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Abstract Nonnegative matrix factorization (NMF) approximates a nonnegative ma-
trix by the product of two low-rank nonnegative matrices. Since it gives semanti-
cally meaningful result that is easily interpretable in clustering applications, NMF
has been widely used as a clustering method especially for document data, and as a
topic modeling method.

We describe several fundamental facts of NMF and introduce its optimization
framework called block coordinate descent. In the context of clustering, our frame-
work provides a flexible way to extend NMF such as the sparse NMF and the
weakly-supervised NMF. The former provides succinct representations for better
interpretations while the latter flexibly incorporate extra information and user feed-
back in NMF, which effectively works as the basis for the visual analytic topic mod-
eling system that we present.

Using real-world text data sets, we present quantitative experimental results
showing the superiority of our framework from the following aspects: fast con-
vergence, high clustering accuracy, sparse representation, consistent output, and
user interactivity. In addition, we present a visual analytic system called UTOPIAN
(User-driven Topic modeling based on Interactive NMF) and show several usage
scenarios.

Overall, our book chapter cover the broad spectrum of NMF in the context of
clustering and topic modeling, from fundamental algorithmic behaviors to practical
visual analytics systems.
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1 Introduction to Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimension reduction method and fac-
tor analysis method. Many dimension reduction techniques are closely related to the
low-rank approximations of matrices, and NMF is special in that the low-rank factor
matrices are constrained to have only nonnegative elements. The nonnegativity re-
flects the inherent representation of data in many application areas, and the resulting
low-rank factors lead to physically natural interpretations [33]. NMF was first intro-
duced by Paatero and Tapper [43] as positive matrix factorization and subsequently
popularized by Lee and Seung [33]. Over the last two decades, NMF has received
enormous attention and has been successfully applied to a broad range of important
problems in the areas including text mining [45, 52], computer vision [21, 37], bioin-
formatics [6, 11, 23], spectral data analysis [44], and blind source separation [10],
and many others.

Suppose a nonnegative matrix A 2 Rm⇥n is given. When the desired lower di-
mension is k, the goal of NMF is to find the two matrices W 2 Rm⇥k and H 2 Rk⇥n

having only nonnegative entries such that

A⇡WH. (1)

According to (1), each data point, which is represented as the column of A, can be
approximated by an additive combination of the nonnegative basis vectors, which
are represented as the columns of W . As the goal of dimension reduction is to
discover compact representation in the form of (1), k is assumed to satisfy that
k < min{m, n}. The matrices W and H are found by solving an optimization prob-
lem defined with the Frobenius norm (a distance measure between two given matri-
ces), the Kullback-Leibler (KL) divergence (a distance measure between two prob-
ability distributions) [34, 36], or other divergences [12, 36]. In this book chapter,
we focus on NMF based on the Frobenius norm, which is the most commonly used
formulation:

min
W�0,H�0

f (W,H) = kA�WHk2
F . (2)

The constraints in (2) indicate that all the entries of W and H are nonnegative.
NMF with the formulation (2) has been very successful in partitional cluster-

ing, and many variations have been proposed for different settings such as con-
strained clustering and graph clustering [29, 23, 7, 38]. NMF especially performs
well as a document clustering and topic modeling method. Due to an ever increas-
ing amount of document data and the complexity involved with analyzing them
in practice, revealing meaningful insights and thus guiding users in their decision-
making processes has long been an active area of research. Document clustering
is an important task in text mining with the goal of organizing a large text collec-
tion into several semantic clusters and helping users browse documents efficiently.
Topic modeling is related to soft clustering where the documents are represented as a
weighted combination of topics in terms of their proximity to each topic. In addition
to its soft clustering aspect, topic modeling also deals with the semantic meaning of
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each cluster/topic and models it as a weighted combination of keywords. Because
of the nonnegativity constraints in NMF, the result of NMF can be viewed as doc-
ument clustering and topic modeling results directly, which will be elaborated by
theoretical and empirical evidences in this book chapter.

The goal of this book chapter is to provide an overview of NMF used as a clus-
tering and topic modeling method for document data. We present a wide spectrum
of material including the theoretical justification of NMF as a clustering method
(Section 2), an algorithmic framework and extensions (Section 3), empirical perfor-
mances and practical issues (Sections 4-5), as well as a visual analytic system called
UTOPIAN (Section 6). Our emphasis is placed on NMF in the context of document
clustering and topic modeling; however, the presented methodology applies to data
types beyond text, for example, DNA microarray and RNA sequencing data in the
biological domain.

We recommend the readers be familiar with linear algebra and numerical opti-
mization theory.

Notations: Notations used in this book chapter are as follows. A lower-case letter,
such as x, denotes a scalar; an upper-case letter, such as X , denotes a matrix; a
bold-face lower-case letter, such as x, denotes a column vector. We typically use
i, j as indices: For example, i 2 {1, · · · ,n}. The elements of a sequence of vectors
or matrices are denoted by superscripts within parentheses, such as X (1), · · · ,X (n),
and the entire sequence is denoted by {X (i)}. The entries of a matrix are denoted
by subscripts, such as xi j for a matrix X . X � 0 indicates that the elements of X
are nonnegative, i.e., X is a nonnegative matrix. R and R+ denote the set of real
numbers and nonnegative real numbers, respectively. k · k2 and k · kF denotes the
L2 norm and the Frobenius norm, respectively. The operator .⇤ denotes entrywise
multiplication of matrices.

2 Nonnegative Matrix Factorization for Clustering

Dimension reduction and clustering are closely related. Consider the low-rank ap-
proximation in (1), where A 2 Rm⇥n

+ ,W 2 Rm⇥k
+ , H 2 Rk⇥n

+ , and k << min(m,n)
is the pre-specified lower rank. The columns of A represent n data points in an m-
dimensional space. Each column of H is the k-dimensional representation of a data
point. If we can use H to derive an assignment of the n data points into k groups,
clustering can be viewed as a special type of dimension reduction. One example is
the classical K-means clustering:

min
n

Â
i=1
kai�wgik

2
2, (3)

where a1, · · · ,an are the columns of A, w1, · · · ,wk are the k centroids, and gi = j
when the i-th data point is assigned to the j-th cluster (1  j  k). Consider K-
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means formulated as a dimension reduction problem [26]:

min
H2{0,1}k⇥n,HT 1k=1n

kA�WHk2
F , (4)

where 1k 2 Rk⇥1 and 1n 2 Rn⇥1 are the column vectors whose elements are all 1’s.
In the K-means formulation for (4), the columns of W are the cluster centroids, and
the single nonzero element in each column of H indicates the clustering assignment.
Another example of dimension reduction is NMF:

min
W�0,H�0

kA�WHk2
F .

In this formulation, the columns of W provide the basis of a latent k-dimensional
space, and the columns of the second factor H provide the representation of
a1, · · · ,an in the latent space. With only the nonnegativity constraints on H, this
formulation can still be interpreted as clustering results: The columns of W are in-
terpreted as k cluster representatives, and the i-th column of H contains the soft
clustering membership of the i-th data point for the k clusters. NMF is best known
for the interpretability of the latent space it finds [33]. In the case of document
clustering and topic modeling, the basis vectors in W represent k topics, and the
coefficients in the i-th column of H indicate the topic proportions for ai, the i-th
document. To obtain a hard clustering result, we can simply choose the topic with
the largest weight, i.e., the largest element in each column of H.

Historically, NMF has been extensively compared with K-means and singular
value decomposition (SVD). We give several clarifications and caveats regarding
using NMF as a clustering method. It has been shown that K-means and NMF have
the equivalent form of an objective function, kA�WHk2

F [13]. However, each clus-
tering method has its own conditions under which it performs well. K-means as-
sumes that data points in each cluster follow a spherical Gaussian distribution [16].
In contrast, the NMF formulation (2) provides a better low-rank approximation of
the data matrix A than the K-means formulation (4). If k  rank(A), the columns
of W are linearly independent due to rank(A) nonnegative-rank(A) 1 [3]. There-
fore, NMF performs well when different clusters correspond to linearly independent
vectors [29].

One caveat is that NMF does not always perform well as a clustering method.
Consider the example in Fig. 1, where the two cluster centers are along the same
direction and thus the two centroid vectors are linearly dependent. While NMF still
approximates all the data points well in this example, no two linearly independent
vectors in a two-dimensional space can represent the two clusters shown in Fig. 1.
Since K-means and NMF have different conditions under which each of them does
clustering well, they may generate very different clustering results in practice.

In contrast to NMF, rank-k SVD provides the best rank-k approximation but al-
lows negative entries:

1 The nonnegative rank of a matrix X 2 Rm⇥n
+ is the smallest number k̂ such that X = WH where

W 2 Rm⇥k̂
+ and H 2 Rk̂⇥n

+ .
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Fig. 1: An example with two ground-truth clusters, and the different clustering re-
sults given by K-means and NMF. The “o” and “x” markers in each figure indicate
the cluster membership of the data points given by the clustering algorithm. The
left figure shows that K-means correctly identifies the two clusters where the two
centroids are linearly dependent. The right figure shows that NMF, on the contrary,
uses two linearly independent vectors as cluster representatives marked by the two
thick arrows, and leads to incorrect clustering results.

min
UT U=I,V T V=I

kA�WYkF = kA�USV TkF , (5)

where U 2 Rm⇥k, S 2 Rk⇥k, and V 2 Rn⇥k. Thus we cannot interpret the coeffi-
cients in the lower-dimensional space spanned by the columns of U as clustering
assignments. In other words, the rows of V cannot be used as cluster indicators di-
rectly. Instead, an additional clustering method such as K-means has to be applied
to a lower-dimensional representation of the data such as the rows of V to generate
clusters.

The success of NMF as a clustering method depends on the underlying data set,
and its greatest success has been in the area of document clustering [52, 45, 46,
38, 26, 15]. In a document data set, data points are often represented as unit-length
vectors [40] and embedded in a linear subspace. For a term-document matrix A,
a basis vector w j is interpreted as the keyword-wise distribution of a single topic.
When these distributions of k topics are linearly independent, which is usually the
case, NMF can properly extract the ground-truth clusters determined by the true
cluster labels.

Recently, NMF has been applied to topic modeling, a task related to document
clustering, and achieved satisfactory results [2, 1]. Both document clustering and
topic modeling can be considered as dimension reduction processes. Compared to
standard topic modeling methods such as probabilistic latent semantic indexing (p-
LSI) [20] and latent Dirichlet allocation (LDA) [5], NMF essentially gives the same
output types: A keyword-wise topic representation (the columns of W ), and a topic-
wise document representation (the columns of H). The only difference, however, is
that the columns of W and H do not have a unit L1-norm unlike the p-LSI and LDA
outputs. Nonetheless, such a difference is negligible in that (1) can be manipulated
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via diagonal scaling matrices as

A⇡WH = (WDW )(D�1
W H) = Ŵ Ĥ, (6)

where the diagonal component of the diagonal matrix DW 2 Rk⇥k
+ corresponds to

the column sums of W . Now the new matrix Ŵ is column-normalized, giving an
output analogous to the first outputs from p-LSI and LDA, but the second output
Ĥ is still not column-normalized. The column normalization on H does not affect
the interpretation of each document in terms of its relative relationships to topics. In
this sense, NMF can be used as an alternative to topic modeling methods.

Note that NMF with KL-divergence is another commonly used formulation for
topic modeling. It has a probabilistic interpretation and can be shown to be equiva-
lent to p-LSI under certain constraints. However, algorithms for solving NMF with
KL-divergence and p-LSI are typically much slower than those for solving NMF
based on the Frobenius norm (2) [51]. Therefore, we focus on (2) in this chapter
since there are many justified and efficient optimization algorithms developed for
(2) in the literature.

3 Optimization Framework for Nonnegative Matrix
Factorization

Although NMF is known as an NP-hard problem [49], one can still hope to find a
local minimum as an approximate solution for NMF. In this section, we introduce
an algorithmic framework to optimize the objective function (2), namely the block
coordinate descent (BCD) framework. Multiplicative updating (MU) is another pop-
ular framework for solving NMF [33]. However, it has slow convergence and may
lead to inferior solutions [18, 39]. In the later section, we will compare the solutions
given by these two frameworks empirically and show the better clustering quality
given by BCD.

3.1 Block Coordinate Descent Framework

The BCD framework is a widely-applicable strategy in nonlinear optimization prob-
lems. It divides variables into several disjoint subgroups and iteratively minimize the
objective function with respect to the variables of each subgroup at a time. In the
formulation of NMF (2), A is given as an input and the entries of W and H are
the variables to be solved. A natural partitioning of the variables is the two blocks
representing W and H, respectively. That is to say, we take turns solving
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W  arg min
W�0

f (W,H), (7a)

H argmin
H�0

f (W,H). (7b)

These subproblems can be written as

min
W�0
kHTW T �ATk2

F , (8a)

min
H�0
kWH�Ak2

F . (8b)

The subproblems (8) are called nonnegativity constrained least squares (NLS) prob-
lems [32], and the BCD framework has been called the alternating nonnegative least
squares (ANLS) framework [39, 24]. It is summarized in Algorithm 1.

Algorithm 1 The BCD framework for solving NMF: minW,H�0 kA�WHk2
F

1: Input: Matrix A 2 Rm⇥n, tolerance parameter 0 < e << 1, upper limit of the number of itera-
tions T

2: Initialize H
3: repeat
4: Obtain the optimal solution of subproblem (8a)
5: Obtain the optimal solution of subproblem (8b)
6: until A particular stopping criterion based on W,H,e is satisfied or the number of iterations

reaches upper limit T
7: Output: W,H

Note that we need to initialize H and solve (8a) and (8b) iteratively, as stated in
Algorithm 1. Alternatively, we can also initialize W and solve (8b) and (8a) itera-
tively. Different initializations may lead to different solutions for NMF. A common
strategy is to run an NMF algorithm starting from different random initializations
and pick the solution with the smallest objective function value. Other strategies for
initializing W and/or H were also proposed in the literature. For example, in the con-
text of clustering, we can run spherical K-means, i.e. K-means with 1� aT

i a j (one
minus cosine similarity) as the distance function, and use the resulting centroids as
the initialization of W [50].

Even though the subproblems are convex, they do not have a closed-form so-
lution, and a numerical algorithm for the subproblems has to be provided. Many
approaches for solving the NLS subproblems have been proposed in the NMF lit-
erature, e.g., an active-set method [24], a block principal pivoting [27, 28], a pro-
jected gradient descent [39], a quasi-Newton method [22]. We skip these details in
this book chapter, but refer the readers to several software packages that solve NLS
efficiently.2,3

2
http://www.cc.gatech.edu/hpark/nmfsoftware.php

3
http://www.csie.ntu.edu.tw/cjlin/nmf/index.html
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3.1.1 Convergence Property

The objective function of NMF is a fourth-order polynomial with respect to W and
H, and thus is nonconvex. For a nonconvex optimization problem, most algorithms
only guarantee the stationarity of a limit point [4], not necessarily a local minimum.
In practice, we often run an NMF algorithm in the BCD framework for multiple
times with different initializations of W and H, and select the output with the small-
est objective function value.

We have the following theorem regarding the convergence property of the BCD
framework:

Theorem 1 If a minimum of each subproblem in (8) is attained at each step, ev-
ery limit point of the sequence {(W,H)(i)} generated by the BCD framework is a
stationary point of (2).

The BCD framework requires that the optimal solution be returned for each NLS
subproblem. Note that the minimum of each subproblem is not required to be unique
for the convergence result to hold because the number of blocks is two, as proved
by Grippo and Sciandrone [19].

We remark that at a stationary point solution, the Karush-Kuhn-Tucher (KKT)
condition is satisfied:

W � 0, H � 0, (9a)

— fW = 2WHHT �2AHT � 0, — fH = 2W TWH�2W T A� 0, (9b)
W.⇤— fW = 0, H.⇤— fH = 0. (9c)

In contrast, the MU algorithm does not have the convergence property stated
in Theorem 1. We consider the MU algorithm proposed by Lee and Seung [34].
This algorithm has an advantage of being simple and easy to implement, and it has
contributed greatly to the popularity of NMF. Though it also has a form of updating
W and H alternately, it is different from the BCD framework in the sense that its
solutions for the subproblems (8) are not optimal. That is, the update rule of MU is:

W  W.⇤ AHT

WHHT , H H.⇤ W T A
W TWH

, (10)

where the division operator indicates entrywise division. This update rule can be
seen as a gradient descent algorithm with specifically chosen step lengths. The step
lengths are conservative enough so that the result is always nonnegative. However,
we cannot achieve the optimal solution of every NLS subproblem using this update
rule.

Lee and Seung [34] showed that under the update rule (10), the objective function
in NMF (2) is non-increasing. However, it is unknown whether it converges to a
stationary point or a local minimum [18]. In fact, even though the papers using MU
algorithms claimed that the solution satisfied the KKT condition, such as in [14],
often their proofs did not include all the components of the KKT condition in (9),
for example, the sign of the gradients (9b).
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Furthermore, since the values are updated only through multiplications in MU
algorithms, the entries of W and H typically remain nonzero. Hence, their solution
matrices typically are denser than those from algorithms in the BCD framework em-
pirically, and thus it is harder to interpret the solution matrices as clustering results.

3.1.2 Stopping Criterion

Iterative methods have to be equipped with a criterion for stopping iterations. A
naive approach is to stop when the decrease of the objective function becomes
smaller than a pre-defined threshold:

| f (W (i�1),H(i�1))� f (W (i),H(i))| e. (11)

Although this method is commonly adopted, it is potentially misleading because the
decrease of the objective function may become small before a stationary point is
achieved. A more principled criterion was proposed by Lin [39] as follows. Recall
the KKT condition (9) for the objective function of NMF. Let us define the projected
gradient —P fW 2 Rm⇥k as

(—P fW )i j =

(
—( fW )i j, if (— fW )i j < 0 or Wi j > 0;
0, otherwise,

(12)

for i = 1, · · · ,m and j = 1, · · · ,k, and —P fH similarly. Then, conditions (9) can be
rephrased as

—P fW = 0 and —P fH = 0. (13)

Let us denote the projected gradient matrices at the i-th iteration by —P f (i)W and
—P f (i)H and define

D(i) =
q
k—P f (i)W k2

F +k—P f (i)H k2
F . (14)

Using this definition, the stopping criterion is written by

D(i)
D(1)

 e, (15)

where D(1) is from the first iterate of (W,H). Unlike (11), (15) guarantees the sta-
tionarity of the final solution. For caveats when using (15), see [25].

3.2 Extension 1: Sparse NMF

With only nonnegativity constraints, the resulting factor matrix H of NMF contains
the fractional assignment values corresponding to the k clusters represented by the
columns of W . Sparsity constraints on H have been shown to facilitate the interpre-
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tation of the result of NMF as a hard clustering result and improve the clustering
quality [21, 23, 26]. For example, consider two different scenarios of a column of
H 2R3⇥n

+ : (0.2,0.3,0.5)T and (0,0.1,0.9)T . Clearly, the latter is a stronger indicator
that the corresponding data point belongs to the third cluster.

To incorporate extra constraints or prior information into the NMF formulation
(2), various regularization terms can be added. We can consider an objective func-
tion

min
W,H�0

kA�WHk2
F +f(W )+y(H), (16)

where f(·) and y(·) are regularization terms that often involve matrix or vector
norms. The L1-norm regularization can be adopted to promote sparsity in the factor
matrices [47, 23]. When sparsity is desired on H, the L1-norm regularization can be
set as

f(W ) = akWk2
F and y(H) = b

n

Â
i=1
kH(:, i)k2

1, (17)

where H(:, i) represents the i-th column of H. The L1-norm term of y(H) in (17)
promotes sparsity on the columns of H while the Frobenius norm term of f(W ) is
needed to prevent W from growing too large. Scalar parameters a and b are used to
control the strength of regularization.

The sparse NMF can be easily computed using the BCD framework. We can
reorganize the terms in the sparse NMF formulation (16) and (17) and the two sub-
problems in the BCD framework become:

min
W�0

����

✓
HT
p

aIk

◆
W T �

✓
AT

0k⇥m

◆����
2

F
, (18a)

min
H�0

����

✓
Wp
b1T

k

◆
H�

✓
A
0T

n

◆����
2

F
. (18b)

where 1k 2 Rk⇥1,0n 2 Rn⇥1 are the column vectors whose elements are all 1’s and
0’s, respectively, and Ik is a k⇥k identity matrix. Hence, the two subproblems (18a)
and (18b) for the sparse NMF can be solved as NLS problems, similar to Algorithm
1 for the original NMF.

3.3 Extension 2: Weakly-Supervised NMF

The flexible BCD framework allows another important variant called weakly-
supervised NMF (WS-NMF).4 WS-NMF can incorporate a variety of user inputs
so that that the clustering and topic modeling results of NMF can be improved in a
user-driven way. In this section, we describe the formulation and the algorithm of

4 The term “weakly-supervised” can be considered similar to semi-supervised clustering settings,
rather than supervised learning settings such as classification and regression problems.
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WS-NMF. Later in Section 6, we further discuss how WS-NMF can be utilized to
support various types of user interactions in a visual analytics environment.

In WS-NMF, such user inputs are manifested in the form of reference matrices
for W and H. These reference matrices play a role of making W and H become
similar to them. That is, given reference matrices Wr 2 Rm⇥k

+ for W and Hr 2 Rk⇥n
+

for H, diagonal mask/weight matrices MW 2 Rk⇥k
+ and MH 2 Rn⇥n

+ , a data matrix
A2Rm⇥n

+ , and an integer k⌧min(m, n), WS-NMF has the additional regularization
terms that penalize the differences between Hr and H (up to a column-wise scaling
via DH ) and those between Wr and W as

f (W, H, DH) = min
W,H,DH

kA�WHk2
F +k(W �Wr)MWk2

F +k(H�HrDH)MHk2
F

(19)
for W 2 Rm⇥k

+ and H 2 Rk⇥n
+ and a diagonal matrix DH 2 Rn⇥n

+ .
Through these regularization terms, WS-NMF can incorporate various types of

users’ prior knowledge. Each column of Hr specifies the soft clustering member-
ship of data items. A diagonal matrix DH accounts for a possible scaling different
between Hr and H and is a variable to be computed. For example, two vectors,
(0.1, 0.3, 0.6) and (0.2, 0.6, 1.2), are interpreted the same in terms of cluster mem-
bership coefficients, and DH allows them to be treated as same. WS-NMF also sup-
ports partial supervision on a subset of column (or data items) in Hr. The diagonal
matrix MH achieves this by masking/down-weighting the columns or data items in
Hr with no prior information.

Next, Wr supervise the basis representations. In document clustering and topic
modeling, the columns of Wr specify the keyword-wise topic representations in W .
Similar to the role of MH for the partial supervision on H, the diagonal matrix MW
allows the supervision on a subset of columns in W by masking/down-weighting
those columns in Wr with no supervision. However, unlike the supervision on H, the
regularization on W via Wr does not involve any diagonal matrix analogous to DH
because scaling on either W or H suffices due to the relationship (6), which indicates
that if W and H are the solution of a particular NMF problem, then so are WD and
D�1H for an arbitrary diagonal matrix D.

Finally, note that (19) does not have typical regularization parameters that bal-
ance between different terms since MW and MH can account for the effects of the
parameters. In other words, a k(W �Wr)MWk2

F is equivalent to
��(W �Wr)Mnew

W
��2

F
when Mnew

W = aMW , and the same argument holds for MH .
The optimization of (19) follows the BCD framework by iteratively solving W ,

H, and DH . Given initial values for these variables, W is updated as

W  arg min
W�0

����


HT

MW

�
W T �


AT

MWW T
r

�����
2

F
. (20)

Next, each column of H is updated one at a time by solving

H(:, i) arg min
H(:, i)�0

����


W

MH (i) Ik

�
H(:, i)�


A(:, i)

MH (i)DH(i)Hr (:, i)

�����
2

F
, (21)
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where (:, i) indicates the i-th column of a matrix. Finally, the i-th diagonal compo-
nent DH (i) of DH is obtained in a closed form as

DH (i) 

8
<

:

Hr(:, i)T ·H(:, i)
kHr(:, i)k22

if MH (i) 6= 0

0 otherwise
. (22)

4 Choosing the Number of Clusters

The number of clusters k is one of the input parameters that NMF requires. It is
often difficult to choose an appropriate k to achieve the best clustering quality. In
this section, we introduce our method to choose k based on random sampling and
consensus clustering.

Monti et al. [42] proposed a model selection method that used the notion of
stability of the clusters with respect to random sampling of the data points. Let A1
and A2 be two subsets sampled randomly from a data set of n data points. Suppose
two data points ai and a j appear in both subsets generated by random sampling,
that is to say, ai, a j 2 A1 \A2. Let us run a clustering algorithm on both A1 and
A2, and the correct number of clusters k is given. Conceptually, we expect that
if ai and a j belong to the same cluster derived from A1, they also belong to the
same cluster derived from A2. Based on this reasoning, Monti et al. [42] proposed
consensus clustering to aggregate the results of a clustering method over many runs
and achieve a consensus partitioning of data points.

We formulate the idea of a consensus matrix in the context of NMF-based docu-
ment clustering. For a data set with n documents, the (i, j)-th entry of a consensus
matrix C̃ 2 Rn⇥n is the co-clustered frequency of the i-th and j-th documents over
multiple runs of NMF. More rigorously, let r be the sampling rate, the fraction of
documents selected in each random sample. We generate T subsets A1, · · · ,AT by
random sampling, each with sampling rate r, and run an NMF algorithm on each
subset with the same number of clusters k. Define the matrices C(t) and S(t) as the
following (1 t  T ):

c(t)i j =

(
1, if the i-th and the j-th documents belong to the same cluster using At ;
0, otherwise,

(23)

s(t)i j =

(
1, if both the i-th and the j-th documents appear in At ;
0, otherwise.

(24)

Clearly, c(t)i j = 1 implies s(t)i j = 1. Then we can define the consensus matrix C̃:
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c̃i j =
ÂT

t=1 c(t)i j

ÂT
t=1 s(t)i j

. (25)

The entries of C̃ have values in the interval [0,1]. In the ideal scenario where no
ambiguity exists for the co-membership of any two documents, the entries of C̃
could be 0 or 1 only. To measure the dispersion of a consensus matrix C̃, we define
the dispersion coefficient r as:

r =
1
n2

n

Â
i=1

n

Â
j=1

4(c̃i j�0.5)2. (26)

For an ideal consensus matrix where all the entries are 0 or 1, we have r = 1; for a
scattered consensus matrix, 0 r < 1. After obtaining rk values for various k’s, we
can determine the number of clusters as the one with the maximal rk.

Now we illustrate the above method for choosing the number of clusters with
a real-world text data set. We extracted the three largest clusters based on ground-
truth labels from the entire TDT2 data set. For running NMF, we applied the ANLS
algorithm with block principal pivoting [27, 28] solving the NLS subproblems. To
construct the consensus matrix, we used the parameters T = 50 and r = 0.8 for
k = 2,3,4,5. Table 1 shows the dispersion coefficients for these k’s. We can see that
k = 3 corresponds to the largest r and is thus chosen as the most appropriate number
of clusters.

Table 1: Dispersion coefficients for k= 2,3,4,5 using the three largest clusters based
on ground-truth labels from the TDT2 data set.

k = 2 k = 3 k = 4 k = 5
r(k) 0.5642 0.9973 0.8515 0.9411

Note that our method for choosing the number of clusters differs from the work
of Brunet et al. [6] in two aspects. First, the authors of [6] assessed the stability
of clustering results with respect to random initialization of NMF. In contrast, our
method reveals the stability of the cluster structure by examining whether the clus-
ters can be reproduced using a random sample of the data points. Second, the rows
and the columns of the consensus matrix were reordered in [6], and if the reordered
matrix exhibited a block-diagonal structure, the number of clusters was determined
to be appropriate. However, the optimal reordering was obtained by a hierarchical
clustering of the items using the consensus matrix as similarity values between all
the item pairs. Thus, it was very expensive to compute for large-scale data sets. We
experienced difficulty in computing the optimal reordering for a few thousand doc-
uments. Therefore, we did not adopt the model selection method in [6] but rather
used the dispersion coefficient (26) to assess the stability of clusters.
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5 Experimental Results

In this section, we present the empirical evidences that support NMF as a successful
document clustering and topic modeling method. We compare the clustering quality
between K-means and NMF; Within the NMF algorithms, we compare the mul-
tiplicative updating (MU) algorithm and the alternating nonnegative least squares
(ANLS) algorithm in terms of their clustering quality and convergence behavior, as
well as sparseness and consistency in the solution.

5.1 Data Sets and Algorithms

We used the following text corpora in our experiments. All these corpora have
ground-truth labels for evaluating clustering quality but not given as an input to
the clustering algorithms.

1. TDT2 contains 10,212 news articles from various sources (e.g., NYT, CNN, and
VOA) in 1998.

2. Reuters5 contains 21,578 news articles from the Reuters newswire in 1987.
3. 20 Newsgroups6 (20News) contains 19,997 posts from 20 Usenet newsgroups.

Unlike previous indexing of these posts, we observed that many posts have du-
plicated paragraphs due to cross-referencing. We discarded cited paragraphs and
signatures in a post by identifying lines starting with “>” or “--”. The resulting
data set is less tightly-clustered and much more difficult to apply clustering or
classification methods.

4. From the more recent Reuters news collection RCV17 [35] that contains over
800,000 articles in 1996-1997, we selected a subset of 23,149 articles. Labels are
assigned according to a topic hierarchy, and we only considered leaf topics as
valid labels.

5. The research paper collection NIPS14-168 contains NIPS papers published in
2001-2003 [17], which are associated with labels indicating the technical area
(algorithms, learning theory, vision science, etc).

For all these data sets, documents with multiple labels are discarded in our experi-
ments. In addition, the ground-truth clusters representing different topics are highly
unbalanced in their sizes for TDT2, Reuters, RCV1, and NIPS14-16. We selected
the largest 20, 20, 40, and 9 ground-truth clusters from these data sets, respectively.
We constructed term-document matrices using tf-idf features [40], where each row

5
http://www.daviddlewis.com/resources/testcollections/

reuters21578/

6
http://qwone.com/jason/20Newsgroups/

7
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/

lyrl2004rcv1v2README.htm

8
http://robotics.stanford.edu/gal/data.html
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corresponds to a term and each column to a document. We removed any term that
appears less than three times and any document that contains less than five words.
Table 2 summarizes the statistics of the five data sets after pre-processing. For each
data set, we set the number of clusters to be the same as the number of ground-truth
clusters.

Table 2: Data sets used in our experiments.

Data set # Terms # Documents # Ground-truth clusters
TDT2 26,618 8,741 20

Reuters 12,998 8,095 20
20 Newsgroups 36,568 18,221 20

RCV1 20,338 15,168 40
NIPS14-16 17,583 420 9

We further process each term-document matrix A in two steps. First, we normal-
ize each column of A to have a unit L2-norm, i.e., kaik2 = 1. Conceptually, this
makes all the documents have equal lengths. Next, following [52], we compute the
normalized-cut weighted version of A:

D = diag(AT A1n), A AD�1/2, (27)

where 1n 2 Rn⇥1 is the column vector whose elements are all 1’s, and D 2 Rn⇥n
+

is a diagonal matrix. This column weighting scheme was reported to enhance the
clustering quality of both K-means and NMF [52, 30].

For K-means clustering, we used the standard K-means with Euclidean distances.
The Matlab kmeans function has a batch-update phase that re-assigns the data
points all at once in each iteration, as well as a more time-consuming online-update
phase that moves a single data point each time from one cluster to another if such a
movement reduces the sum of squared error [16]. We used both phases and rewrote
this function using BLAS3 operations and boosted its efficiency substantially.9

For the ANLS algorithm for NMF, we used the block principal pivoting algo-
rithm10 [27, 28] to solve the NLS subproblems (8) and the stopping criterion (15)
with e = 10�4. For the MU algorithm for NMF, we used the update formula in
(10). The MU algorithm is not guaranteed to converge to a stationary point and thus
could not satisfy the stopping criterion in (15) after a large number of iterations in
our experiments. Therefore, we used another stopping criterion

kH(i�1)�H(i)kF/kH(i)kF  e (28)

with e = 10�4 to terminate the algorithm.
For the sparse NMF, we used the formulations (16) and (17). The choice of the

parameters a,b that control the regularization strength and the sparsity of the so-

9
http://www.cc.gatech.edu/dkuang3/software/kmeans3.html

10
https://github.com/kimjingu/nonnegfac-matlab
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lution can be determined by cross validation, for example, by tuning a,b until the
desired sparseness is reached. Following [23, 24], we set a to the square of the max-
imum entry in A and b = 0.01 since these choices have been shown to work well in
practice.

5.2 Clustering Quality

We used two measures to evaluate the clustering quality against the ground-truth
clusters.

Clustering accuracy is the percentage of correctly clustered items given by the
maximum bipartite matching (see more details in [52]). This matching associates
each cluster with a ground-truth cluster in an optimal way and can be found by the
Kuhn-Munkres algorithm [31].

Normalized mutual information (NMI) is an information-theoretic measure of
the similarity between two flat partitionings [40], which, in our case, are the ground-
truth clusters and the generated clusters. It is particularly useful when the number of
generated clusters is different from that of ground-truth clusters or when the ground-
truth clusters have highly unbalanced sizes or a hierarchical labeling scheme. It is
calculated by:

NMI =
I(Cground-truth,Ccomputed)⇥

H(Cground-truth)+H(Ccomputed)
⇤
/2

=
Âh,l nh,l log n·nh,l

nhnl�
Âh nh log nh

n +Âl nl log nl
n
�
/2

,

(29)
where I(·, ·) denotes mutual information between two partitionings, H(·) denotes
the entropy of a partitioning, and Cground-truth and Ccomputed denote the partitioning
corresponding to the ground-truth clusters and the computed clusters, respectively.
nh is the number of documents in the h-th ground-truth cluster, nl is the number of
documents in the l-th computed cluster, and nh,l is the number of documents in both
the h-th ground-truth cluster and the l-th computed cluster.

Tables 3 and 4 show the clustering accuracy and NMI results, respectively, av-
eraged over 20 runs with random initializations. All the NMF algorithms have the
same initialization of W and H in each run. We can see that all the NMF algo-
rithms consistently outperform K-means except one case (clustering accuracy eval-
uated on the Reuters data set). Considering the two algorithms for standard NMF,
the clustering quality of NMF/ANLS is either similar to or much better than that
of NMF/MU. The clustering quality of the sparse NMF is consistently better than
that of NMF/ANLS except on the 20 Newsgroups data set and always better than
NMF/MU.
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Table 3: The average clustering accuracy given by the four clustering algorithms on
the five text data sets.

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS
TDT2 0.6711 0.8022 0.8505 0.8644

Reuters 0.4111 0.3686 0.3731 0.3917
20News 0.1719 0.3735 0.4150 0.3970
RCV1 0.3111 0.3756 0.3797 0.3847

NIPS14-16 0.4602 0.4923 0.4918 0.4923

Table 4: The average normalized mutual information given by the four clustering
algorithms on the five text data sets.

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS
TDT2 0.7644 0.8486 0.8696 0.8786

Reuters 0.5103 0.5308 0.5320 0.5497
20News 0.2822 0.4069 0.4304 0.4283
RCV1 0.4092 0.4427 0.4435 0.4489

NIPS14-16 0.4476 0.4601 0.4652 0.4709
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Fig. 2: The convergence behavior of NMF/MU and NMF/ANLS on the 20 News-
groups data set (k = 20) and RCV1 data set (k = 40).

5.3 Convergence Behavior

Now we compare the convergence behaviors of NMF/MU and NMF/ANLS. Fig. 2
shows the relative norm of projected gradient D/D(1) as the algorithms proceed
on the 20 Newsgroups and RCV1 data sets. The quantity D/D(1) is not monotonic
in general but is used to check stationarity and determine whether to terminate the
algorithms. On both data sets, the norm of projected gradient for NMF/ANLS has
a decreasing trend and eventually reached the given tolerance e , while NMF/MU
did not converge to stationary point solutions. This observation is consistent with
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the result that NMF/ANLS achieved better clustering quality and sparser low-rank
matrices.

5.4 Sparseness

We also compare the sparseness in the W and H matrices between the solutions of
NMF/MU, NMF/ANLS, and the sparse NMF/ANLS. Table 5 shows the percentage
of zero entries for the three NMF versions. 11 Compared to NMF/MU, NMF/ANLS
does not only lead to better clustering quality and smaller objective values, but also
facilitates sparser solutions in terms of both W and H. Recall that each column of W
is interpreted as the term distribution for a topic. With a sparser W , the keyword-wise
distributions for different topics are more orthogonal, and one can select important
terms for each topic more easily. A sparser H can be interpreted as clustering in-
dicators more easily. Table 5 also validates that the sparse NMF generates an even
sparser H in the solutions and often better clustering results.

Table 5: The average sparseness of W and H for the three NMF algorithms on the
five text data sets. %(·) indicates the percentage of the matrix entries that satisfy the
condition in the parentheses.

NMF/MU NMF/ANLS Sparse NMF/ANLS
%(wi j = 0) %(hi j = 0) %(wi j = 0) %(hi j = 0) %(wi j = 0) %(hi j = 0)

TDT2 21.05 6.08 55.14 50.53 52.81 65.55
Reuters 40.92 12.87 68.14 59.41 66.54 72.84
20News 46.38 15.73 71.87 56.16 71.01 75.22
RCV1 52.22 16.18 77.94 63.97 76.81 76.18

NIPS14-16 32.68 0.05 50.49 48.53 49.90 54.49

5.5 Consistency from Multiple Runs

We analyze the consistency of the clustering results obtained from multiple runs
of a particular method. We have chosen three methods: K-means, LDA,12 and
NMF/ANLS. The detailed procedure is as follows. First, we run each method mul-
tiple times, e.g., 30 times in our experiment. Second, for each pair of different runs,
e.g., 435 cases, we measure the relative number of documents of which the (hard)
clustering membership results differ from each other. To solve the correspondence

11 Results given by the sparseness measure based on L1 and L2 norms in [21] are similar in terms
of comparison between the three NMF versions.
12 For LDA, we used Mallet [41], a widely-accepted software library based on a Gibbs sampling
method.
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between the two set of cluster indices generated independently from multiple runs,
we apply the Kuhn-Munkres algorithm [31] before comparing the clustering mem-
berships. Finally, we compute the consistency measure as the average value of the
relative numbers of documents over all the pairs of runs, e.g., 435 cases.

Table 6 shows the results of these consistency measures for the five text data
sets. It can be seen that NMF/ANLS generates the most consistent results from
multiple runs compared to K-means and LDA. Combined with the accuracy and
NMI results shown in Tables 3 and 4, this indicates that NMF generally produces
the best clustering result with the least amount of variance. On the other hand, K-
means or LDA may require users to check many results by running them multiple
times until finding satisfactory results.

Table 6: The consistency measure of three clustering algorithms on the five text data
sets.

K-means LDA NMF/ANLS
TDT2 0.6448 0.7321 0.8710

Reuters 0.6776 0.6447 0.8534
20News 0.7640 0.6166 0.7244
RCV1 0.6636 0.5996 0.7950

NIPS14-16 0.6421 0.5352 0.8399

6 UTOPIAN: User-driven Topic Modeling via Interactive NMF

In this section, we present a visual analytics system called UTOPIAN (User-driven
Topic Modeling Based on Interactive NMF)13 [8], which utilizes NMF as a main
tool to steer topic modeling results in a user-driven manner. As seen in Fig. 3,
UTOPIAN provides a visual overview of the NMF topic modeling result as a 2D
scatter plot where dots represent documents. The color of each dot corresponds to
the topic/clustering membership computed by NMF. The position of each dot is de-
termined by running a modified version [8] of t-distributed stochastic neighborhood
embedding [48] to the cosine similarity matrix of bag-of-words vectors of docu-
ments. Additionally, the topics are summarized as their representative keywords.

Beyond the visual exploration of the topic modeling result in a passive manner,
UTOPIAN provides various interaction capabilities that can actively incorporate
user inputs to topic modeling processes. The interactions supported by UTOPIAN
include topic keyword refinement, topic merging/splitting, and topic creation via
seed documents/keywords, all of which are built upon WS-NMF. In the following,
we describe each interaction in more detail.

13
http://tinyurl.com/2013utopian
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Fig. 3: An overview of UTOPIAN. Given a scatter plot visualization generated by
a modified t-distributed stochastic neighborhood embedding, UTOPIAN provides
various interaction capabilities: (1) topic merging, (2) document-induced topic cre-
ation, (3) topic splitting, and (4) keyword-induced topic creation. Additionally, the
user can refine topic keyword weights (not shown here). The document viewer high-
lights the representative keywords from each topic.

Topic keyword refinement. In the topic modeling using NMF, the i-th topic,
which corresponds to the i-th column vector W (i) of W is represented as a weighted
combination of keywords. This interaction allows users to change the weights corre-
sponding to keywords, corresponding to each component of the vector W (i), so that
the meaning of the topic can be refined. For instance, users might want to remove
some of the uninformative terms by setting its weight value to zero. In addition,
users could increase/decrease the weight of a particular keyword to make the cor-
responding topic more/less relevant to the keyword. In turn, this refined vector W (i)

is placed in the the corresponding i-th column vector of Wr in (19) as the reference
information during the subsequent WS-NMF. We also set a nonzero value of M(l)

W to
make this reference vector in effect.

Topic merging. This interaction merges multiple topics into one. To this end, we
utilize the reference information Hr for H as follows. We first interpret the columns
of H as hard clustering results and identify the set of documents clustered to one
of the merged topics. For these documents, we obtain their H(i)’s and merge the
values corresponding to the merged topics by adding them up to a single value, and
set the corresponding columns of Hr to the resulting H(i)’s. For example, suppose
two documents, whose H(i)’s are represented as (0.6, 0.3, 0.1) and (0.4, 0.5, 0.1),
respectively, corresponding to the three original topics. The corresponding column
of Hr will be set to (0.6+0.4, 0.1) and (0.3+0.5, 0.1), respectively, where the first
component corresponds to the merged topic. Alternatively, for topic merging, one
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could use the reference information for W , but we found our approach empirically
works better.

Topic splitting. UTOPIAN also support a topic splitting interaction. It splits a
particular topic, e.g., W (i) of W , into the two topics. To guide this splitting process,
users can assign the reference information for the two topics as follows. First, both
vectors are initialized as the same as W (i). Now users can specify these two topics
differently using the topic keyword refinement interaction.. In this manner, the topic
splitting process in WS-NMF is guided by users based on the differently weighted
keyword-wise representations of the two topics.

Document-induced topic creation. This interaction creates a new topic by using
user-selected documents as seed documents. For example, such seed documents can
be a person’s own research papers and s/he might want to see the topic formed
by them as well as other papers relevant to this topic. To achieve this interaction,
we utilize the reference information for documents. That is, for those documents
specified by the user, their corresponding vectors in Hr in 19 are initialized to zero
vectors but are set to one for the corresponding component to the newly created
topic. This generates the reference information such that these documents are related
only to the newly created topic. WS-NMF then creates a new topic based on it,
which is represented as a keyword-wise distribution, and as a result, other relevant
documents can be included.

Keyword-induced topic creation. It creates a new topic via user-selected key-
words. For instance, given the summary of topics as their representative keywords,
users might want to explore more detailed (sub-)topics about particular keywords.
A new topic created using these keywords would reveal such information. This in-
teraction works similarly to document-induced topic creation except that we now
use the reference information for keywords. Given user-selected keywords, the ref-
erence information of a new topic, i.e., a newly added column vector of Wr, is set
to a zero vector, but the components corresponding to the keywords are set to ones.
Accordingly, WS-NMF will include related documents in this topic, which, in turn,
reveals the details about this topic.

In all the above-described interaction capabilities, UTOPIAN provides slider user
interfaces with which users can interactively control how strongly the supervision
is imposed. The values specified via these user interfaces are used as those for the
nonzero elements in MW and MH .

6.1 Usage Scenarios

We show usage scenarios of the above-described interactions using the 20 News-
groups data set. For efficient interactive visualization in real time, we randomly
sampled 50 data items per each of the 20 categories. Figs. 4-7 shows a sequence of
interactions with these data in UTOPIAN.

Fig. 4(a) shows an initial visualization result generated by UTOPIAN, which
gives a nice visual overview about generated topic clusters. One can see that se-
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(a) The initial visualization
2. Keywords with weight increase

(b) The topic refinement of the two split topics.

Fig. 4: The initial visualization and the topic splitting interaction for the subset of
the 20 Newsgroup data set. From the topic ‘games, play, scores,’ we increase the
weight of the keyword ‘baseball’ in one topic while increasing that of ‘hockey’ in
the other.
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Fig. 5: The two splitted topics, one of which is mainly related to baseball and the
other to hockey, are visualized. Next, the two topics ‘jesus, god, hell’ and ‘belief,
religion, god’ are to be merged.

mantically similar topics are placed closely, e.g., the topics ‘christian, ...’ and ‘jesus,
god, hell’ (top right) and the topics ‘monitor, mac, driving’ and ‘scsi, id, bus’ (bot-
tom middle) while unrelated topics far from each other, e.g., the topics ‘games, play,
scores’ (top left) and ‘armenian, arabs, israeli’ (bottom right) and the topics ‘win-
dow, file, spss’ (lower left) and ‘cars, oil, dealers’ (upper right).

Now, we perform a topic splitting interaction on the topic ‘games, play, scores.’
Initially, both the keywords ‘baseball’ and ‘hockey’ are shown to be highly ranked
in this topic, but we aim at distinguishing the two topics with respect to these key-
words. Thus, as shown in Fig. 4(b), we increase the weight of the former keyword
in the left topic and that of the latter in the right topic. This interaction generates
the two split topics, as shown in Fig. 5, and the documents included in each topic
properly reflect such user intention. Next, we merge semantically similar topics.
We select the two topics ‘jesus, god, hell’ and ‘belief, religion, god’ to merge. The
merged topic is generated as ‘god, jesus, sin,’ as shown in Fig. 6.
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Fig. 6: The merged topic ‘god, jesus, sin’ is generated. Next, a new topic based on
the keyword ‘dealers’ from the topic ‘cars, oil, dealers’ is to be generated.

Finally, we create a new topic via a keyword-induced topic creation interaction.
To this end, we select a keyword ‘dealers’ from the topic ‘cars, oil, dealers.’ As
shown in Fig. 7, the newly created topic ‘dealers, invoice, cost’ reveals the detailed
information about the relevant topic to this keyword.

7 Conclusions and Future Directions

In this book chapter, we have presented nonnegative matrix factorization (NMF) for
document clustering and topic modeling. We have first introduced the NMF formu-
lation and its applications to clustering. Next, we have presented the flexible algo-
rithmic framework based on block coordinate descent (BCD) as well as its conver-
gence property and stopping criterion. Based on the BCD framework, we discussed
two important extensions for clustering, the sparse and the weakly-supervised NMF,
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Fig. 7: The newly created topic ‘dealers, invoice, cost’ is shown.

and our method to determine the number of clusters. Experimental results on var-
ious real-world document data sets show the advantage of our NMF algorithm in
terms of clustering quality, convergence behavior, sparseness, and consistency. Fi-
nally, we presented a visual analytics system called UTOPIAN for interactive visual
clustering and topic modeling and demonstrated its interaction capabilities such as
topic splitting/merging as well as keyword-/document-induced topic creation.

The excellence of NMF in clustering and topic modeling poses numerous ex-
citing research directions. One important direction is to improve the scalability of
NMF. Parallel distributed algorithms are essential for this purpose, but at the same
time, the real-time interaction capability can also be considered from the perspective
of a human perception [9]. Another direction is to allow users to better understand
clustering and topic modeling outputs. In practice, the semantic meaning of doc-
ument clusters and topics is understood based on several representative keywords
and/or documents. However, significant noise in real-world data often makes it dif-
ficult to understand the resulting clusters and topics. In this sense, how to provide
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additional information such as the cluster/topic quality as well as contextual mean-
ing of given keywords has to be addressed.
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