspect of the document classification problem is the choice of features. Treating
individual words as features yields a rich but very large feature set (Joachims, 1999). One way to
reduce this feature set is to use an LDA model for dimensionality reduction. In particular, LDA
reduces any document to a fixed set of real-valued features—the posterior Dirichlet parameters
γ∗(w) associated with the document. It is of interest to see how much discriminatory information
we lose in reducing the document description to these parameters.

We conducted two binary classification experiments using the Reuters-21578 dataset. The
dataset contains 8000 documents and 15,818 words.

In these experiments, we estimated the parameters of an LDA model on all the documents,
without reference to their true class label. We then trained a support vector machine (SVM) on the
low-dimensional representations provided by LDA and compared this SVM to an SVM trained on
all the word features.

Using the SVMLight software package (Joachims, 1999), we compared an SVM trained on all
the word features with those trained on features induced by a 50-topic LDA model. Note that we
reduce the feature space by 99.6 percent in this case.
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Figure 11: Results for collaborative filtering on the EachMovie data.

Figure 10 shows our results. We see that there is little reduction in classification performance
in using the LDA-based features; indeed, in almost all cases the performance is improved with the
LDA features. Although these results need further substantiation, they suggest that the topic-based
representation provided by LDA may be useful as a fast filtering algorithm for feature selection in
text classification.

7.3 Collaborative filtering

Our final experiment uses the EachMovie collaborative filtering data. In this data set, a collection
of users indicates their preferred movie choices. A user and the movies chosen are analogous to a
document and the words in the document (respectively).

The collaborative filtering task is as follows. We train a model on a fully observed set of users.
Then, for each unobserved user, we are shown all but one of the movies preferred by that user and
are asked to predict what the held-out movie is. The different algorithms are evaluated according to
the likelihood they assign to the held-out movie. More precisely, define the predictive perplexity on
M test users to be:

predictive-perplexity(Dtest) = exp
{
−∑Md=1 log p(wd,Nd |wd,1:Nd−1)

M
)
}

.

We restricted the EachMovie dataset to users that positively rated at least 100 movies (a positive
rating is at least four out of five stars). We divided this set of users into 3300 training users and 390
testing users.

Under the mixture of unigrams model, the probability of a movie given a set of observed movies
is obtained from the posterior distribution over topics:

p(w|wobs) =∑
z
p(w|z)p(z|wobs).

In the pLSI model, the probability of a held-out movie is given by the same equation except that
p(z|wobs) is computed by folding in the previously seen movies. Finally, in the LDA model, the
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probability of a held-out movie is given by integrating over the posterior Dirichlet:

p(w|wobs) =
∫
∑
z
p(w|z)p(z|θ)p(θ|wobs)dθ,

where p(θ|wobs) is given by the variational inference method described in Section 5.2. Note that
this quantity is efficient to compute. We can interchange the sum and integral sign, and compute a
linear combination of k Dirichlet expectations.

With a vocabulary of 1600 movies, we find the predictive perplexities illustrated in Figure 11.
Again, the mixture of unigrams model and pLSI are corrected for overfitting, but the best predictive
perplexities are obtained by the LDA model.

8. Discussion

We have described latent Dirichlet allocation, a flexible generative probabilistic model for collec-
tions of discrete data. LDA is based on a simple exchangeability assumption for the words and
topics in a document; it is therefore realized by a straightforward application of de Finetti’s repre-
sentation theorem. We can view LDA as a dimensionality reduction technique, in the spirit of LSI,
but with proper underlying generative probabilistic semantics that make sense for the type of data
that it models.

Exact inference is intractable for LDA, but any of a large suite of approximate inference algo-
rithms can be used for inference and parameter estimation within the LDA framework. We have
presented a simple convexity-based variational approach for inference, showing that it yields a fast
algorithm resulting in reasonable comparative performance in terms of test set likelihood. Other
approaches that might be considered include Laplace approximation, higher-order variational tech-
niques, and Monte Carlo methods. In particular, Leisink and Kappen (2002) have presented a
general methodology for converting low-order variational lower bounds into higher-order varia-
tional bounds. It is also possible to achieve higher accuracy by dispensing with the requirement of
maintaining a bound, and indeed Minka and Lafferty (2002) have shown that improved inferential
accuracy can be obtained for the LDA model via a higher-order variational technique known as ex-
pectation propagation. Finally, Griffiths and Steyvers (2002) have presented a Markov chain Monte
Carlo algorithm for LDA.

LDA is a simple model, and although we view it as a competitor to methods such as LSI and
pLSI in the setting of dimensionality reduction for document collections and other discrete cor-
pora, it is also intended to be illustrative of the way in which probabilistic models can be scaled
up to provide useful inferential machinery in domains involving multiple levels of structure. In-
deed, the principal advantages of generative models such as LDA include their modularity and their
extensibility. As a probabilistic module, LDA can be readily embedded in a more complex model—
a property that is not possessed by LSI. In recent work we have used pairs of LDA modules to
model relationships between images and their corresponding descriptive captions (Blei and Jordan,
2002). Moreover, there are numerous possible extensions of LDA. For example, LDA is readily
extended to continuous data or other non-multinomial data. As is the case for other mixture models,
including finite mixture models and hidden Markov models, the “emission” probability p(wn |zn)
contributes only a likelihood value to the inference procedures for LDA, and other likelihoods are
readily substituted in its place. In particular, it is straightforward to develop a continuous variant of
LDA in which Gaussian observables are used in place of multinomials. Another simple extension
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of LDA comes from allowing mixtures of Dirichlet distributions in the place of the single Dirichlet
of LDA. This allows a richer structure in the latent topic space and in particular allows a form of
document clustering that is different from the clustering that is achieved via shared topics. Finally,
a variety of extensions of LDA can be considered in which the distributions on the topic variables
are elaborated. For example, we could arrange the topics in a time series, essentially relaxing the
full exchangeability assumption to one of partial exchangeability. We could also consider partially
exchangeable models in which we condition on exogenous variables; thus, for example, the topic
distribution could be conditioned on features such as “paragraph” or “sentence,” providing a more
powerful text model that makes use of information obtained from a parser.
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Appendix A. Inference and parameter estimation

In this appendix, we derive the variational inference procedure (Eqs. 6 and 7) and the parameter
maximization procedure for the conditional multinomial (Eq. 9) and for the Dirichlet. We begin by
deriving a useful property of the Dirichlet distribution.

A.1 Computing E[log(θi |α)]

The need to compute the expected value of the log of a single probability component under the
Dirichlet arises repeatedly in deriving the inference and parameter estimation procedures for LDA.
This value can be easily computed from the natural parameterization of the exponential family
representation of the Dirichlet distribution.

Recall that a distribution is in the exponential family if it can be written in the form:

p(x |η) = h(x)exp
{
ηTT (x)−A(η)

}
,

where η is the natural parameter, T (x) is the sufficient statistic, and A(η) is the log of the normal-
ization factor.

We can write the Dirichlet in this form by exponentiating the log of Eq. (1):

p(θ |α) = exp
{(
∑ki=1(αi−1) logθi

)
+ logΓ

(
∑ki=1αi

)
−∑ki=1 logΓ(αi)

}
.

From this form, we immediately see that the natural parameter of the Dirichlet is η i = αi− 1 and
the sufficient statistic is T (θi) = logθi. Furthermore, using the general fact that the derivative of
the log normalization factor with respect to the natural parameter is equal to the expectation of the
sufficient statistic, we obtain:

E[logθi |α] =Ψ(αi)−Ψ
(
∑kj=1α j

)

where Ψ is the digamma function, the first derivative of the log Gamma function.

A.2 Newton-Raphson methods for a Hessian with special structure

In this section we describe a linear algorithm for the usually cubic Newton-Raphson optimization
method. This method is used for maximum likelihood estimation of the Dirichlet distribution (Ron-
ning, 1989, Minka, 2000).
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The Newton-Raphson optimization technique finds a stationary point of a function by iterating:

αnew = αold −H(αold)−1g(αold)

where H(α) and g(α) are the Hessian matrix and gradient respectively at the point α. In general,
this algorithm scales as O(N3) due to the matrix inversion.

If the Hessian matrix is of the form:

H = diag(h)+1z1T, (10)

where diag(h) is defined to be a diagonal matrix with the elements of the vector h along the diagonal,
then we can apply the matrix inversion lemma and obtain:

H−1 = diag(h)−1 − diag(h)−111Tdiag(h)−1

z−1 +∑kj=1 h
−1
j

Multiplying by the gradient, we obtain the ith component:

(H−1g)i =
gi− c
hi

where

c=
∑kj=1 gj/h j

z−1 +∑kj=1 h
−1
j

.

Observe that this expression depends only on the 2k values hi and gi and thus yields a Newton-
Raphson algorithm that has linear time complexity.

A.3 Variational inference

In this section we derive the variational inference algorithm described in Section 5.1. Recall that
this involves using the following variational distribution:

q(θ,z |γ,φ) = q(θ |γ)
N

∏
n=1
q(zn |φn) (11)

as a surrogate for the posterior distribution p(θ,z,w |α,β), where the variational parameters γ and
φ are set via an optimization procedure that we now describe.

Following Jordan et al. (1999), we begin by bounding the log likelihood of a document using
Jensen’s inequality. Omitting the parameters γ and φ for simplicity, we have:

log p(w |α,β) = log
∫
∑
z
p(θ,z,w |α,β)dθ

= log
∫
∑
z

p(θ,z,w |α,β)q(θ,z)
q(θ,z)

dθ

≥
∫
∑
z
q(θ,z) log p(θ,z,w |α,β)dθ−

∫
∑
z
q(θ,z) logq(θ,z)dθ

= Eq[log p(θ,z,w |α,β)]−Eq[logq(θ,z)]. (12)
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Thus we see that Jensen’s inequality provides us with a lower bound on the log likelihood for an
arbitrary variational distribution q(θ,z |γ,φ).

It can be easily verified that the difference between the left-hand side and the right-hand side
of the Eq. (12) is the KL divergence between the variational posterior probability and the true
posterior probability. That is, letting L(γ,φ;α,β) denote the right-hand side of Eq. (12) (where we
have restored the dependence on the variational parameters γ and φ in our notation), we have:

log p(w |α,β) = L(γ,φ;α,β)+D(q(θ,z |γ,φ) ‖ p(θ,z |w,α,β)). (13)

This shows that maximizing the lower bound L(γ,φ;α,β) with respect to γ and φ is equivalent to
minimizing the KL divergence between the variational posterior probability and the true posterior
probability, the optimization problem presented earlier in Eq. (5).

We now expand the lower bound by using the factorizations of p and q:

L(γ,φ;α,β) = Eq[log p(θ |α)]+Eq[log p(z |θ)]+Eq[log p(w |z,β)]
−Eq[logq(θ)]−Eq[logq(z)].

(14)

Finally, we expand Eq. (14) in terms of the model parameters (α,β) and the variational parameters
(γ,φ). Each of the five lines below expands one of the five terms in the bound:

L(γ,φ;α,β) = logΓ
(
∑kj=1α j

)
−

k

∑
i=1

logΓ(αi)+
k

∑
i=1

(αi−1)
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))

+
N

∑
n=1

k

∑
i=1

φni
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))

+
N

∑
n=1

k

∑
i=1

V

∑
j=1

φniw jn logβi j

− logΓ
(
∑kj=1 γ j

)
+

k

∑
i=1

logΓ(γi)−
k

∑
i=1

(γi−1)
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))

−
N

∑
n=1

k

∑
i=1

φni logφni,

(15)

where we have made use of Eq. (8).
In the following two sections, we show how to maximize this lower bound with respect to the

variational parameters φ and γ.

A.3.1 VARIATIONAL MULTINOMIAL

We first maximize Eq. (15) with respect to φni, the probability that the nth word is generated by
latent topic i. Observe that this is a constrained maximization since ∑ki=1 φni = 1.

We form the Lagrangian by isolating the terms which contain φni and adding the appropriate
Lagrange multipliers. Let βiv be p(wvn = 1 |zi = 1) for the appropriate v. (Recall that each wn is
a vector of size V with exactly one component equal to one; we can select the unique v such that
wvn = 1):

L[φni] = φni
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))
+φni logβiv−φni logφni+λn

(
∑kj=1φni−1

)
,
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where we have dropped the arguments of L for simplicity, and where the subscript φni denotes that
we have retained only those terms in L that are a function of φni. Taking derivatives with respect to
φni, we obtain:

∂L
∂φni

=Ψ(γi)−Ψ
(
∑kj=1 γ j

)
+ logβiv− logφni−1+λ.

Setting this derivative to zero yields the maximizing value of the variational parameter φni (cf. Eq. 6):

φni ∝ βiv exp
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))
. (16)

A.3.2 VARIATIONAL DIRICHLET

Next, we maximize Eq. (15) with respect to γi, the ith component of the posterior Dirichlet param-
eter. The terms containing γi are:

L[γ] =
k

∑
i=1

(αi−1)
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))
+

N

∑
n=1

φni
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))

− logΓ
(
∑kj=1 γ j

)
+ logΓ(γi)−

k

∑
i=1

(γi−1)
(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))
.

This simplifies to:

L[γ] =
k

∑
i=1

(
Ψ(γi)−Ψ

(
∑kj=1 γ j

))(
αi+∑Nn=1φni− γi

)
− logΓ

(
∑kj=1 γ j

)
+ logΓ(γi).

We take the derivative with respect to γi:

∂L
∂γi

=Ψ′(γi)
(
αi+∑Nn=1φni− γi

)
−Ψ′ (∑kj=1 γ j

) k

∑
j=1

(
α j+∑Nn=1 φn j− γ j

)
.

Setting this equation to zero yields a maximum at:

γi = αi+∑Nn=1φni. (17)

Since Eq. (17) depends on the variational multinomial φ, full variational inference requires
alternating between Eqs. (16) and (17) until the bound converges.

A.4 Parameter estimation

In this final section, we consider the problem of obtaining empirical Bayes estimates of the model
parameters α and β. We solve this problem by using the variational lower bound as a surrogate
for the (intractable) marginal log likelihood, with the variational parameters φ and γ fixed to the
values found by variational inference. We then obtain (approximate) empirical Bayes estimates by
maximizing this lower bound with respect to the model parameters.

We have thus far considered the log likelihood for a single document. Given our assumption
of exchangeability for the documents, the overall log likelihood of a corpus D = {w1,w2, . . . ,wM}
is the sum of the log likelihoods for individual documents; moreover, the overall variational lower
bound is the sum of the individual variational bounds. In the remainder of this section, we abuse
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notation by using L for the total variational bound, indexing the document-specific terms in the
individual bounds by d, and summing over all the documents.

Recall from Section 5.3 that our overall approach to finding empirical Bayes estimates is based
on a variational EM procedure. In the variational E-step, discussed in Appendix A.3, we maximize
the bound L(γ,φ;α,β) with respect to the variational parameters γ and φ. In the M-step, which we
describe in this section, we maximize the bound with respect to the model parameters α and β. The
overall procedure can thus be viewed as coordinate ascent in L .

A.4.1 CONDITIONAL MULTINOMIALS

To maximize with respect to β, we isolate terms and add Lagrange multipliers:

L[β] =
M

∑
d=1

Nd

∑
n=1

k

∑
i=1

V

∑
j=1

φdniw
j
dn logβi j+

k

∑
i=1

λi
(
∑Vj=1βi j−1

)
.

We take the derivative with respect to βi j, set it to zero, and find:

βi j ∝
M

∑
d=1

Nd

∑
n=1

φdniw
j
dn.

A.4.2 DIRICHLET

The terms which contain α are:

L[α] =
M

∑
d=1

(
logΓ

(
∑kj=1α j

)
−

k

∑
i=1

logΓ(αi)+
k

∑
i=1

(
(αi−1)

(
Ψ(γdi)−Ψ

(
∑kj=1 γd j

)))
)

Taking the derivative with respect to αi gives:

∂L
∂αi

=M
(
Ψ
(
∑kj=1α j

)
−Ψ(αi)

)
+

M

∑
d=1

(
Ψ(γdi)−Ψ

(
∑kj=1 γd j

))

This derivative depends on α j, where j "= i, and we therefore must use an iterative method to find
the maximal α. In particular, the Hessian is in the form found in Eq. (10):

∂L
∂αiα j

= δ(i, j)MΨ′(αi)−Ψ′ (∑kj=1α j
)
,

and thus we can invoke the linear-time Newton-Raphson algorithm described in Appendix A.2.
Finally, note that we can use the same algorithm to find an empirical Bayes point estimate of η,

the scalar parameter for the exchangeable Dirichlet in the smoothed LDA model in Section 5.4.
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Abstract

Probabilistic topic models are a suite of algorithms whose aim is to discover the
hidden thematic structure in large archives of documents. In this article, we review the
main ideas of this field, survey the current state-of-the-art, and describe some promising
future directions. We first describe latent Dirichlet allocation (LDA) [8], which is the
simplest kind of topic model. We discuss its connections to probabilistic modeling,
and describe two kinds of algorithms for topic discovery. We then survey the growing
body of research that extends and applies topic models in interesting ways. These
extensions have been developed by relaxing some of the statistical assumptions of LDA,
incorporating meta-data into the analysis of the documents, and using similar kinds
of models on a diversity of data types such as social networks, images and genetics.
Finally, we give our thoughts as to some of the important unexplored directions for
topic modeling. These include rigorous methods for checking models built for data
exploration, new approaches to visualizing text and other high dimensional data, and
moving beyond traditional information engineering applications towards using topic
models for more scientific ends.

1 Introduction

As our collective knowledge continues to be digitized and stored—in the form of news, blogs,
web pages, scientific articles, books, images, sound, video, and social networks—it becomes
more di�cult to find and discover what we are looking for. We need new computational tools
to help organize, search and understand these vast amounts of information.

Right now, we work with online information using two main tools—search and links. We
type keywords into a search engine and find a set of documents related to them. We look at
the documents in that set, possibly navigating to other linked documents. This is a powerful
way of interacting with our online archive, but something is missing.

Imagine searching and exploring documents based on the themes that run through them. We
might “zoom in” and “zoom out” to find specific or broader themes; we might look at how
those themes changed through time or how they are connected to each other. Rather than
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finding documents through keyword search alone, we might first find the theme that we are
interested in, and then examine the documents related to that theme.

For example, consider using themes to explore the complete history of the New York Times. At
a broad level some of the themes might correspond to the sections of the newspaper—foreign
policy, national a↵airs, sports. We could zoom in on a theme of interest, such as foreign
policy, to reveal various aspects of it—Chinese foreign policy, the conflict in the Middle East,
the United States’s relationship with Russia. We could then navigate through time to reveal
how these specific themes have changed, tracking, for example, the changes in the conflict in
the Middle East over the last fifty years. And, in all of this exploration, we would be pointed
to the original articles relevant to the themes. The thematic structure would be a new kind
of window through which to explore and digest the collection.

But we don’t interact with electronic archives in this way. While more and more texts are
available online, we simply do not have the human power to read and study them to provide
the kind of browsing experience described above. To this end, machine learning researchers
have developed probabilistic topic modeling, a suite of algorithms that aim to discover and
annotate large archives of documents with thematic information. Topic modeling algorithms
are statistical methods that analyze the words of the original texts to discover the themes that
run through them, how those themes are connected to each other, and how they change over
time. (See, for example, Figure 3 for topics found by analyzing the Yale Law Journal.) Topic
modeling algorithms do not require any prior annotations or labeling of the documents—the
topics emerge from the analysis of the original texts. Topic modeling enables us to organize
and summarize electronic archives at a scale that would be impossible by human annotation.

2 Latent Dirichlet allocation

We first describe the basic ideas behind latent Dirichlet allocation (LDA), which is the
simplest topic model [8]. The intuition behind LDA is that documents exhibit multiple topics.
For example, consider the article in Figure 1. This article, entitled “Seeking Life’s Bare
(Genetic) Necessities,” is about using data analysis to determine the number of genes that an
organism needs to survive (in an evolutionary sense).

By hand, we have highlighted di↵erent words that are used in the article. Words about
data analysis, such as “computer” and “prediction,” are highlighted in blue; words about
evolutionary biology, such as “life” and “organism”, are highlighted in pink; words about
genetics, such as “sequenced” and “genes,” are highlighted in yellow. If we took the time
to highlight every word in the article, you would see that this article blends genetics, data
analysis, and evolutionary biology with di↵erent proportions. (We exclude words, such as
“and” “but” or “if,” which contain little topical content.) Furthermore, knowing that this
article blends those topics would help you situate it in a collection of scientific articles.

LDA is a statistical model of document collections that tries to capture this intuition. It is
most easily described by its generative process, the imaginary random process by which the
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gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with di↵erent proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.
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human evolution disease computer
genome evolutionary host models
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Figure 2: Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles
from the journal Science. At left is the inferred topic proportions for the example article in
Figure 1. At right are the top 15 most frequent words from the most frequent topics found in
this article.

is drawn from one of the topics (step #2b), where the selected topic is chosen from the
per-document distribution over topics (step #2a).2

In the example article, the distribution over topics would place probability on genetics,
data analysis and evolutionary biology, and each word is drawn from one of those three
topics. Notice that the next article in the collection might be about data analysis and
neuroscience; its distribution over topics would place probability on those two topics. This
is the distinguishing characteristic of latent Dirichlet allocation—all the documents in the
collection share the same set of topics, but each document exhibits those topics with di↵erent
proportion.

As we described in the introduction, the goal of topic modeling is to automatically discover
the topics from a collection of documents. The documents themselves are observed, while
the topic structure—the topics, per-document topic distributions, and the per-document
per-word topic assignments—are hidden structure. The central computational problem for
topic modeling is to use the observed documents to infer the hidden topic structure. This
can be thought of as “reversing” the generative process—what is the hidden structure that
likely generated the observed collection?

Figure 2 illustrates example inference using the same example document from Figure 1.
Here, we took 17,000 articles from Science magazine and used a topic modeling algorithm to
infer the hidden topic structure. (The algorithm assumed that there were 100 topics.) We

2We should explain the mysterious name, “latent Dirichlet allocation.” The distribution that is used to
draw the per-document topic distributions in step #1 (the cartoon histogram in Figure 1) is called a Dirichlet
distribution. In the generative process for LDA, the result of the Dirichlet is used to allocate the words of the
document to di↵erent topics. Why latent? Keep reading.
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Figure 3: A topic model fit to the Yale Law Journal. Here there are twenty topics (the top
eight are plotted). Each topic is illustrated with its top most frequent words. Each word’s
position along the x-axis denotes its specificity to the documents. For example “estate” in
the first topic is more specific than “tax.”

then computed the inferred topic distribution for the example article (Figure 2, left), the
distribution over topics that best describes its particular collection of words. Notice that this
topic distribution, though it can use any of the topics, has only “activated” a handful of them.
Further, we can examine the most probable terms from each of the most probable topics
(Figure 2, right). On examination, we see that these terms are recognizable as terms about
genetics, survival, and data analysis, the topics that are combined in the example article.

We emphasize that the algorithms have no information about these subjects and the articles
are not labeled with topics or keywords. The interpretable topic distributions arise by
computing the hidden structure that likely generated the observed collection of documents.3

For example, Figure 3 illustrates topics discovered from Yale Law Journal. (Here the number
of topics was set to be twenty.) Topics about subjects like genetics and data analysis are
replaced by topics about discrimination and contract law.

The utility of topic models stems from the property that the inferred hidden structure
resembles the thematic structure of the collection. This interpretable hidden structure
annotates each document in the collection—a task that is painstaking to perform by hand—
and these annotations can be used to aid tasks like information retrieval, classification, and

3Indeed calling these models “topic models” is retrospective—the topics that emerge from the inference
algorithm are interpretable for almost any collection that is analyzed. The fact that these look like topics has
to do with the statistical structure of observed language and how it interacts with the specific probabilistic
assumptions of LDA.
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corpus exploration.4 In this way, topic modeling provides an algorithmic solution to managing,
organizing, and annotating large archives of texts.

2.1 LDA and probabilistic models

LDA and other topic models are part of the larger field of probabilistic modeling. In generative
probabilistic modeling, we treat our data as arising from a generative process that includes
hidden variables. This generative process defines a joint probability distribution over both
the observed and hidden random variables. We perform data analysis by using that joint
distribution to compute the conditional distribution of the hidden variables given the observed
variables. This conditional distribution is also called the posterior distribution.

LDA falls precisely into this framework. The observed variables are the words of the
documents; the hidden variables are the topic structure; and the generative process is as
described above. The computational problem of inferring the hidden topic structure from the
documents is the problem of computing the posterior distribution, the conditional distribution
of the hidden variables given the documents.

We can describe LDA more formally with the following notation. The topics are �1:K , where
each �k is a distribution over the vocabulary (the distributions over words at left in Figure 1).
The topic proportions for the dth document are ✓d, where ✓d,k is the topic proportion for
topic k in document d (the cartoon histogram in Figure 1). The topic assignments for the
dth document are zd, where zd,n is the topic assignment for the nth word in document d (the
colored coin in Figure 1). Finally, the observed words for document d are wd, where wd,n is
the nth word in document d, which is an element from the fixed vocabulary.

With this notation, the generative process for LDA corresponds to the following joint
distribution of the hidden and observed variables,

p(�1:K , ✓1:D, z1:D, w1:D) (1)

=
KY

i=1

p(�i)
DY

d=1

p(✓d)
⇣QN

n=1 p(zd,n | ✓d)p(wd,n | �1:K , zd,n)
⌘

.

Notice that this distribution specifies a number of dependencies. For example, the topic
assignment zd,n depends on the per-document topic proportions ✓d. As another example,
the observed word wd,n depends on the topic assignment zd,n and all of the topics �1:K .
(Operationally, that term is defined by looking up which topic zd,n refers to and looking up
the probability of the word wd,n within that topic.)

These dependencies define LDA. They are encoded in the statistical assumptions behind the
generative process, in the particular mathematical form of the joint distribution, and—in a
third way—in the probabilistic graphical model for LDA. Probabilistic graphical models provide

4See, for example, the browser of Wikipedia built with a topic model at http://www.sccs.swarthmore.
edu/users/08/ajb/tmve/wiki100k/browse/topic-list.html.
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✓d Zd,n Wd,n
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�k

� η

Figure 4: The graphical model for latent Dirichlet allocation. Each node is a random
variable and is labeled according to its role in the generative process (see Figure 1). The
hidden nodes–the topic proportions, assignments and topics—are unshaded. The observed
nodes—the words of the documents—are shaded. The rectangles are “plate” notation, which
denotes replication. The N plate denotes the collection words within documents; the D plate
denotes the collection of documents within the collection.

a graphical language for describing families of probability distributions.5 The graphical model
for LDA is in Figure 4. These three representations are equivalent ways of describing the
probabilistic assumptions behind LDA.

In the next section, we describe the inference algorithms for LDA. However, we first pause to
describe the short history of these ideas. LDA was developed to fix an issue with a previously
developed probabilistic model probabilistic latent semantic analysis (pLSI) [21]. That model
was itself a probabilistic version of the seminal work on latent semantic analysis [14], which
revealed the utility of the singular value decomposition of the document-term matrix. From
this matrix factorization perspective, LDA can also be seen as a type of principal component
analysis for discrete data [11, 12].

2.2 Posterior computation for LDA

We now turn to the computational problem, computing the conditional distribution of the
topic structure given the observed documents. (As we mentioned above, this is called the
posterior.) Using our notation, the posterior is

p(�1:K , ✓1:D, z1:D |w1:D) =
p(�1:K , ✓1:D, z1:D, w1:D)

p(w1:D)
. (2)

The numerator is the joint distribution of all the random variables, which can be easily
computed for any setting of the hidden variables. The denominator is the marginal probability
of the observations, which is the probability of seeing the observed corpus under any topic
model. In theory, it can be computed by summing the joint distribution over every possible
instantiation of the hidden topic structure.

5The field of graphical models is actually more than a language for describing families of distributions. It
is a field that illuminates the deep mathematical links between probabilistic independence, graph theory, and
algorithms for computing with probability distributions [35].
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That number of possible topic structures, however, is exponentially large; this sum is
intractable to compute.6 As for many modern probabilistic models of interest—and for much
of modern Bayesian statistics—we cannot compute the posterior because of the denominator,
which is known as the evidence. A central research goal of modern probabilistic modeling
is to develop e�cient methods for approximating it. Topic modeling algorithms—like the
algorithms used to create Figure 1 and Figure 3—are often adaptations of general-purpose
methods for approximating the posterior distribution.

Topic modeling algorithms form an approximation of Equation 2 by forming an alternative
distribution over the latent topic structure that is adapted to be close to the true posterior.
Topic modeling algorithms generally fall into two categories—sampling-based algorithms and
variational algorithms.

Sampling based algorithms attempt to collect samples from the posterior to approximate
it with an empirical distribution. The most commonly used sampling algorithm for topic
modeling is Gibbs sampling, where we construct a Markov chain—a sequence of random
variables, each dependent on the previous—whose limiting distribution is the posterior. The
Markov chain is defined on the hidden topic variables for a particular corpus, and the algorithm
is to run the chain for a long time, collect samples from the limiting distribution, and then
approximate the distribution with the collected samples. (Often, just one sample is collected
as an approximation of the topic structure with maximal probability.) See [33] for a good
description of Gibbs sampling for LDA, and see http://CRAN.R-project.org/package=lda
for a fast open-source implementation.

Variational methods are a deterministic alternative to sampling-based algorithms [22, 35].
Rather than approximating the posterior with samples, variational methods posit a parame-
terized family of distributions over the hidden structure and then find the member of that
family that is closest to the posterior.7 Thus, the inference problem is transformed to an
optimization problem. Variational methods open the door for innovations in optimization to
have practical impact in probabilistic modeling. See [8] for a coordinate ascent variational
inference algorithm for LDA; see [20] for a much faster online algorithm (and open-source soft-
ware) that easily handles millions of documents and can accommodate streaming collections
of text.

Loosely speaking, both types of algorithms perform a search over the topic structure. The
collection of documents (the observed random variables in the model) are held fixed and serve
as a guide towards where to search. Which approach is better depends on the particular topic
model being used—we have so far focused on LDA, but see below for other topic models—and
is a source of academic debate. For a good discussion of the merits and drawbacks of both,
see [1].

6More technically, the sum is over all possible ways of assigning each observed word of the collection to
one of the topics. Document collections usually contain observed words at least on the order of millions.

7Closeness is measured with Kullback-Leibler divergence, an information theoretic measurement of the
distance between two probability distributions.

8



3 Research in topic modeling

The simple LDA model provides a powerful tool for discovering and exploiting the hidden
thematic structure in large archives of text. However, one of the main advantages of
formulating LDA as a probabilistic model is that it can easily be used as a module in
more complicated models for more complicated goals. Since its introduction, LDA has been
extended and adapted in many ways.

3.1 Relaxing the assumptions of LDA

LDA is defined by the statistical assumptions it makes about the corpus. One active area
of topic modeling research is how to relax and extend these assumptions to uncover more
sophisticated structure in the texts.

One assumption that LDA makes is the “bag of words” assumption, that the order of the
words in the document does not matter. (To see this note that the joint distribution of
Equation 1 remains invariant to permutation of the words of the documents.) While this
assumption is unrealistic, it is reasonable if our only goal is to uncover the course semantic
structure of the texts.8 For more sophisticated goals—such as language generation—it is
patently not appropriate. There have been a number of extensions to LDA that model words
nonexchangeably. For example, [36] developed a topic model that relaxes the bag of words
assumption by assuming that the topics generate words conditional on the previous word; [18]
developed a topic model that switches between LDA and a standard HMM. These models
expand the parameter space significantly, but show improved language modeling performance.

Another assumption is that the order of documents does not matter. Again, this can be seen
by noticing that Equation 1 remains invariant to permutations of the ordering of documents
in the collection. This assumption may be unrealistic when analyzing long-running collections
that span years or centuries. In such collections we may want to assume that the topics
change over time. One approach to this problem is the dynamic topic model [5]—a model
that respects the ordering of the documents and gives a richer posterior topical structure
than LDA. Figure 5 shows a topic that results from analyzing all of Science magazine under
the dynamic topic model. Rather than a single distribution over words, a topic is now a
sequence of distributions over words. We can find an underlying theme of the collection and
track how it has changed over time.

A third assumption about LDA is that the number of topics is assumed known and fixed.
The Bayesian nonparametric topic model [34] provides an elegant solution: The number
of topics is determined by the collection during posterior inference, and furthermore new
documents can exhibit previously unseen topics. Bayesian nonparametric topic models have
been extended to hierarchies of topics, which find a tree of topics, moving from more general
to more concrete, whose particular structure is inferred from the data [3].

8As a thought experiment, imagine shu✏ing the words of the article in Figure 1. Even when shu✏ed, you
would be able to glean that the article has something to do with genetics.
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Figure 5: Two topics from a dynamic topic model. This model was fit to Science from
(1880–2002). We have illustrated the top words at each decade.

There are still other extensions of LDA that relax various assumptions made by the model.
The correlated topic model [6] and pachinko allocation machine [24] allow the occurrence
of topics to exhibit correlation (for example a document about geology is more likely to
also be about chemistry then it is to be about sports); the spherical topic model [28] allows
words to be unlikely in a topic (for example, “wrench” will be particularly unlikely in a topic
about cats); sparse topic models enforce further structure in the topic distributions [37]; and
“bursty” topic models provide a more realistic model of word counts [15].

3.2 Incorporating meta-data

In many text analysis settings, the documents contain additional information—such as author,
title, geographic location, links, and others—that we might want to account for when fitting
a topic model. There has been a flurry of research on adapting topic models to include
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meta-data.

The author-topic model [29] is an early success story for this kind of research. The topic
proportions are attached to authors; papers with multiple authors are assumed to attach
each word to an author, drawn from a topic drawn from his or her topic proportions. The
author-topic model allows for inferences about authors as well as documents. Rosen-Zvi et al.
show examples of author similarity based on their topic proportions—such computations are
not possible with LDA.

Many document collections are linked—for example scientific papers are linked by citation or
web pages are linked by hyperlink—and several topic models have been developed to account
for those links when estimating the topics. The relational topic model of [13] assumes that
each document is modeled as in LDA and that the links between documents depend on the
distance between their topic proportions. This is both a new topic model and a new network
model. Unlike traditional statistical models of networks, the relational topic model takes into
account node attributes (here, the words of the documents) in modeling the links.

Other work that incorporates meta-data into topic models includes models of linguistic
structure [10], models that account for distances between corpora [38], and models of named
entities [26]. General purpose methods for incorporating meta-data into topic models include
Dirichlet-multinomial regression models [25] and supervised topic models [7].

3.3 Other kinds of data

In LDA, the topics are distributions over words and this discrete distribution generates
observations (words in documents). One advantage of LDA is that these choices for the topic
parameter and data-generating distribution can be adapted to other kinds of observations
with only small changes to the corresponding inference algorithms. As a class of models, LDA
can be thought of as a mixed-membership model of grouped data—rather than associate each
group of observations (document) with one component (topic), each group exhibits multiple
components with di↵erent proportions. LDA-like models have been adapted to many kinds
of data, including survey data, user preferences, audio and music, computer code, network
logs, and social networks. We describe two areas where mixed-membership models have been
particularly successful.

In population genetics, the same probabilistic model was independently invented to find
ancestral populations (e.g., originating from Africa, Europe, the Middle East, etc.) in the
genetic ancestry of a sample of individuals [27]. The idea is that each individual’s genotype
descends from one or more of the ancestral populations. Using a model much like LDA,
biologists can both characterize the genetic patterns in those populations (the “topics”) and
identify how each individual expresses them (the “topic proportions”). This model is powerful
because the genetic patterns in ancestral populations can be hypothesized, even when “pure”
samples from them are not available.

LDA has been widely used and adapted in computer vision, where the inference algorithms
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are applied to natural images in the service of image retrieval, classification, and organization.
Computer vision researchers have made a direct analogy from images to documents. In
document analysis we assume that documents exhibit multiple topics and a collection of
documents exhibits the same set of topics. In image analysis we assume that each image
exhibits a combination of visual patterns and that the same visual patterns recur throughout
a collection of images. (In a preprocessing step, the images are analyzed to form collections
of “visual words.”) Topic modeling for computer vision has been used to classify images [16],
connect images and captions [4], build image hierarchies [2, 23, 31] and other applications.

4 Future directions

Topic modeling is an emerging field in machine learning, and there are many exciting new
directions for research.

Evaluation and model checking. There is a disconnect between how topic models are
evaluated and why we expect topic models are useful. Typically, topic models are evaluated
in the following way. First, hold out a subset of your corpus as the test set. Then, fit a
variety of topic models to the rest of the corpus and approximate a measure of model fit
(e.g., probability) for each trained model on the test set. Finally, choose the the model that
achieves the best held out performance.

But topic models are often used to organize, summarize and help users explore large corpora,
and there is no technical reason to suppose that held-out accuracy corresponds to better
organization or easier interpretation. One open direction for topic modeling is to develop
evaluation methods that match how the algorithms are used. How can we compare topic
models based on how interpretable they are?

This is the model checking problem. When confronted with a new corpus and a new task,
which topic model should I use? How can I decide which of the many modeling assumptions
are important for my goals? How should I move between the many kinds of topic models that
have been developed? These questions have been given some attention by statisticians [9, 30],
but they have been scrutinized less for the scale of problems that machine learning tackles.
New computational answers to these questions would be a significant contribution to topic
modeling.

Visualization and user interfaces. Another promising future direction for topic
modeling is to develop new methods of interacting with and visualizing topics and corpora.
Topic models provide new exploratory structure in large collections—how can we best exploit
that structure to aid in discovery and exploration?

One problem is how to display the topics. Typically, we display topics by listing the most
frequent words of each (see Figure 2), but new ways of labeling the topics—either by choosing
di↵erent words or displaying the chosen words di↵erently—may be more e↵ective. A further
problem is how to best display a document with a topic model. At the document-level,
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topic models provide potentially useful information about the structure of the document.
Combined with e↵ective topic labels, this structure could help readers identify the most
interesting parts of the document. Moreover, the hidden topic proportions implicitly connect
each document to the other documents (by considering a distance measure between topic
proportions). How can we best display these connections? What is an e↵ective interface to
the whole corpus and its inferred topic structure?

These are user interface questions, and they are essential to topic modeling. Topic modeling
algorithms show much promise for uncovering meaningful thematic structure in large collec-
tions of documents. But making this structure useful requires careful attention to information
visualization and the corresponding user interfaces.

Topic models for data discovery. Topic models have been developed with information
engineering applications in mind. As a statistical model, however, topic models should be
able to tell us something, or help us form a hypothesis, about the data. What can we learn
about the language (and other data) based on the topic model posterior? Some work in this
area has appeared in political science [19], bibliometrics [17] and psychology [32]. This kind
of research adapts topic models to measure an external variable of interest, a di�cult task
for unsupervised learning which must be carefully validated.

In general, this problem is best addressed by teaming computer scientists with other scholars
to use topic models to help explore, visualize and draw hypotheses from their data. In
addition to scientific applications, such as genetics or neuroscience, one can imagine topic
models coming to the service of history, sociology, linguistics, political science, legal studies,
comparative literature, and other fields where texts are a primary object of study. By working
with scholars in diverse fields, we can begin to develop a new interdisciplinary computational
methodology for working with and drawing conclusions from archives of texts.

5 Summary

We have surveyed probabilistic topic models, a suite of algorithms that provide a statistical
solution to the problem of managing large archives of documents. With recent scientific
advances in support of unsupervised machine learning—flexible components for modeling,
scalable algorithms for posterior inference, and increased access to massive data sets—topic
models promise to be an important component for summarizing and understanding our
growing digitized archive of information.
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Probabilistic topic models

As more information becomes
available, it becomes more difficult
to find and discover what we need.

We need new tools to help us
organize, search, and understand
these vast amounts of information.



Probabilistic topic models

Topic modeling provides methods for automatically organizing, understanding,
searching, and summarizing large electronic archives.

1 Discover the hidden themes that pervade the collection.

2 Annotate the documents according to those themes.

3 Use annotations to organize, summarize, search, form predictions.
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
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W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]
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Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
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Table 2
Top eight link predictions made by RTM (�e) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review
Minorization conditions and convergence rates for Markov chain Monte Carlo

R
T

M
(�

e )

Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
D
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+
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re
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n

Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks
Coevolving High Level Representations

R
T
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A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly
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Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (�e) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-
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Probabilistic topic models

• What are topic models?

• What kinds of things can they do?

• How do I compute with a topic model?

• How do I evaluate and check a topic model?

• What are some unanswered questions in this field?

• How can I learn more?



Probabilistic models

• This is a case study in data analysis with probability models.

• Our agenda is to teach about this kind of analysis through topic models.

• Note: We are being “Bayesian” in this sense:

“[By Bayesian inference,] I simply mean the method of statistical inference
that draws conclusions by calculating conditional distributions of unknown
quantities given (a) known quantities and (b) model specifications.”
(Rubin, 1984)

• (The Bayesian versus Frequentist debate is not relevant to this talk.)



Probabilistic models

• Specifying models
• Directed graphical models
• Conjugate priors and nonconjugate priors
• Time series modeling
• Hierarchical methods
• Mixed-membership models
• Prediction from sparse and noisy inputs

• Model selection and Bayesian nonparametric methods

• Approximate posterior inference
• MCMC
• Variational inference

• Using and evaluating models
• Exploring, describing, summarizing, visualizing data
• Evaluating model fitness

(
÷Im , en
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Organization of these lectures

1 Introduction to topic modeling: Latent Dirichlet allocation

2 Beyond latent Dirichlet allocation
• Correlated and dynamic models
• Supervised models
• Modeling text and user data

3 Bayesian nonparametrics: A brief tutorial

4 Posterior computation
• Scalable variational inference
• Nonconjugate variational inference

5 Checking and evaluating models
• Using the predictive distribution
• Posterior predictive checks

6 Discussion, open questions, and resources
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Latent Dirichlet allocation (LDA)

Simple intuition: Documents exhibit multiple topics.



Latent Dirichlet allocation (LDA)
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• Each topic is a distribution over words

• Each document is a mixture of corpus-wide topics

• Each word is drawn from one of those topics



Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

• In reality, we only observe the documents

• The other structure are hidden variables
T1words with aunts



Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

• Our goal is to infer the hidden variables

• I.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)



LDA as a graphical model
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Observed
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• Encodes assumptions

• Defines a factorization of the joint distribution

• Connects to algorithms for computing with data

⇒
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LDA as a graphical model

�d Zd,n Wd,n
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• Nodes are random variables; edges indicate dependence.

• Shaded nodes are observed; unshaded nodes are hidden.

• Plates indicate replicated variables.
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LDA as a graphical model

µd Zd,n Wd,n
N

D K
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Æ η

• This joint defines a posterior, p(✓ ,z,� |w).

• From a collection of documents, infer
• Per-word topic assignment zd ,n

• Per-document topic proportions ✓d

• Per-corpus topic distributions �k

• Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.

②- publdoc Hope)
→
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LDA as a graphical model
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Approximate posterior inference algorithms
• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Distributed sampling (Newman et al., 2008; Ahmed et al., 2012)

• Collapsed variational inference (Teh et al., 2006)

• Online variational inference (Hoffman et al., 2010)

• Factorization based inference (Arora et al., 2012; Anandkumar et al., 2012)



Example inference

• Data: The OCR’ed collection of Science from 1990–2000
• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.
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Example inference
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Aside: The Dirichlet distribution

• The Dirichlet distribution is an exponential family distribution over the
simplex, i.e., positive vectors that sum to one

p(✓ |~↵)=
�
ÄP

i
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ä
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i
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✓↵i�1
i

.

• It is conjugate to the multinomial. Given a multinomial observation, the
posterior distribution of ✓ is a Dirichlet.

• The parameter ↵ controls the mean shape and sparsity of ✓ .

• The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.
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Why does LDA “work”?

• LDA trades off two goals.

1 For each document, allocate its words to as few topics as possible.
2 For each topic, assign high probability to as few terms as possible.

• These goals are at odds.

• Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

• Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

• Trading off these goals finds groups of tightly co-occurring words.

word does



LDA summary
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• LDA is a probabilistic model of text. It casts the problem of discovering
themes in large document collections as a posterior inference problem.

• It lets us visualize the hidden thematic structure in large collections, and
generalize new data to fit into that structure.

• Builds on latent semantic analysis (Deerwester et al., 1990; Hofmann, 1999)
It is a mixed-membership model (Erosheva, 2004).
It relates to PCA and matrix factorization (Jakulin and Buntine, 2002).
Was independently invented for genetics (Pritchard et al., 2000)



LDA summaryby emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where

Chang, Blei
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• LDA is a simple building block that enables many applications.

• It is popular because organizing and finding patterns in data has become
important in the sciences, humanties, industry, and culture.

• Further, algorithmic improvements let us fit models to massive data.



Example: LDA in R (Jonathan Chang)

docs <- read.documents("mult.dat")
K <- 20
alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1 
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7
279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1 
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2

....

perspective identifying tumor suppressor genes in human...
letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...
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• LDA is a simple topic model.

• It can be used to find topics that describe a corpus.

• Each document exhibits multiple topics.

• How can we build on this simple model of text?
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.

252

• LDA can be embedded in more complicated models, embodying further
intuitions about the structure of the texts.

• E.g., it can be used in models that account for syntax, authorship, word
sense, dynamics, correlation, hierarchies, and other structure.



Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where

Chang, Blei

!

Nd

"
d

wd,n

zd,n

K

#k

y
d,d'

$

Nd'

"
d'

wd',n

zd',n

Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.

252

• The data generating distribution can be changed. We can apply
mixed-membership assumptions to many kinds of data.

• E.g., we can build models of images, social networks, music, purchase
histories, computer code, genetic data, and other types.



Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.



Extending LDA

• These different kinds of extensions can be combined.

• (Really, these ways of extending LDA are a big advantage of using
probabilistic modeling to analyze data.)

• To give a sense of how LDA can be extended, I’ll describe several
examples of extensions that my group has worked on.

• We will discuss
• Correlated topic models
• Dynamic topic models & measuring scholarly impact
• Supervised topic models
• Relational topic models
• Ideal point topic models
• Collaborative topic models



Correlated and Dynamic Topic Models



Correlated topic models

• The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.

• It assumes that components are nearly independent.

• In real data, an article about fossil fuels is more likely to also be about
geology than about genetics.



Correlated topic models

• The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

• The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ⇠ N K (µ,⌃)

✓i / exp{xi}.



Correlated topic models

Zd,n Wd,n N
D K

�kµ, � ��d

Logistic normal prior

• Draw topic proportions from a logistic normal

• This allows topic occurrences to exhibit correlation.

• Provides a “map” of topics and how they are related

• Provides a better fit to text data, but computation is more complex
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Dynamic topic models

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.

• Not appropriate for sequential corpora (e.g., that span hundreds of years)

• Further, we may want to track how language changes over time.

• Dynamic topic models let the topics drift in a sequence.
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Topics drift through time



Dynamic topic models

βk,1 βk,2 βk,T

. . .

• Use a logistic normal distribution to model topics evolving over time.

• Embed it in a state-space model on the log of the topic distribution

�t ,k |�t�1,k ⇠ N (�t�1,k , I�2)

p(w |�t ,k) / exp
�
�t ,k

 

• As for CTMs, this makes computation more complex. But it lets us make
inferences about sequences of documents.



Dynamic topic models

Original article Topic proportions



Dynamic topic models
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Dynamic topic models
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Dynamic topic models
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Dynamic topic models

• Time-corrected similarity shows a new way of using the posterior.

• Consider the expected Hellinger distance between the topic proportions of
two documents,

dij =E

2
4

KX

k=1

(
p
✓i ,k �

p
✓j ,k)2 |wi ,wj

3
5

• Uses the latent structure to define similarity

• Time has been factored out because the topics associated to the
components are different from year to year.

• Similarity based only on topic proportions



Dynamic topic models

The Brain of the Orang (1880)



Dynamic topic models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976)



Measuring scholarly impact
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• We built on the DTM to measure scholarly impact with sequences of text.

• Influential articles reflect future changes in language use.

• The “influence” of an article is a latent variable.

• Influential articles affect the drift of the topics that they discuss.

• The posterior gives a retrospective estimate of influential articles.
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Measuring scholarly impact
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• Each document has an influence score Id .

• Each topic drifts in a way that is biased towards the
documents with high influence.

• We can examine the posterior of the influence
scores to retrospectively find articles that best
explain the changes in language.



Measuring scholarly impact
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• This measure of impact only uses the words of the documents.
It correlates strongly with citation counts.

• High impact, high citation: “The Mathematics of Statistical Machine
Translation: Parameter Estimation” (Brown et al., 1993)

• “Low” impact, high citation: “Building a large annotated corpus of English:
the Penn Treebank” (Marcus et al., 1993)



Measuring scholarly impact
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
[296 citations]

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of 
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
[3 citations]

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]

• PNAS, Science, and Nature from 1880–2005

• 350,000 Articles

• 163M observations

• Year-corrected correlation is 0.166



Summary: Correlated and dynamic topic models

• The Dirichlet assumption on topics and topic proportions makes strong
conditional independence assumptions about the data.

• The correlated topic model uses a logistic normal on the topic
proportions to find patterns in how topics tend to co-occur.

• The dynamic topic model uses a logistic normal in a linear dynamic
model to capture how topics change over time.

• What’s the catch? These models are harder to compute with. (Stay tuned.)
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Abstract: 
Topic modeling is one of the most powerful techniques in text mining for data mining, latent 
data discovery, and finding relationships among data, text documents. Researchers have 
published many articles in the field of topic modeling and applied in various fields such as 
software engineering, political science, medical and linguistic science, etc. There are various 
methods for topic modeling, which Latent Dirichlet allocation (LDA) is one of the most 
popular methods in this field. Researchers have proposed various models based on the LDA 
in topic modeling. According to previous work, this paper can be very useful and valuable for 
introducing LDA approaches in topic modeling. In this paper, we investigated scholarly 
articles highly (between 2003 to 2016) related to Topic Modeling based on LDA to discover 
the research development, current trends and intellectual structure of topic modeling. Also, 
we summarize challenges and introduce famous tools and datasets in topic modeling based on 
LDA. 
 
Keywords: Topic modelling, Gibbs Sampling, Latent Dirichlet Allocation, Expectation Maximization, LDA 
 
1. Introduction 
Topic models (TM) are a well-know and significant modern machine learning technology 
that has been widely used in text mining, network analysis and genetics, and more other 
domains. Topic models are prominent for demonstrating discrete data; also, give a productive 
approach to find hidden structures/semantics in gigantic information. There are many papers 
for in this field and definitely cannot mention to all of them, so we selected more 
signification papers. Topic models are applied in various fields including medical sciences  
(Zhang et al., 2017) (Jiang et al., 2012) (Paul and Dredze, 2011) (Wu et al., 2012b)  , 
software engineering (Linstead et al., 2007) (Gethers and Poshyvanyk, 2010) (Asuncion et 
al., 2010) (Thomas, 2011) (Thomas et al., 2011), geography (Cristani et al., 2008) (Eisenstein 
et al., 2010) (Tang et al., 2013) (Yin et al., 2011) (Sizov, 2010), political science (Chen et al., 
2010) (Cohen and Ruths, 2013) (Greene and Cross, 2015) .  
 
From an applied perspective in the field of political science, Greene et al. proposed a new 
two-layer matrix factorization methodology for identifying topics in large political speech 
corpora over time and identify both niche topics related to events at a particular point in time 
and broad, long-running topics. This paper has focused on European Parliament speeches, the 
proposed topic modeling method has a number of potential applications in the study of 
politics, including the analysis of speeches in other parliaments, political manifestos, and 
other more traditional forms of political texts (Greene and Cross, 2015). Other researchers 
have also proposed a new two-layer matrix factorization methodology for identifying topics 
in large political speech corpora over time and identify both niche topics related to events at a 
particular point in time and broad, long-running topics. This paper has focused on European 
Parliament speeches; the proposed topic modeling method has a number of potential 
applications in the study of politics, including the analysis of speeches in other parliaments, 
political manifestos, and other more traditional forms of political texts [17]. Fang et al. 



suggested a new unsupervised topic model based on LDA for contrastive opinion modeling 
which purpose to find the opinions from multiple views, according to a given topic and their 
difference on the topic with qualifying criteria, the model called Cross-Perspective Topic 
(CPT) model. They performed experiments with both qualitative and quantitative measures 
on two datasets in the political area that include: first dataset is statement records of U.S. 
senators that show political stances of senators by these records, also for the second dataset, 
extracted of world News Medias from three representative media in U.S (New York Times), 
China (Xinhua News) and India (Hindu). To evaluate their approach with other models used 
corrIDA and LDA as two baselines (Fang et al., 2012). 
 
Another group of researchers focused on topic modeling in software Engineering, Linstead 
et al.  For the first time, they used LDA, to extract topics in source code and perform to 
visualization of software similarity, In other words, LDA use an intuitive approach for 
calculation of similarity between source files with obtain their respective distributions of each 
document over topics. They utilized their method on 1,555 software projects from Apache 
and SourceForge that includes 19 million source lines of code (SLOC). The authors 
demonstrated this approach, can be effective for project organization, software refactoring 
(Linstead et al., 2007). Tian et al.  introduced a method based on LDA for automatically 
categorizing software systems, called LACT. For evaluation of LACT, used 43 open-source 
software systems in different programming languages and showed LACT can categorization 
of software systems based on type of programming language (Tian et al., 2009). Lukinet al.  
Proposed an approach topic modeling based on LDA model for the purpose of bug 
localization. Their idea, applied to analysis of same bugs in Mozilla and Eclipse and result 
showed that their LDA-based approach is better than LSI for evaluate and analyze of bugs in 
these source codes (Lukins et al., 2008, Lukins et al., 2010). 
 
An analysis of geographic information is another issue that can be referred to Sizov et al.  
They introduced a novel method based on multi-modal Bayesian models to describe social 
media by merging text features and spatial knowledge that called GeoFolk. As a general 
outlook, this method can be considered as an extension of Latent Dirichlet Allocation (LDA). 
They used the available standard CoPhIR dataset that it contains an abundance of over 54 
million Flickr. The GeoFolk model has the ability to be used in quality-oriented applications 
and can be merged with some models from Web 2.0 social (Sizov, 2010). Yin et al.  This 
article examines the issue of topic modeling to extract the topics from geographic information 
and GPS-related documents. They proposed three strategies of modeling geographical topics 
including , text-driven model,  location-driven model and a novel joint model called LGTA 
(Latent Geographical Topic Analysis) that is a combination of topic modeling and 
geographical clustering. To test their approaches, they collected a set of data from the website 
Flickr, according to various topics (Yin et al., 2011). 
 
In other view, According to our knowledge, most of the previous studies had various goals, 
such as: Source code analysis (Linstead et al., 2007) (Lukins et al., 2010) (Linstead et al., 
2008) (Tian et al., 2009) (Chen et al., 2012) (Gethers and Poshyvanyk, 2010) (Savage et al., 
2010), Opinion and aspect Mining (Chen et al., 2010) (Zheng et al., 2014) (Cheng et al., 
2014) (Zhai et al., 2011)   (Bagheri et al., 2014) (Wang et al., 2014c) (Xianghua et al., 2013, 
Jo and Oh, 2011) (Paul and Girju, 2010) (Titov and McDonald, 2008), Event detection (Qian 
et al., 2016) (Hu et al., 2012, Weng and Lee, 2011) (Lin et al., 2010), image classification 
(Cristani et al., 2008) (Wang and Mori, 2011), system recommendation (Zoghbi et al., 2016) 
(Cheng and Shen, 2016) (Zhao et al., 2016) (Lu and Lee, 2015) (Wang et al., 2014a) (Yang 
and Rim, 2014) (Kim and Shim, 2014) and emotion classification(Roberts et al., 2012)  (Rao, 



2016) (Rao et al., 2014), etc. For example in gforecommendation system, Zhao and et al.  
proposed a personalized hashtag recommendation approach based LDA model that can 
discover latent topics in microblogs, called Hashtag-LDA and applied experiments on ‘UDI-
TwitterCrawl-Aug2012-Tweets’ as a real-world Twitter dataset(Zhao et al., 2016). Jin and et 
al.  The authors focused on the issue of tag recommendation. They proposed hybrids 
approach based on a combination of Language Model (LM) and LDA for tag 
recommendation in terms of topic knowledge. The authors used a subset from Bibsonomy 
datset that including; 14,443 resources, 33,256 words 1,185 users, 13,276 tags, and 262,445 
bookmarks in total. Finally,  they found that combination of keyword and topic layer based 
approaches can be significantly effective to recommend new tags. 
 
The main goal of this work is to provide an overview of the methods of topic modeling based 
on LDA. In summary, this paper makes four main contributions: 

x We investigate scholarly articles (from 2003 to 2016)  which are related to Topic 
Modeling based on LDA to discover the research development, current trends and 
intellectual structure of topic modeling based on LDA. 

x We investigate topic modeling applications in various sciences. 
x We summarize challenges in topic modeling, such as image processing, Visualizing 

topic models, Group discovery, User Behavior Modeling, and etc. 
x We introduce some of the most famous data and tools in topic modeling. 

 
2.  Computer science and topic modeling  
Topic models have an important role in computer science for text mining.  In Topic 
modeling, a topic is a list of words that occur in statistically significant methods. A text can 
be an email, a book chapter, a blog posts, a journal article and any kind of unstructured text. 
Topic models cannot understand the means and concepts of words in text documents for topic 
modeling. Instead, they suppose that any part of the text is combined by selecting words from 
probable baskets of words where each basket corresponds to a topic. The tool goes via this 
process over and over again until it stays on the most probable distribution of words into 
baskets which call topics. Topic modeling can provide a useful view of a large collection in 
terms of the collection as a whole, the individual documents, and the relationships between 
the documents.   
 
2.3 Latent Dirichlet Allocation 
LDA is a generative probabilistic model of a corpus. The basic idea is that the documents are 
represented as random mixtures over latent topics, where a topic is characterized by a 
distribution over words. Latent Dirichlet allocation (LDA), first introduced by Blei, Ng and 
Jordan in 2003(Blei et al., 2003), is one of the most popular methods in topic modeling. LDA 
represents topics by word probabilities. The words with highest probabilities in each topic 
usually give a good idea of what the topic is can word probabilities from LDA. 
 
LDA, an unsupervised generative probabilistic method for modeling a corpus, is the most 
commonly used topic modeling method. LDA assumes that each document can be 
represented as a probabilistic distribution over latent topics, and that topic distribution in all 
documents share a common Dirichlet prior. Each latent topic in the LDA model is also 
represented as a probabilistic distribution over words and the word distributions of topics 
share a common Dirichlet prior as well. Given a corpus D consisting of M documents, with 
document d having N d words (d ∈{1,..., M}), LDA models D according to the following 
generative process [4]: 



(a)Choose a multinomial distribution φ t for topic t (t ∈{1,..., T}) from a Dirichlet distribution 
with parameter β. 

(b)  Choose a multinomial distribution θ d for document d (d ∈{1,..., M}) from a Dirichlet 
distribution with parameter α. 

(c)For a word w n (n ∈{1,..., N d }) in document d, 

(i) Select a topic z n from θ d . 

(ii)   Select a word w n from φ zn . 

In above generative process, words in documents are the only observed variables while others 
are latent variables (φ and θ) and hyper parameters (α and β). In order to infer the latent 
variables and hyper parameters, the probability of observed data D is computed and 
maximized as follows: 
 
(ߚ, D|α)݌ = ∏ ௗߠ)݌∫ |α) (∑ ௗ௡ݖ)݌ ௗߠ| ௗ೙ݓ)݌( ௗ೙ݖ| ே೏(ߚ|߮)ܲ(߮,

௡ୀଵ )ெ
ௗୀଵ  ௗ݀௣         (1)ߠ݀

 
LDA is a distinguished tool for latent topic distribution for a large corpus. Therefore, it has 
the ability to identify sub-topics for a technology area composed of many patents, and 
represent each of the patents in an array of topic distributions. With LDA, the terms in the 
collection of documents produce a vocabulary that is then used to generate the latent topics. 
Documents are treated as a mixture of topics, where a topic is a probability distribution over 
this set of terms. Each document is then seen as a probability distribution over the set of 
topics. We can think of the data as coming from a generative process that is defined by the 
joint probability distribution over what is observed and what is hidden.  
 
2.4 Parameter estimation, Inference, Training for LDA 
Various methods have been proposed to estimate LDA parameters, such as variational 
method(Blei et al., 2003), expectation propagation(Minka and Lafferty, 2002) and Gibbs 
sampling(Griffiths and Steyvers, 2004).  
 

x Gibbs sampling is a Monte Carlo Markov-chain algorithm, powerful technique in 
statistical inference, and a method of generating a sample from a joint distribution 
when only conditional distributions of each variable can be efficiently computed. 
According to our knowledge, researchers have widely used this method for the LDA. 
Some of works related based on LDA and Gibbs, such as (Xie et al., 2016) (Lu et al., 
2016) (Yeh et al., 2016) (Rao, 2016) (Miao et al., 2016) (Panichella et al., 2013, Zhao 
et al., 2011) (Jagarlamudi and Daumé III, 2010) (Tian et al., 2009) (Ramage et al., 
2009). 

x Expectation-Maximization (EM) algorithm is a powerful method to obtain 
parameter estimation of graphical models and can use for unsupervised learning. In 
fact, the algorithm relies on discovering the maximum likelihood estimates of 
parameters when the data model depends on certain latent variables EM algorithm 
contains two steps, the E-step (expectation) and the M-step (maximization). Some 
researchers have applied this model to LDA training, such as  (Zhu et al., 2009) (Guo 
et al., 2009) (Chang and Blei, 2009) (Blei and Jordan, 2003). 

x Variational Bayes inference (VB), VB can be considered as a type of   EM 
extension that uses a parametric approximation to the posterior distribution of both 



parameters and other latent variables and attempts to optimize the fit (e.g. using KL-
divergence) to the observed data. Some researchers have applied this model to LDA 
training, such as (Zhai et al., 2012) (Asuncion et al., 2010) (Chien and Chueh, 2011). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
Fig1. Taxonomy of methods based on extension LDA, considered some of the impressive 
works 
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2.2.1. A brief look at past work: Research between 2003 to 2009 
The LDA was first presented in 2003, and researchers have been tried to provide extended 
approaches based on LDA. Undeniably, this period (2003 to 2009) is very important because 
key and baseline approaches were introduced, such as: Corr_LDA, Author-Topic Model , 
DTM and , RTM etc . 
 
DTM, Dynamic Topic Model (DTM) is introduced by Blei and Lafferty as an extension of 
LDA that this model can obtain the evolution of topics over time in a sequentially arranged 
corpus of documents and exhibits the evolution of word-topic distribution which causes it 
easy to vision the topic trend(Blei and Lafferty, 2006). Lable LDA, Labeled LDA (LLDA) is 
another of LDA extension which suppose that each document has a set of known labels 
(Ramage et al., 2009). This model can be trained with labeled documents and even supports 
documents with more than one label. Topics are learned from the co-occurring terms in 
places from the same category, with topics approximately capturing different place 
categories. A separate L-LDA model is trained for each place category, and can be used to 
infer the category of new, previously unseen places. LLDA is a supervised algorithm that 
makes topics applying the Labels assigned manually. Therefore, LLDA can obtain 
meaningful topics, with words that map well to the labels applied . 
 
MedLDA, proposed the maximum entropy discrimination latent Dirichlet allocation 
(MedLDA) model, which incorporates the mechanism behind the hierarchical Bayesian 
models (such as, LDA) with the max margin learning (such as SVMs) according to a unified 
restricted optimization framework. In fact each data sample is considered to a point in a finite 
dimensional latent space, of which each feature corresponds to a topic, i.e., unigram 
distribution over terms in a vocabulary (Zhu et al., 2009). Relational Topic Models (RTM), 
is another extension, RTM is a hierarchical model of networks and per-node attribute data. 
First, each document was created from topics in LDA. Then, modelling the connections 
between documents and considered as binary variables, one for each pair from documents. 
These are distributed based on a distribution that depends on the topics used to generate each 
of the constituent documents. So in this way, the content of the documents are statistically 
linked to the link structure between them and we can say that this model can be used to 
summarize a network of documents (Chang and Blei, 2009).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Tablel 1. Some impressive articles based on LDA: between 2003- 2009 
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2.2.2. A brief look at past work: Research between 2010 to 2011 
Eighteenth approaches are summarized in this subsection, where tenth are published in 2010 
and Eighth in 2011. According to the Table 2, used LDA model for variety subjects, such as: 
Scientific topic discovery (Paul and Girju, 2010), Source code analysis (Savage et al., 2010), 
Opinion Mining (Zhai et al., 2011), Event detection (Lin et al., 2010), Image Classification 
(Wang and Mori, 2011) . 
 
Sizov et al.  introduced a novel method based on multi-modal Bayesian models to describe 
social media by merging text features and spatial knowledge that called GeoFolk. As a 
general outlook, this method can be considered as an extension of Latent Dirichlet Allocation 
(LDA). They used the available standard CoPhIR dataset that it contains an abundance of 
over 54 million Flickr. The GeoFolk model has the ability to be used in quality-oriented 
applications and can be merged with some models from Web 2.0 social (Sizov, 2010). 
 
Z. Zhai et al. use prior knowledge as a constraint in the LDA models to improve grouping of 
features by LDA. They extract must link and cannot-link constraint from the corpus. Must 
link indicates that two features must be in the same group while cannot-link restricts that two 
features cannot be in the same group. These constraints are extracted automatically. If at least 
one of the terms of two product features are same, they are considered to be in the same 
group as must link. On the other hand, if two features are expressed in the same sentence 
without conjunction ”and”, they are considered as a different feature and should be in 
different groups as cannot-link (Zhai et al., 2011). 
 
 Wang et al.  they suggested an approach based on LDA that called Bio-LDA that can 
identify biological terminology to obtain latent topics. The authors have shown that this 
approach can be applied in different studies such as association search, association 
predication, and connectivity map generation. And they showed that Bio-LDA can be applied 
to increase the application of molecular bonding techniques as heat maps (Wang et al., 2011). 
 



Tablel 2. Some impressive articles based on LDA: between 2010- 2011 

Author-study Model Years 
Parameter 
Estimation 
/ Inference 

Methods Problem 
Domain 

(Sizov, 2010) 

GeoFolk 2010 Gibbs 
sampling 

LDA 
 

Content 
management 
and retrieval of  
spatial 
information 

(Jagarlamudi and 
Daumé III, 2010) JointLDA 

 2010 Gibbs 
Sampling 

-LDA 
-bag-of-word 
model 

Mining 
multilingual 
topics 

(Paul and Girju, 2010) Topic-Aspect Model 
(TAM) 2010 Gibbs 

Sampling 
-LDA 
-SVM 

Scientific topic 
discovery 

(Li et al., 2010) Dependency-Sentiment-
LDA 2010 Gibbs 

Sampling LDA Sentiment 
classification 

(Savage et al., 2010) TopicXP 2010  LDA Source code 
analysis 

(Zhai et al., 2011) constrained-LDA 2010 

Gibbs 
Sampling 

LDA Opinion 
Mining and 
Grouping 
Product 
Features 

(Lin et al., 2010) PET - Popular Events 
Tracking 

2010 Gibbs 
Sampling 

LDA Event analysis 
in social 
network 

(Weng and Lee, 2011) 
(Lin et al., 2010) 

EDCoW 2010  -LDA 
- Wavelet 
Transformation 

Event analysis 
in  Twitter 

(Wang et al., 2011) 
Bio-LDA. 2011 Gibbs 

Sampling -LDA 
Extract 
biological 
terminology 

(Zhao et al., 2011) 

Twitter-LDA 2011 Gibbs 
Sampling 

- LDA 
- author-topic 
model 
-PageRank 

Extracting 
topical 
keyphrases and 
analyzing 
Twitter content 

(Wang and Mori, 
2011) 

max-margin latent 
Dirichlet allocation 
(MMLDA 

2011 variational 
inference 

LDA 
- SVM 

Image 
Classification 
and Annotation 

(Jo and Oh, 2011) 

Sentence-LDA 2011 Gibbs 
sampling LDA 

Aspects and 
sentiment 
discovery for 
web review 

(Liu et al., 2011) PLDA+ 2011 Gibbs 
sampling 

-LDA 
-weighted 
round-robin 

Reduce inter-
computer 
communication 
time 

(Chien and Chueh, 
2011) 

Dirichlet class language 
model (DCLM), 

2011 variational 
Bayesian 
EM (VB-
EM) 
algorithm  

speech 
recognition and 
exploitation of 
language 
models 

Dirichlet class 
language 
model 
(DCLM), 

 
 
2.2.3. A brief look at past work: Research between 2012 to 2013 



According to Table 3, some of the popular works published between 2012 and 2013 focused 
on a variety of topics, such as music retrieve (Yoshii and Goto, 2012), opinion and aspect 
mining(Li et al., 2013), Event analysis(Hu et al., 2012). 
 
ET-LDA, In this work, the authors developed a joint Bayesian model that performs event 
segmentation and topic modeling in one unified framework. In fact, they proposed an LDA 
model to obtain event's topics and analysis tweeting behaviors on Twitter that called  Event 
and Tweets LDA (ET-LDA). They employed Gibbs Sampling method to estimate the topic 
distribution(Hu et al., 2012). Mr. LDA , The authors introduced a novel model and 
parallelized LDA algorithm in the MapReduce framework that called Mr. LDA. In contrast 
other approaches which use Gibbs sampling for LDA, this model uses variational inference 
(Zhai et al., 2012). LDA-GA, The authors focused on the issue of Textual Analysis in 
Software Engineering. They proposed an LDA model based on Genetic Algorithm to 
determine a near-optimal configuration for LDA (LDA-GA), This approach is considered by 
three scenarios that include: (a) traceability link recovery, (b) feature location, and (c) 
labeling. They applied the Euclidean distance to measuring the distance between documents 
and used Fast collapsed Gibbs sampling to approximate the posterior distributions of 
parameters(Panichella et al., 2013). 
 
 
 
 
Table1 3. Some impressive articles based on LDA: between 2012- 2013 

Author-study Model Years 
Parameter 

Estimation / 
Inference 

Methods Problem 
Domain 

(Wu et al., 
2012a) 

locally 
discriminative 
topic model 
(LDTM) 
 

2012 
Expectation-
maximization 
(EM) 

LDA document 
semantic 
analysis 

(Wu et al., 
2012a) 

locally 
discriminative 
topic model 
(LDTM) 
 

2012 
Expectation-
maximization 
(EM) 

LDA document 
semantic 
analysis 

(Hu et al., 
2012) ET-LDA 2012 Gibbs 

sampling 
LDA 
 

event 
segmentation 
Twitter 

(Yoshii and 
Goto, 2012) 

infinite latent 
harmonic 
allocation 
(iLHA) 

2012 expectation–
maximization 
(EM) 
algorithm 
/variational 
Bayes (VB) 

-LDA 
-variational 
Bayes(VB) 
-
HDP(Hierarchical 
Dirichlet 
processes) 

multipitch 
analysis and 
music 
information 
retrieval 

(Zhai et al., 
2012) 

Mr. LDA 2012 
Variational 
Bayes 
inference 

-LDA 
-Newton-
Raphson method 
-  MapReduce 
Algorithm 

exploring 
document 
collections 
from large 
scale 

(Tan et al., 
2014) FB-LDA , 

RCB-LDA 2012 Gibbs 
Sampling 

LDA 
 

analyze and 
track public 
sentiment 
variations (on 



twitter) 
(Paul and 
Dredze, 2012) 

factorial LDA 2012 Gibbs 
sampling LDA 

analysis text in  
a Multi-
Dimensional 
multi-
dimensional 
structure 

(Mao et al., 
2012) SShLDA 2012 Gibbs 

sampling 
LDA 
hLDA 

Topic 
discovery in 
data space 

(Choo et al., 
2013) 

Utopian 2013 Gibbs 
sampling 

LDA visual text 
analytics 

(Panichella et 
al., 2013) 

LDA–GA 2013 Gibbs 
sampling 

LDA 
-Genetic 
Algorithm 

software 
textual 
retrieval and 
analysis 

(Xianghua et 
al., 2013) 

Multi-aspect 
Sentiment 
Analysis for 
Chinese 
Online Social 
Reviews 
(MSA-COSRs 

2013 Gibbs 
Sampling  

LDA 
 

sentiment 
analysis  
And aspect 
mining of of 
Chinese social 
reviews 

(Li et al., 
2013) 

TopicSpam  
 

2013 Gibbs 
sampling 

LDA opinion spam 
detection 

(Chen et al., 
2013) 

WT-LDA 2013 Gibbs 
sampling 

LDA Web Service 
Clustering 

 
 
2.2.4. A brief look at past work: Research between 2014 to 2015 
According to Table 4, some of the popular works published between 2014 and 2015 focused 
on a variety of topics, such as: Hash/tag discovery (Wang et al., 2014a) (Lu and Lee, 2015), 
opinion mining and aspect mining (Bagheri et al., 2014) (Zheng et al., 2014) (Cheng et al., 
2014) (Wang et al., 2014c), system recommendation(Lu and Lee, 2015) (Yang and Rim, 
2014) (Kim and Shim, 2014). 
  
Biterm Topic Modeling (BTM), Topic modeling over short texts is an increasingly 
important task due to the prevalence of short texts on the Web. Short texts are popular on 
today’s Web, especially with the emergence of social media. Inferring topics from large scale 
short texts becomes critical.  They proposed a novel topic model for short texts, namely the 
biterm topic model (BTM). This model can well capture the topics within short texts by 
explicitly modeling word co-occurrence patterns in the whole corpus(Cohen et al., 2014). 
 
TOT-MMM, introduced a hashtag recommendation that called TOT-MMM, This approach 
is a hybrid model that combines a temporal clustering component similar to that of the 
Topics-over-Time (TOT) Model with the Mixed Membership Model (MMM) that was 
originally proposed for word-citation co-occurrence. This model can capture the temporal 
clustering effect in latent topics, thereby improving hashtag modeling and recommendations. 
They developed a collapsed Gibbs sampling (CGS)  for approximate the posterior modes of 
the remaining random variables(Lu and Lee, 2015). The posterior distribution of latent topic 
equaling k for the nth hashtag in tweet d is given by: 
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(h) where denotes the number of hashtags type ݓௗ௡

(௕)  assigned to latent topic k, excluding the 

hashtag currently undergoing processing; ܿିௗ௡,௞
(௛)  denotes the number of hashtags assigned to 

latent topic k, excluding the assignment at position ݀௡ ; ܿିௗ௡,௞
(ௗ௛ )  denotes the number of 

hashtags assigned to latent topic k in tweet d, excluding the hashtag currently undergoing 
processing; ܿ.,௞

(ௗ೘) denotes the number of words assigned to latent topic k in tweet d; ௕ܸ   is 
the number of unique hashtags; ݐௗ  is the tweet time stamp omitting position subscripts and 
superscripts (all words and hashtags share the same time stamp); ψ௞ଵ ,ψ௞ଶ are the parameters of 
the beta distribution for latent topic k. 
 
The probability for a hashtag given the observed words and time stamps is: 
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where ሖܵ is the total number of recorded sweeps, and the superscript s marks the parameters 
computed based on a specific recorded sweep. To provide the top N predictions, they ranked 
௩௡ݓቀ݌

(௛)ቚ. ቁ from largest to smallest and output the first N hashtags. 
 
rLDA , the authors introduced a novel probabilistic formulation to obtain the relevance of a 
tag with considering all the other images and their tags and also they proposed a novel model 
called regularized latent Dirichlet allocation (rLDA). This model can estimates the latent 
topics for each document, with making use of other documents. They used a collective 
inference scheme to estimate the distribution of latent topics and applied a deep network 
structure to analyze the benefit of regularized LDA (Wang et al., 2014a) (Lu and Lee, 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table1 4. Some impressive articles based on LDA: between 2014-2015 

Author-study Model Years 
Parameter 

Estimation / 
Inference 

Methods Problem 
Domain 

(Rao et al., 
2014) emotion LDA (ELDA 2014 Gibbs 

sampling 
LDA 
 

Social emotion 
classification of 
online news 

(Kim and 
Shim, 2014) TWILITE 2014 EM 

algorithm 
LDA 
 

Recommendation 
system for 
Twitter 

(Cohen et al., 
2014) 

Red-LDA 2014 Gibbs-
Samplin 

-LDA 
 
 

Extract 
information and 
and data 
modeling… in  
Patient Record 
Notes 
 

(Cohen et al., 
2014) Biterm Topic Modeling (BTM) 2014 Gibbs 

sampling 

LDA 
 
 

Document 
clustering for 
short text 

(Yang and 
Rim, 2014) 

Trend Sensitive-Latent 
Dirichlet Allocation (TS-LDA)  
 

2014 Gibbs 
sampling 

LDA 
- normalized 
Discounted 
Cumulative 
Gain (nDCG) 
- Amazon 
Mechanical 
Turk (AMT)2 
platform 

Interesting 
tweets discover 
for users, system 
recommendation 

(Wang et al., 
2014c) 

Fine-grained Labeled LDA 
(FL-LDA), Unified Fine-
grained Labeled LDA (UFL-
LDA) 
 

2014 Gibbs 
sampling 
 

LDA Aspect extraction 
and review 
mining 

(Wang et al., 
2014a) (Lu 
and Lee, 2015) 

 
regularized latent Dirichlet 
allocation (rLDA) 
 

2014 Variational 
Bayes 
inference 

LDA Automatic image 
tagging or tag 
recommendation 

(Cheng et al., 
2014) 

generative probabilistic aspect 
mining model (PAMM)   
 

2014 Expectation-
maximization 
(EM) 

LDA Opinion mining 
and groupings of 
drug reviews, 
aspect mining 

(Zheng et al., 
2014) 

AEP-based Latent Dirichlet 
Allocation (AEP-LDA) 
 

2014 Gibbs 
sampling 

LDA 
 

Opinion /aspect 
mining and 
sentiment word 
identification 

(Bagheri et al., 
2014) 

ADM-LDA  2014 Gibbs 
sampling 

LDA 
Markov chain 

Aspect mining 
and sentiment 
analysis 

(Xie et al., 
2015) 

MRF-LDA 2015 EM 
algorithm 

-LDA 
-Markov 
Random 
Field 

Exploiting word 
correlation 
knowledge 

 Hawkes-LDA 2015 Variational 
Bayes 
inference 

LDA Analyzing text 
content and 
modeling 
scientific 
influence 

(Yuan et al., LightLDA 2015 Gibbs LDA Topic modeling 



2015)  sampling  
Metropolis-
Hastings 
sampling 
algorithm 
 
 

for very large 
data sizes 

(Nguyen et al., 
2015) 

Latent Feature LDA (LF-
LDA), LF-DMM 

2015 Gibbs 
sampling 

LDA Document 
clustering for 
short text 

 TH Rank   
 

2015 Gibbs 
sampling  

-LDA 
-Author-
Conference-
Topic (ACT) 
model 
- PageRank  
 

Topic sensitive 
ranking and find 
the relevant 
papers in 
journals 

(Li et al., 
2015a) 

 author-topic-community 
(ATC) 
 

2015 Expectation-
maximization 
(EM) 

LDA 
 

Author 
community 
discovery  and 
Author interest 
profiling 

(Lu and Lee, 
2015) 

TOT-MMM   
 

2015 Gibbs 
sampling 

LDA 
 

Twitter Hashtag 
Recommendation 

(Yu et al., 
2015b) 

 link-field-topic (LFT),  
 

2015 Gibbs 
sampling 

LDA 
- semantic 
link weight 
(SLW) 

Semantic 
community 
detection and 
dynamic topic 
discovery 

(Jiang et al., 
2015) 

Scalable Geographic Web 
Search Topic Discovery (SG-
WSTD)  
 

2015  Gibbs 
sampling 

LDA 
k-means 
algorithm 

Geographic web 
search topic 
discovery and 
extracting 
geographic 
information 

(Fu et al., 
2015) 

dynamic NJST (dNJST)    
 

2015 Gibbs 
sampling 
algorithms 

-LDA 
-hierarchical 
Dirichlet 
process 
(HDP) 

Dynamic 
sentiment topic 
discovery in 
Chinese social 
media 

(Li et al., 
2015b) 

Frequency-LDA (FLDA) and 
Dependency-Frequency-LDA 
(DFLDA) 

2015 Gibbs 
sampling 
algorithms 

-LDA 
 

Multi-label 
document 
categorization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
2.2.4. A brief look from some impressive past works: Research in 2016 
According to Table 5, some of the popular works published for this year focused on a variety 
of topics, such as recommendation system(Cheng and Shen, 2016) (Zoghbi et al., 2016) (Zhao et al., 
2016) , opinion mining and aspect mining (Bagheri et al., 2014) (Zheng et al., 2014) (Cheng et 
al., 2014) (Wang et al., 2014c). 
 
A bursty topic on Twitter is one that triggers a surge of relevant tweets within a short period 
of time, which often reflects important events of mass interest. How to leverage Twitter for 
early detection of bursty topics has, therefore, become an important research problem with 
immense practical value. In TopicSketch(Xie et al., 2016),  proposed a sketch-based topic 
model together with a set of techniques to achieve real-time bursty topic detection from the 
perspective of topic modeling, that called in this paper TopicSketch. 
 
The bursty topics are often triggered by some events such as some breaking news or a 
compelling basketball game, which get a lot of attention from people, and “force” people to 
tweet about them intensely. For example, in physics, this “force” can be expressed by 
“acceleration”, which in our setting describes the change of “velocity”, i.e., arriving rate of 
tweets. Bursty topics can get significant acceleration when they are bursting, while the 
general topics usually get nearly zero acceleration. So the “acceleration” trick can be used to 
preserve the information of bursty topics but filter out the others. Equation (3) shows how we 
calculate the “velocity” ݒො(ݐ) and “acceleration” ߙො(ݐ) of words. 

 
்∆ොݒ = ∑ ௜ܺ௧೔ஸ௧ . ୣ୶୮	( (௧೔ି௧) /∆்)

∆்
(ݐ)ොߙ  , = ௩ො∆೅మ(௧)ି௩ො∆೅భ(௧)

∆ భ்ି∆ మ்
.                                      (3) 

 
In Equation (1), ௜ܺ is the frequency of a word (or a pair of words, or a triple of words) in the 
i-th tweet, ݐ௜  is its timestamp. The exponential part in ݒො∆்(ݐ)  works like a soft moving 
window, which gives the recent terms high weight, but gives low weight to the ones far away, 
and the smoothing parameter ∆ܶ is the window size.  
 
Hashtag-LDA, the authors a personalized hashtag recommendation approach is introduced 
according to the latent topical information in untagged microblogs. This model can enhance 
the influence of hashtags on latent topics’ generation by jointly modeling hashtags and words 
in microblogs. This approach inferred by Gibbs sampling to  latent topics and  considered a 
real-world Twitter dataset to  evaluation their approach (Zhao et al., 2016). CDLDA 
proposed a conceptual dynamic latent Dirichlet allocation model for tracking and topic 
detection for conversational communication, particularly for spoken interactions. This model 
can extract the dependencies between topics and speech acts. The CDLDA  applied 
hypernym information and speech acts for topic detection and tracking in conversations, and 
it captures contextual information from transitions, incorporated concept features and speech 
acts (Yeh et al., 2016). 
 
 
Table1 5. Some impressive articles based on LDA for 2016 

Author-
Study Model Years 

Parameter 
Estimation / 

Inference 
Methods Problem Domain 

(Zhao et al., 
2016) Hashtag-LDA 2016 Gibbs 

sampling 
LDA 
 

Hashtag 
recommendation 



and Find 
relationships 
between topics and 
hashtags 

(Hong et al., 
2016) PMB-LDA 2016 

Expectation-
maximization 
(EM) 

LDA 
 

Extract the 
population 
mobility behaviors 
for large scale 

(Lee et al., 
2016) 

Automatic Rule Generation 
(LARGen 
 

2016 Gibbs 
Sampling 

LDA 
 

Malware analysis 
and Automatic 
Signature 
Generation 

(Liu et al., 
2016) 

PT-LDA 2016 Gibbs-EM 
algorithm 

LDA 
 

Personality 
recognition in 
social network 

(Li et al., 
2016a) 

Corr-wddCRF 
 

2016 Gibbs 
sampling 

LDA Knowledge 
Discovery in 
Electronic Medical 
Record 

(Zoghbi et 
al., 2016) 

multi-idiomatic LDA model 
(MiLDA)  
 

2016 Gibbs 
sampling 

LDA 
bilingual LDA 
(BiLDA 

Content-based 
recommendation 
and automatic 
linking 

(Cheng and 
Shen, 2016) 

 Location-aware Topic Model 
(LTM)  
 

2016 Gibbs 
sampling 

LDA Music 
Recommendation  

(Miao et al., 
2016) 

TopPRF  
 
 
 
 
 
 

2016 Gibbs 
sampling 

LDA Evaluate the 
relevancy between 
feedback 
documents 

(Rao, 2016) contextual sentiment topic 
model (CSTM)  

2016 Expectation-
maximization 
(EM) 

LDA 
 

Emotion 
classification in 
social network 

(Yeh et al., 
2016) 

conceptual dynamic latent 
Dirichlet allocation 
(CDLDA)   
 

2016 Gibbs 
sampling 

LDA 
 

Topic detection in 
conversations 

(Lu et al., 
2016) 

multiple-channel latent 
Dirichlet allocation (MCLDA) 
 

2016 Gibbs 
sampling 

LDA 
 

Find the relations 
between diagnoses 
and medications 
from  healthcare 
data 

(Qian et al., 
2016) 

multi-modal event topic 
model (mmETM) 
 

2016 Gibbs 
sampling 

LDA Tracking  and 
social event 
analysis  

(Fu et al., 
2016) 

Dynamic Online Hierarchical 
Dirichlet Process model 
(DOHDP)  
 

2016 Gibbs 
samplin 

LDA Dynamic topic 
evolutionary 
discovery for 
Chinese social 
media 

(Xie et al., 
2016) 

Topicsketch  
 

2016 Gibbs 
sampling 

LDA 
- tensor 
decomposition 
algorithm  
- Count-Min 
algorithm 

Realtime detection 
and bursty topics 
dicovery from 
Twitter 



(Zeng et al., 
2016) 

fast online EM (FOEM)   
 

2016 Expectation-
maximization 
(Batch EM) 

LDA 
 

Big topic modeling 

(Alam et al., 
2016) 

Joint Multi-
grain Topic Sentiment (JMTS) 

2016 Gibbs 
sampling 

LDA 
 

Extracting 
semantic aspects  
from online 
reviews 

(Qin et al., 
2016) 

 
 character–word topic model 
(CWTM)   

2016 Gibbs 
sampling 

LDA 
 

Capture the 
semantic contents 
in text 
documents(Chinese 
language). 

 
 
 
2.2 Topic Modeling for which the area is used? 
With the passage of time, the importance of Topic modeling in different disciplines will be 
increase. According to previous studies, we present a taxonomy of current approaches topic 
models based on LDA model and in different subject such as Social Network(McCallum et 
al., 2005) (Wang et al., 2013) (Henderson and Eliassi-Rad, 2009, Yu et al., 2015a), Software 
Engineering(Linstead et al., 2008) (Chen et al., 2012) (Gethers and Poshyvanyk, 2010) 
(Linstead et al., 2007), Crime Science(Chen et al., 2015) (Gerber, 2014) (Wang et al., 2012) 
and also in areas of Geographical(Cristani et al., 2008) (Yin et al., 2011) (Sizov, 2010) (Tang 
et al., 2013), Political Science(Greene and Cross, 2015) (Cohen and Ruths, 2013) , 
Medical/Biomedical (Liu et al., 2010) (Huang et al., 2013) (Wang et al., 2011) (Zhang et al., 
2017) (Xiao et al., 2017) and Linguistic science (Bauer et al., 2012) (McFarland et al., 2013) 
(Eidelman et al., 2012) (Wilson and Chew, 2010) (Vulić et al., 2011) as illustrated by Fig. 2.  
 
 

 
Fig2.  A clear vision of the application of Topic modeling in various sciences (Based on 

previous work). 
 
A. Topic modeling in Linguistic science 
LDA is an advanced textual analysis technique grounded in computational linguistics 
research that calculates the statistical correlations among words in a large set of documents to 
identify and quantify the underlying topics in these documents. In this subsection, we 
examine some of topic modeling methodology from computational linguistic research. Vulic 
et al.  employed the distributional hypothesis in various direction and it efforts to cancel the 



requirement of a seed lexicon as an essential prerequisite for use of bilingual vocabulary and 
introduce various ways to identify the translation of words among languages (Vulić et al., 
2011). Eidelman et al.  introduced a method that leads the machine translation systems to 
relevant translations based on topic-specific contexts and used the topic distributions to 
obtain topic-dependent lexical weighting probabilities. They considered a topic model for 
training data, and adapt the translation model. To evaluate their approach, they performed 
experiments on Chinese to English machine translation and show the approach can be an 
effective strategy for dynamically biasing a statistical machine translation towards relevant 
translations (Eidelman et al., 2012). 

 
Table6. Impressive works LDA-based in Linguistic science 

Study- Author Year Purpose Dataset 
(Vulić et al., 2011) 2011 Introduce various ways to 

identify the translation of words 
among languages [BiLDA]. 

A Wikipedia 
dataset (Arabic, 
Spanish, 
French, Russian 
and English) 

(Wilson and Chew, 
2010) 
 
 
 

 2010 Obtain term weighting based on 
LDA 

A multilingual 
dataset 

 
(McFarland et al., 
2013) 

2013 Present a diversity of new 
visualization techniques to 
make concept of topic-solutions 

Dissertation 
abstracts_1980–
2010 
- 1 million 
abstracts 

(Bauer et al., 2012) 
 

2012 A topic modeling approach, 
that it consider geographic 
information 

Foursquare 
Dataset 

 
(Lui et al., 2014) 

2014 An approach that is capable to 
find a document with different 
language 

ALTW2010 

 
(Heintz et al., 2013) 

2013 A method for linguistic 
discovery and conceptual 
metaphors resources 

Wikipedia 

 
 
McFarland et al. presented a diversity of new visualization techniques to make the concept 
of topic-solutions and introduce new forms of supervised LDA, to evaluation they considered 
a corpus of dissertation abstracts from 1980–2010 that belongs to 240 universities in the 
United States(McFarland et al., 2013). Bauer et al. developed a standard topic modeling 
approach, that it consider geographic and temporal information and this approach used to 
Foursquare data and discover the dominant topics in the proximity of a city. Also, the 
researchers have shown that the abundance of data available in location-based social network 
(LBSN) enables such models to obtain the topical dynamics in urbanite environments(Bauer 
et al., 2012).  Heintz et al have introduced a method for discovery of linguistic and 
conceptual metaphors resources and built an LDA model on Wikipedia; align its topics to 
possibly source and aim concepts, they used from both target and source domains to identify 
sentences as potentially metaphorical(Heintz et al., 2013). Lui et al.   presented an approach 



that is capable to find a document with a different language and identify the current language 
in a document and next step calculate their relative proportions, this approach is based on 
LDA and used from ALTW2010 as a dataset to evaluation their method (Lui et al., 2014). 
 
B. Topic modeling in political science 
Some topic modeling methods have been adopted in the political science literature to analyze 
political attention. In settings where politicians have limited time-resources to express their 
views, such as the plenary sessions in parliaments, politicians must decide what topics to 
address. Analyzing such speeches can thus provide insight into the political priorities of the 
politician under consideration. Single membership topic models that assume each speech 
relates to one topic; have successfully been applied to plenary speeches made in the 105th to 
the 108th U.S. Senate in order to trace political attention of the Senators within this context 
over time [18]. Also, some researchers proposed a new two-layer matrix factorization 
methodology for identifying topics in large political speech corpora over time and identify 
both niche topics related to events at a particular point in time and broad, long-running topics. 
This paper has focused on European Parliament speeches, the proposed topic modeling 
method has a number of potential applications in the study of politics, including the analysis 
of speeches in other parliaments, political manifestos, and other more traditional forms of 
political texts (Greene and Cross, 2015). Cohen et al.  The purpose of the study is to examine 
the various effects of dataset selection with consideration of policy orientation classifiers and 
built three datasets that each data set include of a collection of Twitter users who have a 
political orientation. In this approach, the output of an LDA has been used as one of many 
features as a fed for apply SVM classifier and another part of this method used an LLDA that 
Considered as a stand-alone classifier. Their assessment showed that there are some 
limitations to building labels for non-political user categories (Cohen and Ruths, 2013).  
 

Table7. Impressive works LDA-based in political science 
Study- Author Year Purpose Dataset 
(Cohen and 
Ruths, 2013) 

2013 Evaluate the behavioral effects 
of different databases from  
political orientation classifiers 

-Political Figures Dataset 
-Politically Active Dataset 
(PAD) 
-Politically Modest Dataset 
(PMD) 
-Conover 2011 Dataset (C2D) 

 
(Fang et al., 
2012) 
 
 

 Introduce  a topic model for 
contrastive opinion modeling 

-Statement records of U.S. 
senators 

 

 
(Balasubramany
an et al., 2012) 
 

2012 Detection topics that evoke 
different reactions from 
communities that 
lie on the political spectrum 

A collection of blog posts 
from five blogs:  
1. Carpetbagger(CB)- 
thecarpetbaggerreport.com 
 
2. Daily Kos(DK) - 
dailykos.com 
 
3. Matthew Yglesias(MY) - 
yglesias.thinkprogress.org 



 
4.Red State(RS) -
redstate.com 
  
5.Right Wing News(RWN) - 
rightwingnews.com 

 
(Chen et al., 
2010) 

2010 Discover the hidden 
relationships between opinion 
word and topics words 

The statement records of 
senators through 
the Project Vote Smart 
(http://www.votesmart.org ) 

(Song et al., 
2014) 

2014 Analyze issues related to 
Korea's presidential election 

Project Vote Smart WebSite 
(https://votesmart.org/) 

 
(Levy and 
Franklin, 2014) 
 
 
 

2014 Examine Political Contention 
in the U.S. Trucking Industry 

Regulations.gov online portal 

 
(Zirn and 
Stuckenschmidt
, 2014) 

2015 presented a method for multi-
dimensional analysis of 
political documents 

three Germannational 
elections (2002, 2005 and 
2009) 

 
 
Fang et al.  They suggested a new unsupervised topic model based on LDA for contrastive 
opinion modeling which purpose to find the opinions from multiple views, according to a 
given topic and their difference on the topic with qualifying criteria, the model called Cross-
Perspective Topic (CPT) model. They performed experiments with both qualitative and 
quantitative measures on two datasets in the political area that include: first dataset is 
statement records of U.S. senators that show political stances of senators by these records, 
also for the second dataset, extracted of world News Medias from three representative media 
in U.S (New York Times), China (Xinhua News) and India (Hindu). To evaluate their 
approach with other models used corrIDA and LDA as two baselines (Fang et al., 2012). 
Yano et al.  applied several probabilistic models based on LDA to predict responses from 
political blog posts.in more detail, they used topic models LinkLDA and CommentLDA to 
generate blog data(topics, words of post) in their method and with this model can found a 
relationship between the post, the commentators and their responses. To evaluation, their 
model gathered comments and blog posts with focusing on American politics from 40 blog 
sites (Yano et al., 2009, Yano and Smith, 2010).  
 
Madan et al.  Introduced a new application of universal sensing based on using mobile 
phone sensors and used an LDA topic model to discover pattern and analysis of behaviors of 
people who changed their political opinions, also evaluated to various political opinions for 
residents of individual , with consider a measure of dynamic homophily that reveals patterns 
for external political events. To collect data and apply their approach, they provided a mobile 
sensing platform to capture social interactions and dependent variables of  American 
Presidential campaigns of John McCain and President Barack Obama in last three months of 



2008 (Madan et al., 2011). Balasubramanyan et al.  they analyzed reactions of emotional 
and suggested a novel model Multi Community Response LDA (MCR-LDA) which in fact is 
a multi-target and for predicting comment polarity from post content used sLDA and support 
vector machine classification (Balasubramanyan et al., 2012). To evaluation, their approach 
they provided a dataset of blog posts from five blogs that focus on US politics that was made 
by (Yano et al., 2009).  
 
Chen et al.  suggested a generative model to auto discover of the latent associations between 
opinion words and topics that can be useful for extraction of political standpoints and used an 
LDA model to reduce the size of adjective words,  the authors successfully get that sentences 
extracted by their model and they shown this model can effectively in different opinions. 
They were focused on statement records of senators that includes 15, 512 statements from 88 
senators from Project Vote Smart WebSite (Chen et al., 2010). Song and et al.   It was 
examined how social and political issues related to South Korean presidential elections in 
2012 on Twitter and used an LDA method to evaluate the relationship between topics 
extracted from events and tweets (Song et al., 2014). Zirn et al.  proposed a method for 
evaluating and comparing documents, based on an extension of LDA, and used LogicLDA 
and Labeled LDA approaches for topic modeling in their method. They are considered 
German National Elections since 1990 as a dataset to apply their method and shown that the 
use of their method consistently better than a baseline method that simulates manual 
annotation based on text and keywords evaluation (Zirn and Stuckenschmidt, 2014). 
 
C. Topic modeling in Medical/Biomedical 
Topic models applied to text mining in Medical/biomedical domain, according to previous 
studies, LDA can be very effective and functional in this field. Topic modeling could be 
advantageously applied to the large datasets of biomedical/medical research. For example, a 
group of researchers, introduced three LDA-like models and found that this model cans 
higher accuracy than the state-of-the-art alternatives. Authors demonstrated that this approach 
based on LDA could successfully recognize the probabilistic patterns between Adverse drug 
reaction (ADR) topics and used ADRS database for evaluation their approach. The aim of the 
authors to predict ADR from a large number of ADR candidates to obtain a drug target(Xiao 
et al., 2017). Zhang et al.  They focused on the issue of professionalized medical 
recommendations and proposed a new healthcare recommendation system that called 
iDoctor, that used Hybrid matrix factorization methods for the professionalized doctor 
recommendation. In fact, They adopted an LDA topic model to extract the topics of doctor 
features and analyzing document similarity. The dataset this article is college from a crowd 
sourced website that called Yelp. Their result showed that iDoctor can increase the accuracy 
of health recommendations and it can has higher prediction in users ratings(Zhang et al., 
2017).  
 

 
Table8. Impressive works LDA-based in medical/biomedical 

Study- 
Author 

Year Purpose/problem domain Dataset 



 
(Xiao et al., 
2017) 

2017 Presented three LDA-based 
models Adverse Drug 
Reaction Prediction 

ADReCS database 

 
(Wang et al., 
2011) 

2011 Extract 
biological terminology 

 
-MEDLINE and Bio-Terms 
Extraction 
 
-Chem2Bio2Rdf. 

 
(Zhang et al., 
2017) 

2017 User preference 
distribution discovery and 
identity distribution of 
doctor feature 

-Yelp Dataset 
(Yelp.com) 

 
(Wu et al., 
2012b) 

2012 -Ranking GENE-DRUG 
 
-Detecting relationship 
between gene and drug 

National Library of Medicine 

 
(Paul and 
Dredze, 
2011) 

2011 Analyzing public health 
information on Twetter 

20 disease articles of twitter 
data 

(Wang et al., 
2013) 

2013 Analysis of Generated 
Content by User from 
social networking sites 

one million English posted 
from Facebook’s server logs 

 
(Huang et al., 
2013) 

2013 Pattern discovery and 
extraction  for Clinical 
Processes 

 a data-set from Zhejiang 
Huzhou Central Hospital of 
China 

 
(Liu et al., 
2010) 

2011 Identifying miRNA-mRNA 
in functional miRNA 
regulatory modules 

mouse mammary dataset 
(Zhu et al., 2010) 

 
(Zhang et al., 
2011) 
 

2011 Extract common 
relationship 

T2DM Clinical Dataset 

 2012 Extract the latent topic in T2DM Clinical Dataset 



(Jiang et al., 
2012) 

Traditional Chinese 
Medicine document 

 
 
 
 
Wang et al.  they suggested an approach based on LDA that called Bio-LDA that can 
identify biological terminology to obtain latent topics. The authors have shown that this 
approach can be applied in different studies such as association search, association 
predication, and connectivity map generation. And they showed that Bio-LDA can be applied 
to increase the application of molecular bonding techniques as heat maps(Wang et al., 2011). 
Wu et al.  proposed a topic modeling for rating gene-drug relations by using probabilistic KL 
distance and LDA that called LDA-PKL and showed that the suggested model achieved 
better than Mean Average Precision (MAP). They found that the presented method achieved 
a high Mean Average Precision (MAP) to rating and detecting pharmacogenomics(PGx) 
relations. To analyze and apply their approach used a dataset from National Library of 
Medicine(Wu et al., 2012b). Paul et al.  Presented Ailment Topic Aspect Model (ATAM) to 
the analysis of more than one and a half million tweets in public health and they were focused 
on a specific question and specific models; “what public health information can be learned 
from Twitter?(Paul and Dredze, 2011)”.  
 
Huang et al.  they introduced an LDA based method to discover patterns of internal 
treatment for Clinical processes (CPs), and currently, detect these hidden patterns is one of 
the most serious elements of clinical process evaluation. Their main approach is to obtain 
care flow logs and also estimate hidden patterns for the gathered logs based on LDA. Patterns 
identified can apply for classification and discover clinical activities with the same medical 
treatment. To experiment the potentials of their approach, used a data-set that collected from 
Zhejiang Huzhou Central Hospital of China(Huang et al., 2013). Liu et al.  They introduced 
a model for the discovery of functional miRNA regulatory modules (FMRMs) that merge 
heterogeneous datasets and it including expression profiles of both miRNAs and mRNAs, 
using or even without using exploit the previous goal binding information. This model used a 
topic model based on Correspondence Latent Dirichlet Allocation (Corr-LDA). As an 
evaluation dataset, they perform their method to mouse model expression datasets to study 
the issue of human breast cancer. The authors found that their model is mighty to obtain 
different biologically meaningful models (Liu et al., 2010). Zhang et al.  The authors had a 
study on Chinese medical (CM) diagnosis by topic modeling and introduced a model based 
on Author-Topic model to detect CM diagnosis from Clinical Information of Diabetes 
Patients, and called Symptom-Herb-Diagnosis topic (SHDT) model. Evaluation dataset has 
been collected from 328 diabetes patients. The results indicated that the SHDT model can 
discover herb prescription topics and typical symptom for a bunch of important medical-
related diseases in comorbidity diseases (such as; heart disease and diabetic kidney)(Zhang et 
al., 2011).  
 
D. Topic modeling in Geographical/locations 
There is a significant body of research on geographical topic modeling. According to past 
work, researchers have shown that topic modeling based on location information and textual 
information can be effective to discover geographical topics and Geographical Topic 
Analysis. Yin et al.  This article examines the issue of topic modeling to extract the topics 
from geographic information and GPS-related documents. They suggested a new location text 
method that is a combination of topic modeling and geographical clustering called LGTA 



(Latent Geographical Topic Analysis). To test their approaches, they collected a set of data 
from the website Flickr, according to various topics(Yin et al., 2011). Sizov et al.  They 
introduced a novel method based on multi-modal Bayesian models to describe social media 
by merging text features and spatial knowledge that called GeoFolk. As a general outlook, 
this method can be considered as an extension of Latent Dirichlet Allocation (LDA). They 
used the available standard CoPhIR dataset that it contains an abundance of over 54 million 
Flickr. The GeoFolk model has the ability to be used in quality-oriented applications and can 
be merged with some models from Web 2.0 social (Sizov, 2010).  Tang et al.  they proposed 
a multiscale LDA model that is a combination of multiscale image representation and 
probabilistic topic model to obtain effective clustering VHR satellite images (Tang et al., 
2013).  
 
 
 
 
 
 
 

Table 9. Impressive works LDA-based in geographical/locations 
Study- 
Author 

Year Purpose Dataset 

 
(Sizov, 2010) 

2010 Discovering multi-faceted 
summaries of documents 

CoPhIR dataset 

 
(Yin et al., 
2011) 

2011 Content management and 
retrieval 

Flicker Dataset 

 
(Tang et al., 
2013) 

2013 Semantic clustering in very 
high resolution 
panchromatic 
satellite images 

A QUICKBIRD 
image of a 
suburban area 

 
(Eisenstein et 
al., 2010) 

2010 Data Discovery, Evaluation 
of geographically coherent 
linguistic regions and find 
the relationship between 
topic variation and regional. 

A Twitter Dataset 

 
(Cristani et 
al., 2008) 

2008 Geo-located image 
categorization and 
georecognition 

3013 images 
Panoramio in 
France 

(Zhang et al., 
2015) 
 

2015 Cluster discovery in geo-
locations 

Reuters-21578 

 
(McInerney 
and Blei, 
2014) 

2014 Discovering newsworthy 
information From Twitter 

A small Twitter 
Dataset  

 
 
 
Eisenstein et al.  They introduced a model that includes two sources of lexical variation: 
geographical area and topic, in another word, this model can discover words with 



geographical coherence in different linguistic regions, and find a relationship between 
regional and variety of topics. To test their model, they gathered a dataset from the website 
Twitter and also we can say that,  also can show from an author’s geographic location from 
raw text (Eisenstein et al., 2010) (Tang et al., 2013) (Yin et al., 2011) (Sizov, 2010). Cristani 
et al.  They suggested a statistical model for classification of geo-located images based on 
latent representation. In this model, the content of a geo-located database able be visualized 
by means of some few selected images for each geo-category. This model can be considered 
as an extension of probabilistic Latent Semantic Analysis (pLSA). They built a database of 
the geo-located image which contains 3013 images (Panoramio), that is related to 
southeastern France (Cristani et al., 2008). 

 
Zhang et al.  In this work, Authors focused on the issue of identifying textual topics of 
clusters including spatial objects with descriptions of text. They presented combined methods 
based on cluster method and topic model to discover textual object clusters from documents 
with geo-locations. In fact, they used a probabilistic generative model (LDA) and the 
DBSCAN algorithm to find topics from documents. In this paper, they utilized dataset 
Reuters-21578 as a dataset for Analysis of their methods (Zhang et al., 2015). McInerney et 
al.  they presented a study on characterizing significant reports from Twitter, The authors, 
introduced a probabilistic model to topic discovery in the geographical topic area and this 
model can find hidden significant events on Twitter and also considered stochastic variational 
inference (SVI) to apply gradient ascent on the variable objective with LDA. They collected 
2,535 geo-tagged tweets from the Upper Manhattan area of New York. that the KL 
divergence is a good metric to identifying the significant tweet event, but for a large dataset 
of news articles, the result will be negative(McInerney and Blei, 2014). 
 
E. Software engineering and topic modeling 
Software evolution and source code analysis can be effective in solving current and future 
software engineering problems. Topic modeling has been used in information retrieval and 
text mining where it has been applied to the problem of briefing large text corpora. Recently, 
many articles have been published for evaluating / mining software using topic modeling 
based on LDA. Linstead et al.  For the first time, they used LDA, to extract topics in source 
code and perform to visualization of software similarity, In other words, LDA uses an 
intuitive approach for calculation of similarity between source files with obtain their 
respective distributions of each document over topics. They utilized their method on 1,555 
software projects from Apache and SourceForge that includes 19 million source lines of code 
(SLOC). The authors demonstrated this approach, can be effective for project organization, 
software refactoring (Linstead et al., 2007). Gethers et al.  They introduced a new coupling 
metric based on Relational Topic Models (RTM) that called Relational Topic based Coupling 
(RTC), that can identifying latent topics and analyze the relationships between latent topic 
distributions software data. Also, can say that the RTM is an extension of LDA. The authors 
used thirteen open source software systems for evaluation this metric and demonstrated that 
RTC has a useful and valuable impact on the analysis of large software systems(Gethers and 
Poshyvanyk, 2010). 
 
Asuncion et al.  the authors focused on software traceability by topic modeling and proposed 
a combining approach based on LDA model and automated link capture. They utilized their 
method to several data sets and demonstrated how topic modeling increase software 
traceability, and found this approach, able to scale for carried larger numbers from artifacts 
(Asuncion et al., 2010). Thomas et al.  They studied about the challenges use of topic models 
to mine software repositories and detect the evolution of topics in the source code, and 



suggested the apply of statistical topic models (LDA) for the discovery of textual repositories. 
Statistical topic models can have different applications in software engineering such as bug 
prediction, traceability link recovery and software evolution (Thomas, 2011). Chen et al.  
used a generative statistical model(LDA model) for analyzing source code evolution and find 
relationships between software defects and software development. They showed LDA can 
easily scale to large documents and utilized their approach on three large dataset that 
includes: Mozilla Firefox, and Mylyn, Eclipse (Chen et al., 2012). Linsteadet al.  used and 
utilized Author-Topic models(AT) to analysis in source codes. AT modeling is an extension 
of LDA model that evaluation and obtain the relationship of authors to topics and applied 
their method on Eclipse 3.0 source code including of 700,000 code lines and 2,119 source 
files with considering of 59 developers. They demonstrated that topic models provided the 
effective and statistical basis for evaluation of developer similarity(Linstead et al., 2008). 
 
Tian et al.  introduced a method based on LDA for automatically categorizing software 
systems, called LACT. For evaluation of LACT, used 43 open-source software systems in 
different programming languages and showed LACT can categorization of software systems 
based on the type of programming language (Tian et al., 2009). Lukinet al.  Proposed an 
approach topic modeling based on LDA model for the purpose of bug localization. Their 
idea, applied to the analysis of same bugs in Mozilla and Eclipse and result showed that their 
LDA-based approach is better than LSI for evaluate and analyze of bugs in these source 
codes (Lukins et al., 2008, Lukins et al., 2010). Yang et al.  They introduced a topic-specific 
approach by considering the combination of description and sensitive data flow information 
and used an advanced topic model based on LDA with GA, to understanding malicious apps, 
cluster apps according to their descriptions. They utilized their approach on 3691 benign and 
1612 malicious application. The authors found Topic-specific, data flow signatures are very 
efficient and useful in highlighting the malicious behavior (Yang et al., 2017). 

 
Table10. Impressive works LDA-based in software engineering 

Study- Author Year Purpose Dataset 
(Linstead et al., 
2007) 

2007 Mining software and extracted 
concepts from code 

SourceForge  
and  
Apache(d 1,555 
projects) 

 
(Gethers and 
Poshyvanyk, 
2010) 

2010 Identifying latent topics and find  
their relationships in source 
code 

Thirteen open 
source 
software 
systems 

 
(Asuncion et 
al., 2010) 
 

2010 Generating traceability links ArchStudio 
software 
project 

 
(Chen et al., 
2012) 

2012 Find relationship between the 
conceptual concerns in source 
code. 

 source code 
entities 

(Linstead et al., 
2008) 
 
 

2008 Analyzing Software 
Evolution 

, open source 
Java projects, 
Eclipse and 
ArgoUML 



 
(Tian et al., 
2009) 

2009 Automatic Categorization of 
Software systems 

43 open-source 
software 
systems 

 
(Lukins et al., 
2008) 

2008 Source code retrieval for bug 
localization 

Mozila, Eclipse 
source code 

 
(Lukins et al., 
2010) 

2010 Automatic bug localization 
and evaluate its effectiveness 

Open source 
software such as 
(Rhino, and 
Eclipse) 

 
(Yang et al., 
2017) 

2017 Detection of malicious Android 
apps 

1612 malicious 
application 

 
 
 
 
 
 
 
 
 
F.  Topic modeling in Social Network / Microblogs (such as Twitter) 
Social networks are a rich source for knowledge discovery and behavior analysis. For 
example, Twitter is one of the most popular social networks that its evaluation and analysis 
can be very effective for analyzing user behavior and etc. Recently, researchers have 
proposed many LDA approaches to analyzing user tweets on Twitter. Weng et al.  In this 
paper, the authors were concentrated on identifying influential twitterers on Twitter and 
proposed an approach based on an extension of PageRank algorithm to rate users, called 
TwitterRank, and used an LDA model to find latent topic information from a large collection 
of documentation. For evaluation this approach, they prepared a dataset from Top-1000 
Singapore-based twitterers, showed that their approach is better than other related algorithms 
(Weng et al., 2010). Hong et al.  This paper examines the issue of identifying the Message 
popularity as measured based on the count of future retweets and sheds. The authors utilized 
TF-IDF scores and considered it as a baseline, also used Latent Dirichlet Allocation (LDA) to 
calculate the topic distributions for messages. They collected a dataset that includes 
2,541,178 users and 10,612,601 messages and demonstrated that this method can identify 
messages which will attract thousands of retweets (Hong et al., 2011).  
 
Bhattacharya et al.  In this paper, they focused on topical recommendations on tweeter and 
presented a novel methodology for topic discovery of interests of a user on Twitter. In fact, 
they used a Labeled Latent Dirichlet Allocation (L-LDA) model to discover latent topics 
between two tweet-sets. The authors found that their method could be better than content 
based methods for discovery of user-interest (Bhattacharya et al., 2014). Kim et al.  They 
suggested, a recommendation system based on LDA for obtaining the behaviors of users on 
Twitter, called TWILITE. In more detail, TWILTW can calculate the topic distributions of 
users to tweet messages and also they introduced ranking algorithms in order to recommend 
top-K followers for users on Twitter (Kim and Shim, 2014). Wang et al.  They investigated 



in the context of a criminal incident prediction on Twitter. They suggested an approach for 
analysis and understanding of Twitter posts based a probabilistic language model and also 
considered a generalized linear regression model. Their evaluation showed that this approach 
is the capability of predict hit-and-run crimes, only using information that exists in the 
content of the training set of tweets (Wang et al., 2012).  
 

Tablel11. Impressive works LDA-based in social network 
Study- Author Year Purpose Dataset 
Weng et all (Weng et 
al., 2010) 

2010 Finding influential 
twitterers on social 
network(Twitter) 

Top-1000 
Singapore-
based 
twitterers 

Bhattacharya et all  
(Bhattacharya et al., 
2014) 

2014 Building a topical 
recommendation systems 

A twitter 
dataset 

Kim et all  (Kim and 
Shim, 2014) 

2014 A recommendation system 
for Twitter 

A twitter 
dataset 

Cordeiro et 
all(Cordeiro, 2012) 

2012 Analysis and discovered 
events on Twitter 

A twitter 
dataset 

Tan et all (Tan et al., 
2014) 

2014 Analyze public sentiment 
variations regarding a certain 
tar on Twitter 

A twitter 
dataset 

Roberts et all 
(Roberts et al., 2012) 

2012 Analysis of the emotional 
and stylistic distributions 
on Twitter 

A twitter 
dataset 

Ren et all (Ren et al., 
2016) 

2016 A topic-enhanced word 
embedding for Twitter 
sentiment classification 

SemEval-
2014 

Li       et al (Li et al., 
2016b) 

2016 Categorize emotion tendency 
on Sina Wibo 

A Sina Wibo 
dataset 

 



Godin et al.  In this paper, they introduced a novel method based LDA model to hashtag 
recommendation on Twitter that can categories posts with them (hashtags)(Godin et al., 
2013). Lin et al.  They investigated the cold-start issue with useing the social information for 
App recommendation on Twitter and used an LDA model to discovering latent group from 
“Twitter personalities” to recommendations discovery. For test and experiment, they 
considered Apple’s iTunes App Store and Twitter as a dataset. Experimental results show, 
their approach significantly better than other state-of-the-art recommendation techniques (Lin 
et al., 2013). 
 
Cordeiro et al.  presented a technique to analysis and discovered events by an LDA model. 
Authors found that this method can detect events in inferred topics from tweets by wavelet 
analysis. For test and evaluation, they collected 13.6 million tweets from Twitter as a dataset 
and showed the use of both hashtag names and inferred topics is a beneficial effect in 
description information for events (Cordeiro, 2012). Pier et al.  In this paper, they 
investigated the issue of how to effectively discovery and find health-related topics on 
Twitter and presented an LDA model for identifies latent topic information from a dataset 
and it includes 2,231,712 messages from 155,508 users. They found that this method may be 
a valuable tool for detect public health on Twitter (Prier et al., 2011). Tan and et al.   
focused on tracking public sentiment and modeling on Twitter. They suggest a topic model 
approach based on LDA, Foreground and Background LDA to distill topics of the 
foreground. Also proposed another method for can rank a set of reason candidates in natural 
language, called Reason Candidate and Background LDA (RCB-LDA). Their results showed 
that their models can be used to identify special topics and find different aspects (Tan et al., 
2014). Roberts et al.  collected a large corpus from Twitter in seven emotions that includes; 
disgust,   Anger, Fear, Love, Joy, sadness, and surprise. They used a probabilistic topic 
model, based on LDA, which considered for discovery of emotions in a corpus of Twitter 
conversations(Roberts et al., 2012). Srijith et al.  This paper proposed a probabilistic topic 
model based on hierarchical Dirichlet processes (HDP)) for detection of sub-story. They 
compared HDP with spectral clustering (SC) and locality sensitive hashing (LSH) and 
showed that HDP is very effective for story detection data sets, and has an improvement of 
up to 60% in the F-score (Srijith et al., 2017).  
 
Ren et al.  proposed a method based on Twitter sentiment classification using topic-enhanced 
word embedding and also used an LDA model to generate a topic distribution of tweets, 
considered SVM for classifying tasks in sentiment classification. They used the dataset on 
SemEval-2014 from Twitter Sentiment Analysis Track. Experiments show that their model 
can obtain 81.02% in macro F-measure (Ren et al., 2016). Wang et al.  focused on 
examining of demographic characteristics in Trump Followers on Twitter. They considered a 
negative binomial regression model for modeling the “likes” and used LDA to extract the 
tweets of Trump. They provided evaluations on the dataset US2016 (Twitter) that include a 
number of followers for all the candidates in the United States presidential election of 2016. 
The authors demonstrated that topic-enhanced word embedding is very impressive for 
classification of sentiment on Twitter (Wang et al., 2016). 
 
G. Crime prediction/evaluation  
Over time; definitely, provides further applications for modeling in various sciences. 
According to recent work, some researchers have applied the topic modeling methods to 
crime prediction and analysis. Chen et al.  introduced an early warning system to find the 
crime activity intention base on an LDA) model and collaborative representation classifier 
(CRC).The system includes two steps: They utilized LDA for learning features and extract 



the features that can represent from article sources. And for the next step, used from achieved 
features of LDA to classify a new document by collaborative representation classifier (CRC). 
Geber et al.  used a statistical topic modeling based on LDA to identify discussion topics 
among a big city in the United States and used kernel density estimation (KDE) techniques 
for a standard crime prediction . Sharma et al.  the authors introduced an approach based on 
the geographical model of crime intensities to detect the safest path between two locations 
and used a simple Naive Bayes classifier based on features derived from an LDA model 
(Chen et al., 2015, Gerber, 2014, Sharma et al., 2015). 
 

Tablel12. Impressive works LDA-based in crime prediction 
Study- Author Year Purpose Dataset 
(Wang et al., 
2012) 

2012 Automatic 
semantic analysis 
on Twitter posts 

A corpus of tweets 
from Twitter(manual) 

(Gerber, 2014) 2014 Crime prediction 
using tagged 
tweets 

City of Chicago Data: 
https://data.cityofchica
go.or 

(Chen et al., 
2015) 

2015 Detect the crime 
activity intention 

800 news articles from 
yahoo Chinese news  

 
 
 
 
 
 
4.  Open source library and tools / datasets / Software packages and tools for the 
analysis  
We need new tools to help us organize, search, and understand these vast amounts of 
information 
 
4.1 library/tools 
Many tools for Topic modeling and analysis are available, including professional and 
amateur software, commercial software, and open source software and also, there are many 
popular datasets that can consider as a standard source for testing and evaluation. Table7, 
Show some well-known tools for topic modeling and Table8, show some well-known 
datasets for topic modeling. For example; Mallet tools,The MALLET topic model package 
incorporates an extremely quick  and highly scalable implementation of Gibbs sampling, 
proficient methods for tools and document-topic hyperparameter optimization for inferring 
topics for new documents given trained models. Topic models provide a simple approach to 
analyze huge volumes of unlabeled text. The role of these tools, as mentioned, A "topic" 
consists of a group of words that habitually happen together. Topic models can associate 
words with distinguish and similar meanings among uses of words with various meanings 
and considering contextual clues. (Steyvers and Griffiths, 2007) 
 
 
 
 
 
 
 



Tablel13. Some well-known tools for topic modeling 
Tools Impleme

ntation/ 
Languag
e 

Inference/Param
eter 

source code availability 

Mallet 
(McCallu
m, 2002) 

Java Gibbs sampling http://mallet.cs.umass.edu/topics.p
hp 

TMT 
(Ramage 
and Rosen, 
2011) 

Java Gibbs sampling https://nlp.stanford.edu/software/t
mt/tmt-0.4/ 

Mr.LDA 
(Zhai et 
al., 2012) 
 

Java Variational 
Bayesian inferen
ce 

https://github.com/lintool/Mr.LD
A 

JGibbLDA 
(Phan and 
Nguyen, 
2006) 
 

Java Gibbs sampling http://jgibblda.sourceforge.net/ 

Gensim 
(Řehůřek 
and Sojka, 
2011) 
 

Python Gibbs sampling https://radimrehurek.com/gensim 

TopicXP 
(Řehůřek 
and Sojka, 
2011) 
 

Java(Ecli
pse 
plugin) 

 http://www.cs.wm.edu/semeru/To
picXP/ 

Matlab 
Topic 
Modeling  
(Steyvers 
and 
Griffiths, 
2011) 
 
 

Matlab Gibbs sampling http://psiexp.ss.uci.edu/research/p
rograms_data/toolbox.htm 

Yahoo_L
DA(Chang
, 2011) 
 
 

C++  Gibbsampling https://github.com/shravanmn/Yahoo
_LDA 

Lda in R 
(Ahmed et 

al., 
20
12) 

R Gibbsampling https://cran.r-
project.org/web/packages/lda/ 



 
 
For evaluation and testing, according to previous work, researchers have released many 
dataset in various subjects, size, and dimensions for public access and other future work. So, 
due to the importance of this research, we examined the well-known dataset from previous 
work. Table 8, shows lists of some famous and popular datasets in various languages. 
 

Tablel14. Some well-known Dataset for topic modeling 
Dataset Languag

e 
Date 
of 
publis
h 

Short-
detail 

Availability address 

Reuters 
(Reuters21578)   
(Lewis, 1997) 
 
 
 

English 1997 Newsletters 
in various 
categories 

http://kdd.ics.uci.edu/databases/reuters2157
8/reuters21578 

ReutersV 1 
(Reuters-Volume 
I) 
 
(Lewis et al., 
2004) 
 
 

English 2004 Newsletters 
in various 
categories 

  

UDI-
TwitterCrawl-
Aug2012 
 
(Li et al., 2012) 
 

English 2012 -a twitter 
dataset from 
millions of 
tweets 

https://wiki.illinois.edu//wiki/display/forward/Da
taset-UDI-TwitterCrawl-Aug2012 

SemEval-2013 
Dataset 
(Manandhar and 
Yuret, 2013) 

English  2013 -a twitter 
dataset from 
millions of 
tweets 

 

 Wiki10[179] English 2009 a Wikipedia 
Document in 
various 
category 

http://nlp.uned.es/social-tagging/wiki10+/ 

Weibo dataset 
 
(Zhang et al., 
2013) 

Chinese 2013 a popular 
Chinese 
microbloggin
g network 

 

Bag of 
Words[180] 

English 2008 a multi 
dataset(PubM
ed abstracts, 
KOS blog, 
NYTimes 
news, NIPS 
full papers, 
Enron 
Emails) 

https://archive.ics.uci.edu/ml/datasets/Bag+of+W
ords 

CiteUlike 
 
(Wang and Blei, 
2011) 

English  2011 a 
bibliography 
sharing 
service of 

http://www.citeulike.org/faq/data.adp 



academic 
papers 

DBLP 
Dataset[183] 
 
(Lange and 
Naumann, 2011) 

 English   a 
bibliographic 
database 
about 
computer 
science 
journals 

https://hpi.de/naumann/projects/repeatability/data
sets/dblp-dataset.html 

HowNet 
lexicon 

Chinese 2000-
2013 

 A Chinese 
machine-
readable 
dictionary  / 
lexical 
knowledge 

http://www.keenage.com/html/e_index.html 

Virastyar , 
Persian 
lexicon(Asgari 
and Chappelier, 
2013)  

Persian 2013 Persian 
poems 
electronic 
lexica  

http://ganjoor.net/ 
http://www.virastyar.ir/data/ 

NIPS abstracts English 2016 The 
distribution 
of words in 
the full text 
of the NIPS 
conference 
(1987 to 
2015) 

https://archive.ics.uci.edu/ml/datasets/NIPS+Con
ference+Papers+1987-2015 

  Ch-wikipedia 
(Qin et al., 2016) 
(Cong et al., 2012) 

 Chinese   A Chinese 
corpus from 
Chinese 
Wikipedia 

 

Pascal VOC 2007  
(Everingham et al., 
2008) 
(Everingham et al., 
2010) 

 English  2007 a dataset of 
natural 
images  

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ 

AFP_ARB 
corpus(Larkey and 
Connell, 2001) 

Arabic 2001 A collection 
of 
newspaper 
articless in 
Arabic from 
Agence 
France 
Presse 

 

20Newsgroups4 
corpus[ 
(Rennie, 2008) 

English Jan 
2008 

Newsletters 
in various 
categories 

http://qwone.com/~jason/20Newsgroups/ 

New York Times 
(NYT)dataset 
(Sandhaus, 2008) 

English Oct 
2008 

Newsletters 
in various 
categories 

  

 
 
 
 
 
 



5.  Seven important issues in Challenges and Open research  
There are challenges and discussions that can be considered as future work in topic modeling. 
According to our studies, some issues require further research, which can be very effective 
and attractive for the future. In this section, we will discuss seven important issues and we 
found that the following issues have not been sufficiently solved. These are the gaps in the 
reviewed work that would prove to be directions for future work. 
 
5.1 Topics Modeling in image processing, Image classification and annotation: 
Image classification and annotation are important problems in computer vision, but rarely 
considered together and need some intelligent approach for classification.  For example, an 
image of a class highway is more likely annotated with words “road” and "traffic", “car ”  
than words "fish ” “scuba” and “boat”. Chong et al.  develop a new probabilistic model for 
jointly modeling the image, its annotations, and its category label.  Their model behaves the 
class label as a global description of the image and behaves annotation terms as local 
descriptions of parts of the image. Its underlying probabilistic hypotheses naturally integrate 
these sources of information.  They derive an approximate inference and obtain algorithms 
based on variational ways as well as impressive approximations for annotating and 
classifying new images and extended supervised topic modeling (sLDA) to classification 
problems(Chong et al., 2009). 
 
Lienou and et al.  focused on the problem of an image semantic interpretation of large 
satellite images and used a topic modeling, that each word in a document considering as a 
segment of image and a document is as an image. For evaluation, they performed 
experiments on panchromatic QuickBird images. Wick and et al.  They presented an error 
correction algorithm using topic modeling based on LDA to Optical character recognition 
(OCR) error correction. This algorithm including two models: a topic model to calculate the 
word probabilities and an OCR model for obtaining the probability of character errors. 
Vaduva and et al.  introduced a semi-automatic approach to latent information retrieval.  
according to the hierarchical structure from the images. They considered a combined 
investigation using LDA model and invariant descriptors of image region for a visual scene 
modeling. Philbin and et al.  proposed a geometrically consistent latent topic model to detect  
significant objects, called Latent Dirichlet Allocation (gLDA). and then introduced methods 
for the effectiveness of calculations a matching graph, that images are the nodes and the edge 
strength in visual content. The gLDA method is able to group images of a specific object 
despite large imaging variations and  can also pick out different views of a single object. 
(Lienou et al., 2010, Philbin et al., 2011, Vaduva et al., 2013, Wick et al., 2007). 
 
5.2 Audio, Music information retrieval and processing 
According to our knowledge, few research works have been done in music information 
analysis using topic modeling. For example; Nakano et al.  The authors focused on 
estimation and estimation of singing characteristics from signals of audio. This paper 
introduces a topic modeling to the vocal timbre analysis, that each song is considered as a 
weighted mixture of multiple topics. In this approach, first extracted features of vocal timbre 
of polyphonic music and then used an LDA model to estimate merging weights of multiple 
topics. For evaluation, they applied 36 songs that consist of 12 Japanese singers. Hu et al.  
They proposed a modified version of LDA to process continuous data and audio retrieval. In 
this model, each audio document includes various latent topics and considered each topic as a 
Gaussian distribution on the audio feature data. To evaluate the efficiency of their model, 
used 1214 audio documents in various categories (such as rain, bell, river, laugh, gun, dog 
and so on)   (Hu et al., 2014, Nakano et al., 2014). 



 
5.3. Drug safety evaluation and Approaches to improving it 
Understanding safety of drug and performance continue to be critical and challenging issues 
for academia and also it is an important issue in new drug discovery. Topic modeling holds 
potential for mining the biological documents and given the importance and magnitude of 
this issue, researchers can consider it as a future work. Yu and et al.  investigated the issue of 
drug-induced acute liver failure (ALF) with considering the role of topic modeling to drug 
safety evaluation, they explored the LiverTox database for drugs discovery with a capacity to 
cause ALF.  Yang and et al.  introduced an automatic approach based on keyphrase 
extraction to detect expressions of consumer health, according to adverse drug reaction 
(ADRs) in social media. They used an LDA model as a Feature space modeling to build a 
topic space on the consumer corpus and consumer health expressions mining. Bisgin and et 
al.  introduced an ‘in silico’ framework to drug repositioning guided through a probabilistic 
graphical model, that defined a drug as  a 'document' and a phenotype form a drug as a 'word'. 
They applied their approach on the SIDER database to estimate the phenome distribution 
from drugs and identified 908 drugs from SIDER with new capacity indications and 
demonstrated that the model can be effective for further investigations  (Bisgin et al., 2014, 
Yang and Kiang, 2015, Yu et al., 2014). 
 
5.4. Analysis of comments of famous personalities, social demographics 
Public social media and micro-blogging services, most notably Twitter, the people have 
found a venue to hear and be heard by their peers without an intermediary. As a consequence 
and helped by the public nature of twitter political scientists now potentially have the means 
to evaluate and understand the narratives that organically form, decline among and spread the 
public in a political campaign. For this field we can refer to some impressive recent works, 
for example;  Wang and et al.  they introduced a framework to derive the topic preferences of 
Donald Trump’s followers on Twitter and used LDA to infer the weighted mixture for each 
Trump tweet  from topics. Alashri and et al.  employed sentiment analysis, topic modeling, 
and trends detection through wavelet transform to topics and trends discovery. They extracted 
9,700 posts and 12,050,595 comments of five USA presidential candidates (Ted Cruz , 
Donald Trump, Hillary Clinton, John Kasich and Bernie Sanders) from their official 
Facebook pages (Alashri et al., 2016, Wang et al., 2016). Shi and et al.  The authors 
proposed a novel probabilistic graphical model for the pattern discovery in comments that 
called MCTA. This model can cope with the language gap and obtain the common semantics 
with considering various languages from News Reader Comments (such as Chinese and 
English newreader comments) (Shi et al., 2016). Hou and et al.  presented a context and co-
mention method using knowledge linking method and a topic-level alignment method to 
build the links between external resources and news from social media. It can also be said 
that they applied a unified probabilistic model for predict news and relationship discovery 
within events and topics with considering the background knowledge of users’ 
comments(Hou et al., 2015) . 
 
5.5. Group discovery and topic modeling  
Graph mining and social network analysis in large graphs is a challenging problem. Group 
discovery has many applications, such as understanding the social structure of organizations, 
uncovering criminal organizations, and modeling large scale social networks in the Internet 
community. LDA Models can be an efficient method for discovering latent group structure in 
large networks. Henderson and et al.  The authors proposed a scalable Bayesian alternative 
based on LDA and graph to group discovery in a big real-world graph. For evaluation, they 
collected three datasets from PubMed. Yu and et al.  introduced a generative approach using 



a hierarchical Bayes model for group discovery in Social Media Analysis that called Group 
Latent Anomaly Detection (GLAD) model. This model merged the ideas from both the LDA 
model and Mixture Membership Stochastic Block (MMSB) model (Henderson and Eliassi-
Rad, 2009, Yu et al., 2015a). 
 
5.6. User Behavior Modeling 
Social media provides valuable resources to analyze user behaviors and capture user 
preferences. Since the user generated data (such as users activities, user interests) in social 
media is a challenge(Diao et al., 2012) (Yin et al., 2014), using topic modeling 
techniques(such as LDA) can contribute to an important role for the discovery of hidden 
structures related to user behavior in social media. Although some topic modeling approaches 
have been proposed in user behavior modeling, there are still many open questions and 
challenges to be addressed. For example; Giri et al.  introduced a novel way using an 
unsupervised topic model for hidden interests discovery of users and analyzing browsing 
behavior of users in a cellular network that can be very effective for mobile advertisements 
and online recommendation systems. Wang et al.   presented a solution framework based on 
user behavior and synergetic modeling of multi-modal content using a topic analytic for cross 
media topic analysis and detection of the behavior of users activities on the web. Yuan et al.   
proposed a framework based on a probabilistic topic modeling method to detection of  “user 
interests” and user behavior pattern discovery in the mobile Web usage log. They applied this 
model on a real dataset in Beijing that include 3 million users (Giri et al., 2014, Wang et al., 
2014b, Yuan et al., 2014). Siersdorfer and et al.  The authors focused on analysis comment 
rating behavior of users on social medias and gathered more than 10 million user comments 
from YouTube and Yahoo! News websites. For YouTube, they restricted their analysis on tag 
annotations for content and employed Latent Dirichlet Allocation (LDA) to obtain term 
probabilities and each tag of a video defined as a mixture of latent topics. Also, they used a 
linear support vector machines (SVMs) to detection of comments likely to attract 
replies(Siersdorfer et al., 2014). 
 
5.7 Visualizing topic models 
Although different approaches have been investigated to support the visualization of text in 
large sets of documents such as machine learning, but it is an open challenge in text mining 
and visualizing data in big data source. Some of the few studies that have been done, such as 
(Chaney and Blei, 2012, Kim et al., 2017, Murdock and Allen, 2015, Gretarsson et al., 2012). 
Chuang and et al.  The authors proposed a topic tool based on a novel visualization 
technique to the evaluation of textual topical in topic modeling, called Termite. The tool can 
visualize the collection from the distribution of topic term in LDA with considering a matrix 
layout. The authors used two measures for understanding a topic model of the Useful terms 
that including: “saliency” and “distinctiveness”. They used the Kullback-Liebler divergence 
between the topics distribution determined the term for obtain these measures. This tools can 
increase the interpretations of topical results and make a legible result (Chuang et al., 2012). 
Millar  and et al.  the authors proposed a combined approach based on Latent Dirichlet 
Allocation for dimensionality reduction and self-organizing maps to document Clustering and 
Visualization, that called LDA-SOM [160]. Sievert and et al. introduced LDAvis as an 
interactive visualization system using LDA that capable the providing a global view of the 
topics, and has a flexible feature for exploring relationship between topics and terms and 
obtain better understand from a fitted LDA model. It can also be said that the system can find 
significant topics and cluster them in various categories (Millar et al., 2009, Siersdorfer et al., 
2014). 
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Supervised LDA

• LDA is an unsupervised model. How can we build a topic model that is
good at the task we care about?

• Many data are paired with response variables.
• User reviews paired with a number of stars
• Web pages paired with a number of “likes”
• Documents paired with links to other documents
• Images paired with a category

• Supervised LDA are topic models of documents and responses.
They are fit to find topics predictive of the response.



Supervised LDA
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Supervised LDA
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Regression 
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Document 
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• Fit sLDA parameters to documents and responses.
This gives: topics �1:K and coefficients ⌘1:K .

• Given a new document, predict its response using the expected value:

E
î
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• This blends generative and discriminative modeling.
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector ⌘ is associated with a topic.
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Supervised LDA
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• SLDA enables model-based regression where the predictor is a document.

• It can easily be used wherever LDA is used in an unsupervised fashion
(e.g., images, genes, music).

• SLDA is a supervised dimension-reduction technique, whereas LDA
performs unsupervised dimension reduction.
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• SLDA has been extended to generalized linear models, e.g., for image
classification and other non-continuous responses.

• We will discuss two extensions of sLDA
• Relational topic models: Models of networks and text
• Ideal point topic models: Models of legislative voting behavior
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We address the problem of 

finding a subset of features that 

allows a supervised induction 

algorithm to induce small high-

accuracy concepts...

Irrelevant features and the 

subset selection problem

In many domains, an appropriate 

inductive bias is the MIN-

FEATURES bias, which prefers 

consistent hypotheses definable 

over as few features as 

possible...

Learning with many irrelevant 

features

In this introduction, we define the 

term bias as it is used in machine 

learning systems. We motivate 

the importance of automated 

methods for evaluating...

Evaluation and selection of 

biases in machine learning

The inductive learning problem 

consists of learning a concept 

given examples and 

nonexamples of the concept. To 

perform this learning task, 

inductive learning algorithms bias 

their learning method...

Utilizing prior concepts for 

learning

The problem of learning decision 

rules for sequential tasks is 

addressed, focusing on the 

problem of learning tactical plans 

from a simple flight simulator 

where a plane must avoid a 

missile...

Improving tactical plans with 

genetic algorithms

Evolutionary learning methods 

have been found to be useful in 

several areas in the development 

of intelligent robots. In the 

approach described here, 

evolutionary...

An evolutionary approach to 

learning in robots

Navigation through obstacles 

such as mine fields is an 

important capability for 

autonomous underwater vehicles. 

One way to produce robust 

behavior...

Using a genetic algorithm to 

learn strategies for collision 

avoidance and local 

navigation

...

...

...

...

...

...

...

...

...

...

• Many data sets contain connected observations.

• For example:
• Citation networks of documents
• Hyperlinked networks of web-pages.
• Friend-connected social network profiles
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We address the problem of 

finding a subset of features that 

allows a supervised induction 

algorithm to induce small high-

accuracy concepts...

Irrelevant features and the 

subset selection problem

In many domains, an appropriate 

inductive bias is the MIN-

FEATURES bias, which prefers 

consistent hypotheses definable 

over as few features as 

possible...

Learning with many irrelevant 

features

In this introduction, we define the 

term bias as it is used in machine 

learning systems. We motivate 

the importance of automated 

methods for evaluating...

Evaluation and selection of 

biases in machine learning

The inductive learning problem 

consists of learning a concept 

given examples and 

nonexamples of the concept. To 

perform this learning task, 

inductive learning algorithms bias 

their learning method...

Utilizing prior concepts for 

learning

The problem of learning decision 

rules for sequential tasks is 

addressed, focusing on the 

problem of learning tactical plans 

from a simple flight simulator 

where a plane must avoid a 

missile...

Improving tactical plans with 

genetic algorithms

Evolutionary learning methods 

have been found to be useful in 

several areas in the development 

of intelligent robots. In the 

approach described here, 

evolutionary...

An evolutionary approach to 

learning in robots

Navigation through obstacles 

such as mine fields is an 

important capability for 

autonomous underwater vehicles. 

One way to produce robust 

behavior...

Using a genetic algorithm to 

learn strategies for collision 

avoidance and local 
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• Research has focused on finding communities and patterns in the
link-structure of these networks. But this ignores content.

• We adapted sLDA to pairwise response variables.
This leads to a model of content and connection.

• Relational topic models find related hidden structure in both types of data.
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• Adapt fitting algorithm for sLDA with binary GLM response

• RTMs allow predictions about new and unlinked data.

• These predictions are out of reach for traditional network models.
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Table 2
Top eight link predictions made by RTM (�e) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.
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Given a new document, which documents is it likely to link to?
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p(vij) = f(d(xi, aj))

• The ideal point model uncovers voting patterns in legislative data

• We observe roll call data vij .

• Bills attached to discrimination parameters aj .
Senators attached to ideal points xi .
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• Posterior inference reveals the political spectrum of senators

• Widely used in quantitative political science.
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• We can predict a missing vote.
• But we cannot predict all the missing votes from a bill.
• Cf. the limitations of collaborative filtering
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• Use supervised LDA to predict bill discrimination from bill text.

• But this is a latent response.
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In addition to senators and bills, IPTM places topics on the spectrum.



Summary: Supervised topic models

• Many documents are associated with response variables.

• Supervised LDA embeds LDA in a generalized linear model that is
conditioned on the latent topic assignments.

• Relational topic models use sLDA assumptions with pair-wise responses
to model networks of documents.

• Ideal point topic models demonstrates how the response variables can
themselves be latent variables. In this case, they are used downstream in a
model of legislative behavior.

• (SLDA, the RTM, and others are implemented in the R package “lda.”)



Modeling User Data and Text



Topic models for recommendation (Wang and Blei, 2011)

Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

Users

Papers

In-matrix prediction

Out-of-matrix prediction

Topic Models for Recommendation

• In many settings, we have information about how people use documents.

• With new models, this can be used to
• Help people find documents that they are interested in
• Learn about what the documents mean to the people reading them
• Learn about the people reading (or voting on) the documents.

• (We also saw this in ideal point topic models.)



Topic models for recommendation (Wang and Blei, 2011)

Introduction to Variational Methods for Graphical Models
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Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

Users

Papers

In-matrix prediction

Out-of-matrix prediction

Topic Models for Recommendation

• Online communities of scientists’ allow for new ways of connecting
researchers to the research literature.

• With collaborative topic models, we recommend scientific articles based
both on other scientists’ preferences and their content.

• We can form both “in-matrix” and “out-of-matrix” predictions. We can learn
about which articles are important, and which are interdisciplinary.



• Consider EM (Dempster et al., 1977). The text lets us estimate its topics:

StatisticsVision
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• With user data, we adjust the topics to account for who liked it:

StatisticsVision

• We can then recommend to users:

Statistics

Vision
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Topic models for recommendation
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Topic models for recommendation

• Big data set from Mendeley.com

• Fit the model with stochastic optimization

• The data—
• 261K documents
• 80K users
• 10K vocabulary terms
• 25M observed words
• 5.1M entries (sparsity is 0.02%)
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Topic models for recommendation

number of recommended articles
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More than recommendation

Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

P
a
p
ers

• The users also tell us about the data.

• We can look at posterior estimates to find
• Widely read articles in a field
• Articles in a field that are widely read in other fields
• Articles from other fields that are widely read in a field

• These kinds of explorations require interpretable dimensions.
They are not possible with classical matrix factorization.



Maximum Likelihood Estimation
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Maximum Likelihood Estimation of Population Parameters
Bootstrap Methods: Another Look at the Jackknife
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Tutorial on Maximum Likelihood Estimation

Random Forests
Identification of Causal Effects Using Instrumental Variables
Matrix Computations



Network Science
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Assortative Mixing in Networks
Characterizing the Dynamical Importance of Network Nodes and Links
Subgraph Centrality in Complex Networks

Assortative Mixing in Networks
The Structure and Function of Complex Networks
Statistical Mechanics of Complex Networks

Power Law Distributions in Empirical Data
Graph Structure in the Web
The Orgins of Bursts and Heavy Tails in Human Dynamics
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Issue-adjusted ideal points

• Our earlier ideal point model uses topics to predict votes from new bills.

• Alternatively, we can use the text to characterize how legislators diverge
from their usual ideal points.

• For example: A senator might be left wing, but vote conservatively when it
comes to economic matters.



Issue-adjusted ideal points
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Issue-adjusted ideal points
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Extending LDA

New applications—

• Syntactic topic models

• Topic models on images

• Topic models on social network data

• Topic models on music data

• Topic models for recommendation systems

Testing and relaxing assumptions—

• Spike and slab priors

• Models of word contagion

• N-gram topic models



Extending LDA
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• Each of these models is tailored to solve a problem.
• Some problems arise from new kinds of data.
• Others arise from an issue with existing models.

• Probabilistic modeling is a flexible and modular language for designing

solutions to specific problems.
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Extending LDA

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check



Bayesian Nonparametric Models



Bayesian nonparametric models

• Why Bayesian nonparametric models?

• The Chinese restaurant process

• Chinese restaurant process mixture models

• The Chinese restaurant franchise

• Bayesian nonparametric topic models

• Random measures and stick-breaking constructions



Why Bayesian nonparametric models?

• Topic models assume that the number of topics is fixed.

• It is a type of regularization parameter. It can be determined by cross
validation and other model selection techniques.

• Bayesian nonparametric methods skirt model selection—
• The data determine the number of topics during inference.
• Future data can exhibit new topics.

• (This is a field unto itself, but has found wide application in topic modeling.)



The Chinese restaurant process (CRP)
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• N customers arrive to an infinite-table restaurant. Each sits down according
to how many people are sitting at each table,

p(zi = k |z1:(i�1),↵)/
®

nk for k  K

↵ for k = K +1.

• The resulting seating plan provides a partition

• This distribution is exchangeable: Seating plan probabilities are the same
regardless of the order of customers (Pitman, 2002).



CRP mixture models
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• Associate each table with a topic (� ⇤).
Associate each customer with a data point (grey node).

• The number of clusters is infinite a priori;
the data determines the number of clusters in the posterior.

• Further: the next data point might sit at new table.

• Exchangeability makes inference easy (Escobar and West, 1995; Neal, 2000).



The CRP is not a mixed-membership model
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• Mixture models draw each data point from one component.

• The advantage of LDA is that it’s a mixed-membership model.

• This is addressed by the Chinese restaurant franchise.



The Chinese restaurant franchise (Teh et al., 2006)
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At the corpus level, topics 
are drawn from a prior.

Each document-level table is 
associated with a customer at 
the corpus level restaurant.

Each word is associated with a customer at 
the document's restuarant.  It is drawn from 
the topic that its table is associated with.

Corpus level restaurant

Document level restaurants



The CRF selects the “right” number of topics (Teh et al., 2006)
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Figure 3: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.

Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of

topics for the hierarchical Dirichlet process mixture over 100 posterior samples.
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Extended to find hierarchies (Blei et al., 2010)
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An optimal algorithm for intersecting line segments in the plane
Recontamination does not help to search a graph
A new approach to the maximum-flow problem
The time complexity of maximum matching by simulated annealing

Quantum lower bounds by polynomials
On the power of bounded concurrency I: finite automata
Dense quantum coding and quantum finite automata
Classical physics and the Church--Turing Thesis
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Balanced sequences and optimal routing
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BNP correlated topic model (Paisley et al., 2011)

{population  female  male}

{emperor  reign  imperial}

{site  town  wall}

{language  culture  spanish}

{son  father  brother}

{church  catholic  roman}

{language  letter  sound}

{william  lord  earl}

{god  greek  ancient}

{calendar  month  holiday}

{empire  ottoman  territory}

{noun  verb  language}

{colony  slave  independence}

{building  wall  design}

{island  ship  islands}

{political  society  argue}

{social  theory  cultural}

{kill  prisoner  arrest}

{president  party  elect}

{international  china  union}

{art  painting  artist}

{battle  army  fight}

{math  function  define}

{mathematician  numeral  decimal}

{capitalist  socialism  capitalism}

{host  centre  football}

{motion  law  relativity}

{law  convention  international}

{earth  planet  solar}

{law  legal  court}

{military  army  armed}

{universe  destroy  series}

{music  instrument  musical}

{university  prize  award}

{student  university  school}

{wave  light  field}

{county  home  population}

{report  fbi  investigation}

{sport  competition  event}

{weapon  gun  design}

{heat  pressure  mechanical}

{water  sub  metal}

{technology  information  organization}

{jersey  york  uniform}

{publish  story  publication}

{company  car  engine}

{game  player  character}

{film  scene  movie}

{film  award  director}

{album  song  music}

{game  sell  video}



Random measures

XnG�

G0

N

• The CRP metaphors are the best first way to understand BNP methods.

• BNP models were originally developed as random measure models.

• E.g., data drawn independently from a random distribution:

G ⇠ DP(↵G0)

Xn ⇠ G

• The random measure perspective helps with certain applications (such as
the BNP correlated topic model) and for some approaches to inference.



The Dirichlet process (Ferguson, 1973)
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• The Dirichlet process is a distribution of distributions, G⇠DP(↵,G0)

• concentration parameter ↵ (a positive scalar)
• base distribution G0.

• It produces distributions defined on the same space as its base distribution.



The Dirichlet process (Ferguson, 1973)

XnG�
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• Consider a partition of the probability space (A1, . . . ,AK ).

• Ferguson: If for all partitions,

hG(A1), . . . ,G(Ak)i ⇠Dir(↵G0(A1), . . . ,↵G0(AK ))

then G is distributed with a Dirichlet process.

• Note: In this process, the random variables G(Ak) are indexed by the Borel
sets of the probability space.



The Dirichlet process (Ferguson, 1973)

XnG�

G0

N

• G is discrete; it places its mass on a countably infinite set of atoms.

• The distribution of the locations is the base distribution G0.

• As ↵ gets large, G looks more like G0.

• The conditional P(G |x1:N) is a Dirichlet process.



The Dirichlet process (Ferguson, 1973)
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• Marginalizing out G reveals the clustering property.

• The joint distribution of X1:N will exhibit fewer than N unique values.

• These unique values are drawn from G0.

• The distribution of the partition structure is a CRP(↵).



The Dirichlet process mixture (Antoniak, 1974)

XnG�

G0

N�n

• The draw from G can be a latent parameter to an observed variable:

G ⇠ DP(↵,G0)

✓n ⇠ G

xn ⇠ p(· |✓n).

• This smooths the random discrete distribution to a DP mixture.

• Because of the clustering property, marginalizing out G reveals that this
model is the same as a CRP mixture.



Hierarchical Dirichlet processes (Teh et al., 2006)
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• The hierarchical Dirichlet process (HDP) models grouped data.

G0 ⇠ DP(�,H)

Gm ⇠ DP(↵,G0)

✓mn ⇠ Gm

xmn ⇠ p(· |✓mn)

• Marginalizing out G0 and Gm reveals the Chinese restaurant franchise.



Hierarchical Dirichlet processes (Teh et al., 2006)
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• In topic modeling—
• The atoms of G0 are all the topics.
• Each Gm is a document-specific distribution over those topics
• The variable ✓mn is a topic drawn from Gm.
• The observation xmn is a word drawn from the topic ✓mn.

• Note that in the original topic modeling story, we worked with pointers to
topics. Here the ✓mn variables are distributions over words.



Summary: Bayesian nonparametrics

• Bayesian nonparametric modeling is a growing field (Hjort et al., 2011).

• BNP methods can define priors over latent combinatorial structures.

• In the posterior, the documents determine the particular form of the
structure that is best for the corpus at hand.

• Recent innovations:

• Improved inference (Blei and Jordan, 2006, Wang et al. 2011)
• BNP models for language (Teh, 2006; Goldwater et al., 2011)

• Dependent models, such as time series models
(MacEachern 1999, Dunson 2010, Blei and Frazier 2011)

• Predictive models (Hannah et al. 2011)
• Factorization models (Griffiths and Ghahramani, 2011)



Posterior Inference



Posterior inference

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• We can express many kinds of assumptions.

• How can we analyze the collection under those assumptions?



Posterior inference

Topics Documents
Topic proportions and

assignments

• Posterior inference is the main computational problem.

• Inference links observed data to statistical assumptions.

• Inference on large data is crucial for topic modeling applications.



Posterior inference

Topics Documents
Topic proportions and

assignments

• Our goal is to compute the distribution of the hidden variables conditioned
on the documents

p(topics, proportions, assignments |documents)



Posterior inference for LDA
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• The joint distribution of the latent variables and documents is

Q
K

i=1 p(�i |⌘)
Q

D

d=1 p(✓d |↵)
⇣Q

N

n=1 p(zd ,n |✓d)p(wd ,n |�1:K ,zd ,n)
⌘

.

• The posterior of the latent variables given the documents is

p(� ,✓ ,z |w).



Posterior inference for LDA
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• This is equal to
p(� ,✓ ,z,w)R

�

R
✓

P
z p(� ,✓ ,z,w)

.

• We can’t compute the denominator, the marginal p(w).

• This is the crux of the inference problem.



Posterior inference for LDA
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• There is a large literature on approximating the posterior, both within topic
modeling and Bayesian statistics in general.

• We will focus on mean-field variational methods.

• We will derive stochastic variational inference, a generic approximate
inference method for very large data sets.



Variational inference

• Variational inference turns posterior inference into optimization.

• The main idea—

• Place a distribution over the hidden variables with free parameters,
called variational parameters.

• Optimize the variational parameters to make the distribution close (in
KL divergence) to the true posterior

• Variational inference can be faster than sampling-based approaches.

• It is easier to handle nonconjugate models with variational inference.
(This is important in the CTM, DTM, and legislative models.)

• It can be scaled up to very large data sets with stochastic optimization.



Stochastic variational inference

• We want to condition on large data sets and approximate the posterior.

• In variational inference, we optimize over a family of distributions to find
the member closest in KL divergence to the posterior.

• Variational inference usually results in an algorithm like this:
• Infer local variables for each data point.
• Based on these local inferences, re-infer global variables.
• Repeat.



Stochastic variational inference

• This is inefficient. We should know something about the global structure
after seeing part of the data.

• And, it assumes a finite amount of data. We want algorithms that can
handle data sources, information arriving in a constant stream.

• With stochastic variational inference, we can condition on large data and
approximate the posterior of complex models.



Stochastic variational inference

• The structure of the algorithm is:
• Subsample the data—one data point or a small batch.
• Infer local variables for the subsample.
• Update the current estimate of the posterior of the global variables.
• Repeat.

• This is efficient—we need only process one data point at a time.

• We will show: Just as easy as “classical” variational inference



Stochastic variational inference for LDA

Sample one document Update the modelAnalyze it

1 Sample a document wd from the collection

2 Infer how wd exhibits the current topics

3 Create intermediate topics, formed as though the wd is the only document.

4 Adjust the current topics according to the intermediate topics.

5 Repeat.



Stochastic variational inference for LDA
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Stochastic variational inference for LDA

Sample one document Update the modelAnalyze it

We have developed stochastic variational inference algorithms for

• Latent Dirichlet allocation

• The hierarchical Dirichlet process

• The discrete infinite logistic normal

• Mixed-membership stochastic blockmodels

• Bayesian nonparametric factor analysis

• Recommendation models and legislative models



Organization

• Describe a generic class of models

• Derive mean-field variational inference in this class

• Derive natural gradients for the variational objective

• Review stochastic optimization

• Derive stochastic variational inference



Organization

n
xizi

�
Global variables

Local variables

• We consider a generic model.
• Hidden variables are local or global.

• We use variational inference.
• Optimize a simple proxy distribution to be close to the posterior
• Closeness is measured with Kullback-Leibler divergence

• Solve the optimization problem with stochastic optimization.
• Stochastic gradients are formed by subsampling from the data.



Generic model

n
xizi

�
Global variables

Local variables

p(� ,z1:n,x1:n)= p(�)
nY

i=1

p(zi |�)p(xi |zi ,�)

• The observations are x = x1:n.

• The local variables are z = z1:n.

• Th global variables are � .

• The i th data point xi only depends on zi and � .

• Our goal is to compute p(� ,z |x).



Generic model
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Global variables

Local variables

p(� ,z1:n,x1:n)= p(�)
nY

i=1

p(zi |�)p(xi |zi ,�)

• A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

• Assume each complete conditional is in the exponential family,

p(zi |� ,xi) = h(zi)exp{⌘`(� ,xi)>zi �a(⌘`(� ,xi))}
p(� |z,x) = h(�)exp{⌘g(z,x)>� �a(⌘g(z,x))}.



Generic model
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�
Global variables

Local variables

p(� ,z1:n,x1:n)= p(�)
nY

i=1

p(zi |�)p(xi |zi ,�)

• Bayesian mixture models

• Time series models
(variants of HMMs, Kalman filters)

• Factorial models

• Matrix factorization
(e.g., factor analysis, PCA, CCA)

• Dirichlet process mixtures, HDPs

• Multilevel regression
(linear, probit, Poisson)

• Stochastic blockmodels

• Mixed-membership models
(LDA and some variants)



Mean-field variational inference
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ELBO

• Introduce a variational distribution over the latent variables q(� ,z).

• We optimize the evidence lower bound (ELBO) with respect to q,

logp(x)�Eq[logp(� ,Z ,x)]�Eq[logq(� ,Z)].

• Up to a constant, this is the negative KL between q and the posterior.



Mean-field variational inference
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We can derive the ELBO with Jensen’s inequality:

logp(x) = log

Z
p(� ,Z ,X)dZd�

= log

Z
p(� ,Z ,X)

q(� ,Z)
q(� ,Z)

dZd�

�
Z

q(� ,Z) log
p(� ,Z ,X)

q(Z)
dZd�

= Eq[logp(� ,Z ,x)]�Eq[logq(� ,Z)].



Mean-field variational inference
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ELBO

• We specify q(� ,z) to be a fully factored variational distribution,

q(� ,z)= q(� |�)
Q

n

i=1 q(zi |�i).

• Each instance of each variable has its own distribution.

• Each component is in the same family as the model conditional,

p(� |z,x) = h(�)exp{⌘g(z,x)>� �a(⌘g(z,x))}
q(� |�) = h(�)exp{�>� �a(�)}

(And, same for the local variational parameters.)



Mean-field variational inference
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• We optimize the ELBO with respect to these parameters,

L (�,�1:n)=Eq[logp(� ,Z ,x)]�Eq[logq(� ,Z)].

• Same as finding the q(� ,z) that is closest in KL divergence to p(� ,z |x)

• The ELBO links the observations/model to the variational distribution.



Mean-field variational inference
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• Coordinate ascent: Iteratively update each parameter, holding others fixed.

• With respect to the global parameter, the gradient is

r�L = a
00(�)(E�[⌘g(Z ,x)]��).

This leads to a simple coordinate update

�⇤=E�
î
⌘g(Z ,x)
ó

.

• The local parameter is analogous.



Mean-field variational inference

Initialize � randomly.
Repeat until the ELBO converges

1 For each data point, update the local variational parameters:

�
(t)
i

=E�(t�1) [⌘`(� ,xi)] for i 2 {1, . . . ,n}.

2 Update the global variational parameters:

�(t) =E�(t) [⌘g(Z1:n,x1:n)].



Mean-field variational inference for LDA

�d Zd,n Wd,n
N

D K
�k

�d �d,n �k

• Document variables: Topic proportions ✓ and topic assignments z1:N .

• Corpus variables: Topics �1:K

• The variational distribution is

q(� ,✓ ,z)=
KY

k=1

q(�k |�k)
DY

d=1

q(✓d |�d)
NY

n=1

q(zd ,n |�d ,n)



Mean-field variational inference for LDA

�d Zd,n Wd,n
N

D K
�k

�d �d,n �k

• In the “local step” we iteratively update the parameters for each document,
holding the topic parameters fixed.

�(t+1) = ↵+
P

N

n=1�
(t)
n

�
(t+1)
n / exp{Eq[log✓ ]+Eq[log�.,wn

]}.



Mean-field variational inference for LDA
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Mean-field variational inference for LDA

�d Zd,n Wd,n
N

D K
�k

�d �d,n �k

• In the “global step” we aggregate the parameters computed from the local
step and update the parameters for the topics,

�k =⌘+
X

d

X

n

wd ,n�d ,n.



Mean-field variational inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Mean-field variational inference for LDA

1: Initialize topics randomly.
2: repeat
3: for each document do
4: repeat
5: Update the topic assignment variational parameters.
6: Update the topic proportions variational parameters.
7: until document objective converges
8: end for
9: Update the topics from aggregated per-document parameters.

10: until corpus objective converges.



Mean-field variational inference

Initialize � randomly.
Repeat until the ELBO converges

1 Update the local variational parameters for each data point,

�
(t)
i

=E�(t�1) [⌘`(� ,xi)] for i 2 {1, . . . ,n}.

2 Update the global variational parameters,

�(t) =E�(t) [⌘g(Z1:n,x1:n)].

• Note the relationship to existing algorithms like EM and Gibbs sampling.

• But we must analyze the whole data set before completing one iteration.



Mean-field variational inference

Initialize � randomly.
Repeat until the ELBO converges

1 Update the local variational parameters for each data point,

�
(t)
i

=E�(t�1) [⌘`(� ,xi)] for i 2 {1, . . . ,n}.

2 Update the global variational parameters,

�(t) =E�(t) [⌘g(Z1:n,x1:n)].

To make this more efficient, we need two ideas:

• Natural gradients

• Stochastic optimization



The natural gradient
RIEMANNIAN CONJUGATE GRADIENT FOR VB

!
"
#$%&'()*
+'(,%))'%)-#$%&'()*

Figure 1: Gradient and Riemannian gradient directions are shown for the mean of distribution q.
VB learning with a diagonal covariance is applied to the posterior p(x,y) ! exp[�9(xy�
1)2� x2� y2]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Riemannian inner products
and norms, parallel transport of gradient vectors between different tangent spaces as well as line
searches and steps along geodesics in the Riemannian space. In practical algorithms some of these
can be approximated by their flat-space counterparts. We shall apply the approximate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gradients, inner products
and norms but uses flat-space approximations of the others as our optimisation algorithm of choice
throughout the paper. As shown in Appendix A, these approximations do not affect the asymptotic
convergence properties of the algorithm. The difference between gradient and conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributions q("""|###) to derive
more efficient algorithms for approximate inference and especially VB using approximations with
a fixed functional form. This differs from the traditional natural gradient learning by Amari (1998)
which uses the Riemannian structure of the predictive distribution p(XXX |"""). The proposed method
can be used to jointly optimise all the parameters ### of the approximation q("""|###), or in conjunction
with VB EM for some parameters.

3239

(from Honkela et al., 2010)

• In natural gradient ascent, we premultiply the gradient by the inverse of a
Riemannian metric. Amari (1998) showed this is the steepest direction.

• For distributions, the Riemannian metric is the Fisher information.



The natural gradient
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• In the exponential family, the Fisher information is the second derivative of
the log normalizer,

G = a
00(�).

• So, the natural gradient of the ELBO is

r̂�L =E�[⌘g(Z ,x)]��.

• We can compute the natural gradient by computing the coordinate updates
in parallel and subtracting the current variational parameters.



Stochastic optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

• Why waste time with the real gradient, when a cheaper noisy estimate of
the gradient will do (Robbins and Monro, 1951)?

• Idea: Follow a noisy estimate of the gradient with a step-size.

• By decreasing the step-size according to a certain schedule, we guarantee
convergence to a local optimum.



Stochastic optimization
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ELBO

• We will use stochastic optimization for global variables.

• Let r�Lt be a realization of a random variable whose expectation is r�L .

• Iteratively set
�(t) =�(t�1)+✏tr�Lt

• This leads to a local optimum when
P1

t=1✏t = 1P1
t=1✏

2
t
< 1

• Next step: Form a noisy gradient.



A noisy natural gradient
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ELBO

• We need to look more closely at the conditional distribution of the global
hidden variable given the local hidden variables and observations.

• The form of the local joint distribution is

p(zi ,xi |�)= h(zi ,xi)exp{�>f (zi ,xi)�a(�)}.

This means the conditional parameter of � is

⌘g(z1:n,x1:n)= h↵1 +
P

n

i=1 f (zi ,xi),↵2 +ni.

• See the discussion of conjugacy in Bernardo and Smith (1994).



A noisy natural gradient

• With local and global variables, we decompose the ELBO

L =E[logp(�)]�E[logq(�)]+
P

n

i=1 E[logp(zi ,xi |�)]�E[logq(zi)]

• Sample a single data point t uniformly from the data and define

Lt =E[logp(�)]�E[logq(�)]+n(E[logp(zt ,xt |�)]�E[logq(zt)]).

1. The ELBO is the expectation ofLt with respect to the sample.
2. The gradient of the t-ELBO is a noisy gradient of the ELBO.
3. The t-ELBO is like an ELBO where we saw xt repeatedly.



A noisy natural gradient

• Define the conditional as though our whole data set is n replications of xt ,

⌘t(zt ,xt)= h↵1 +n · f (zt ,xt),↵2 +ni

• The noisy natural gradient of the ELBO is

r�L̂t =E�t
[⌘t(Zt ,xt)]��.

• This only requires the local variational parameters of one data point.

• In contrast, the full natural gradient requires all local parameters.



Stochastic variational inference

Initialize global parameters � randomly.
Set the step-size schedule ✏t appropriately.
Repeat forever

1 Sample a data point uniformly,

xt ⇠Uniform(x1, . . . ,xn).

2 Compute its local variational parameter,

�=E�(t�1) [⌘`(� ,xt)].

3 Pretend its the only data point in the data set,

�̂=E�[⌘t(Zt ,xt)].

4 Update the current global variational parameter,

�(t) =(1�✏t)�(t�1)+✏t �̂.



Stochastic variational inference in LDA

�d Zd,n Wd,n
N

D K
�k

�d �d,n �k

1 Sample a document

2 Estimate the local variational parameters using the current topics

3 Form “fake topics” from those local parameters

4 Update the topics to be a weighted average of “fake” and current topics



Stochastic variational inference in LDA

1: Define ⇢t ¨ (⌧0 + t)�

2: Initialize � randomly.
3: for t = 0 to1 do
4: Choose a random document wt

5: Initialize �tk = 1. (The constant 1 is arbitrary.)
6: repeat
7: Set �t ,n / exp{Eq[log✓t ]+Eq[log�·,wn

]}
8: Set �t =↵+

P
n
�t ,n

9: until 1
K

P
k
|change in �t ,k |< ✏

10: Compute �̃k =⌘+D

P
n

wt ,n�t ,n

11: Set �k =(1�⇢t)�k +⇢t �̃k .
12: end for



Stochastic variational inference in LDA
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Stochastic variational inference
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We defined a generic algorithm for scalable variational inference.

• Bayesian mixture models

• Time series models
(variants of HMMs, Kalman filters)

• Factorial models

• Matrix factorization
(e.g., factor analysis, PCA, CCA)

• Dirichlet process mixtures, HDPs

• Multilevel regression
(linear, probit, Poisson)

• Stochastic blockmodels

• Mixed-membership models
(LDA and some variants)



Stochastic variational inference
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• See Hoffman et al. (2010) for LDA (and code).

• See Wang et al. (2010) for Bayesian nonparametric models (and code).

• See Sato (2001) for the original stochastic variational inference.

• See Honkela et al. (2010) for natural gradients and variational inference.



Stochastic variational inference

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• Many applications posit a model, condition on data, and use the posterior.

• We can now apply this kind of data analysis to very large data sets.



Nonconjugate variational inference

• The class of conditionally conjugate models is very flexible.

• However, some models—like the CTM and DTM—do not fit in.

• In the past, researchers developed tailored optimization procedures for
fitting the variational objective.

• We recently developed a more general approach that subsumes many of
these strategies.



Nonconjugate variational inference

• Bishop (2006) showed that the optimal mean-field variational distribution is

q
⇤(z) / exp
¶
Eq(�) [logp(z |� ,x)]

©

q
⇤(�) / exp
¶
Eq(z) [logp(� |z,x)]

©

• In conjugate models, we can compute these expectations.
This determines the form of the optimal variational distribution.

• In nonconjugate models we can’t compute the expectations.

• But, under certain conditions, we can use Taylor approximations.
This leads to Gaussian variational distributions.



Using and Checking Topic Models



Using and checking topic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• We have collected data, selected a model, and inferred the posterior.

• How do we use the topic model?



Using and checking topic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• Using a model means doing something with the posterior inference.

• E.g., visualization, prediction, assessing document similarity,
using the representation in a downstream task (like IR)



Using and checking topic models
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• Questions we ask when evaluating a model:
• Does my model work? Is it better than another model?
• Which topic model should I choose? Should I make a new one?

• These questions are tied up in the application at hand.

• Sometimes evaluation is straightforward, especially in prediction tasks.



Using and checking topic models

• But a promise of topic models is that they give good exploratory tools.
Evaluation is complicated, e.g., is this a good navigator of my collection?

• And this leads to more questions:
• How do I interpret a topic model?
• What quantities help me understand what it says about the data?



Using and checking topic models

• How to interpret and evaluate topic models is an active area of research.
• Visualizing topic models
• Naming topics
• Matching topic models to human judgements
• Matching topic models to external ontologies
• Computing held out likelihoods in different ways

• I will discuss two components:
• Predictive scores for evaluating topic models
• Posterior predictive checks for topic modeling



The predictive score

• Assess how well a model can predict future data

• In text, a natural setting is one where we observe part of a new document
and want to predict the remainder.

• The predictive distribution is a distribution conditioned on the corpus and
the partial document,

p(w |D,wobs) =

Z

�

Z

✓

⇣P
K

k=1✓k�k ,w

⌘
p(✓ |wobs,�)p(� |D)

⇡
Z

�

Z

✓

⇣P
K

k=1✓k�k ,w

⌘
q(✓ )q(�)

= Eq[✓ |wobs]>Eq[�·,w |D].



The predictive score

• The predictive score evaluates the remainder of the document
independently under this distribution.

s =
X

w2wheld out

logp(w |D,wobs) (1)

• In the predictive distribution, q is any approximate poterior. This puts
various models and inference procedures on the same scale.

• (In contrast, perplexity of entire held out documents requires different
approximations for each inference method.)



The predictive score

Nature New York Times Wikipedia

LDA 100 -7.26 -7.66 -7.41
LDA 200 -7.50 -7.78 -7.64
LDA 300 -7.86 -7.98 -7.74

HDP -6.97 -7.38 -7.07

The predictive score on large corpora using stochastic variational inference



Posterior predictive checks

• The predictive score and other model selection criteria are good for
choosing among several models.

• But they don’t help with the model building process; they don’t tell us how a
model is misfit. (E.g. should I go from LDA to a DTM or LDA to a CTM?)

• Further, prediction is not always important in exploratory or descriptive
tasks. We may want models that capture other aspects of the data.

• Posterior predictive checks are a technique from Bayesian statistics that
help with these issues.



Posterior predictive checks

– This feels even more relevant today. I think of modeling as piecing together
various modules, rather than choosing among a population of models.

– Machine learning has given us many new building blocks, but has little to say
about how to diagnose models.

– This is especially important in exploratory analysis, e.g., to form hypotheses or
organize data. Many exploratory tasks do not have clear measures of quality.

• Automating model building is a tall order. Even BNP methods do not automate it.

– They help define flexible models, but it is up to the modeler to define likelihood
functions, dependencies between the observed data and latent variables, etc.

2 The predictive check

• Box (1980) describes a predictive check, which tells the story. (Though this story will be
refined in a posterior predictive check.)

• All the intuitions about how to assess a model are in this picture:

• The set up from Box (1980) is the following.

– The data are y; the hidden variables are �; the model is M.

– Each point of the hidden variable � yields a distribution of data.

– The joint distribution combines the prior and the likelihood

p(y,� |M)= p(y |�)p(� |M) (1)

2

This is a predictive check from Box (1980).



Posterior predictive checks

• Three stages to model building: estimation, criticism, and revision.

• In criticism, the model “confronts” our data.

• Suppose we observe a data set y. The predictive distribution is the
distribution of data if the model is true:

p(y |M)=

Z

✓

p(y |✓ )p(✓ )

• Locating y in the predictive distribution indicates if we can “trust” the model.

• Or, locating a discrepancy function g(y) in its predictive distribution
indicates if what is important to us is captured in the model.



Posterior predictive checks

• Rubin (1984) located the data y in the posterior p(y |y,M).

• Gelman, Meng, Stern (1996) expanded this idea to “realized discrepancies”
that include hidden variables g(y,z).

• We might make modeling decisions based on a variety of simplifying
considerations (e.g., algorithmic). But we can design the realized
discrepancy function to capture what we really care about.

• Further, realized discrepancies let us consider which parts of the model fit
well and which parts don’t. This is apt in exploratory tasks.



Posterior predictive checks in topic models

• Consider a decomposition of a corpus into topics, i.e., {wd ,n,zd ,n}. Note
that zd ,n is a latent variable.

• For all the observations assigned to a topic, consider the variable {wd ,n,d}.
This is the observed word and the document it appeared in.

• One measure of how well a topic model fits the LDA assumptions is to look
at the per-topic mutual information between w and d .

• If the words from the topic are independently generated then we expect
lower mutual information.

• What is “low”? To answer that, we can shuffle the words and recompute.
This gives values of the MI when the words are independent.



Posterior predictive checks in topic models
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where qd,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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• This realized discrepancy measures model fitness
• Can use it to measure model fitness per topic.
• Helps us explore parts of the model that fit well.



Discussion



Probabilistic topic models

• What are topic models?

• What kinds of things can they do?

• How do I compute with a topic model?

• How do I evaluate and check a topic model?

• What are some unanswered questions in this field?

• How can I learn more?



Introduction to topic modeling
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• LDA assumes that there are K topics shared by the collection.

• Each document exhibits the topics with different proportions.

• Each word is drawn from one topic.

• We discover the structure that best explain a corpus.



Extensions of LDA
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Topic models can be adapted to many settings

• relax assumptions

• combine models

• model more complex data



Posterior inference

4096

systems

health

communication

service

billion

language

care

road

8192

service

systems

health

companies

market

communication

company

billion

12288

service

systems

companies

business

company

billion

health

industry

16384

service

companies

systems

business

company

industry

market

billion

32768

business

service

companies

industry

company

management

systems

services

49152

business

service

companies

industry

services

company

management

public

2048

systems

road

made

service

announced

national

west

language

65536

business

industry

service

companies

services

company

management

public

Documents

analyzed

Top eight

words

Documents seen (log scale)

P
e
rp
le
x
it
y

600

650

700

750

800

850

900

10
3.5

10
4

10
4.5

10
5

10
5.5

10
6

10
6.5

Batch 98K

Online 98K

Online 3.3M

• Posterior inference is the central computational problem.

• Stochastic variational inference is a scalable algorithm.

• We can handle nonconjugacy with Laplace inference.

• (Note: There are many types of inference we didn’t discuss.)



Posterior predictive checks

80  COMMUNICATIONS OF THE ACM   |  APRIL 2012 |  VOL.  55 |  NO.  4

review articles

observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where qd,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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Probabilistic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check



Implementations of LDA

There are many available implementations of topic modeling.
Here is an incomplete list—

LDA-C⇤ A C implementation of LDA
HDP⇤ A C implementation of the HDP (“infinite LDA”)
Online LDA⇤ A python package for LDA on massive data
LDA in R⇤ Package in R for many topic models
LingPipe Java toolkit for NLP and computational linguistics
Mallet Java toolkit for statistical NLP
TMVE⇤ A python package to build browsers from topic models

⇤ available at www.cs.princeton.edu/⇠blei/



Research opportunities in topic modeling

• New applications of topic modeling
What methods should we develop to solve problems in the computational
social sciences? The digital humanties? Digital medical records?

• Interfaces and downstream applications of topic modeling
What can I do with an annotated corpus? How can I incorporate latent
variables into a user interface? How should I visualize a topic model?

• Model interpretation and model checking
Which model should I choose for which task? What does the model tell me
about my corpus?



Research opportunities in topic modeling

• Incorporating corpus, discourse, or linguistic structure
How can our knowledge of language help inform better topic models?

• Prediction from text
What is the best way to link topics to prediction?

• Theoretical understanding of approximate inference
What do we know about variational inference? Can we analyze it from
either the statistical or learning perspective? What are the relative
advantages of the many inference methods?

• And many specific problems
E.g., sensitivity to the vocabulary, modeling word contagion, modeling
complex trends in dynamic models, robust topic modeling, combining graph
models with relational models, ...



“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from finding,
and evading, still deeper lying constraints.”

(J. Tukey, The Future of Data Analysis, 1962)



“Despite all the computations, you could just dance to the rock ’n’ roll station.”

(The Velvet Underground, Rock & Roll, 1969)


