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Abstract

Non-negative matrix factorization (NMF) has previously been shown to
be a useful decomposition for multivariate data. Two different multi-
plicative algorithms for NMF are analyzed. They differ only slightly in
the multiplicative factor used in the update rules. One algorithm can be
shown to minimize the conventional least squares error while the other
minimizes the generalized Kullback-Leibler divergence. The monotonic
convergence of both algorithms can be proven using an auxiliary func-
tion analogous to that used for proving convergence of the Expectation-
Maximization algorithm. The algorithms can also be interpreted as diag-
onally rescaled gradient descent, where the rescaling factor is optimally
chosen to ensure convergence.

1 Introduction

Unsupervised learning algorithms such as principal components analysis and vector quan-
tization can be understood as factorizing a data matrix subject to different constraints. De-
pending upon the constraints utilized, the resulting factors can be shown to have very dif-
ferent representational properties. Principal components analysis enforces only a weak or-
thogonality constraint, resulting in a very distributed representation that uses cancellations
to generate variability [1, 2]. On the other hand, vector quantization uses a hard winner-
take-all constraint that results in clustering the data into mutually exclusive prototypes [3].

We have previously shown that nonnegativity is a useful constraint for matrix factorization
that can learn a parts representation of the data [4, 5]. The nonnegative basis vectors that are
learned are used in distributed, yet still sparse combinations to generate expressiveness in
the reconstructions [6, 7]. In this submission, we analyze in detail two numerical algorithms
for learning the optimal nonnegative factors from data.

2 Non-negative matrix factorization

We formally consider algorithms for solving the following problem:

Non-negativematrix factorization (NMF)Given a non-negativematrix
, find non-negative matrix factors and such that:

(1)



NMF can be applied to the statistical analysis of multivariate data in the following manner.
Given a set of of multivariate -dimensional data vectors, the vectors are placed in the
columns of an matrix where is the number of examples in the data set. This
matrix is then approximately factorized into an matrix and an matrix .
Usually is chosen to be smaller than or , so that and are smaller than the original
matrix . This results in a compressed version of the original data matrix.

What is the significance of the approximation in Eq. (1)? It can be rewritten column by
column as , where and are the corresponding columns of and . In other
words, each data vector is approximated by a linear combination of the columns of ,
weighted by the components of . Therefore can be regarded as containing a basis
that is optimized for the linear approximation of the data in . Since relatively few basis
vectors are used to represent many data vectors, good approximation can only be achieved
if the basis vectors discover structure that is latent in the data.

The present submission is not about applications of NMF, but focuses instead on the tech-
nical aspects of finding non-negative matrix factorizations. Of course, other types of ma-
trix factorizations have been extensively studied in numerical linear algebra, but the non-
negativity constraint makes much of this previous work inapplicable to the present case
[8].

Here we discuss two algorithms for NMF based on iterative updates of and . Because
these algorithms are easy to implement and their convergence properties are guaranteed,
we have found them very useful in practical applications. Other algorithms may possibly
be more efficient in overall computation time, but are more difficult to implement and may
not generalize to different cost functions. Algorithms similar to ours where only one of the
factors is adapted have previously been used for the deconvolution of emission tomography
and astronomical images [9, 10, 11, 12].

At each iteration of our algorithms, the new value of or is found by multiplying the
current value by some factor that depends on the quality of the approximation in Eq. (1). We
prove that the quality of the approximation improves monotonically with the application
of these multiplicative update rules. In practice, this means that repeated iteration of the
update rules is guaranteed to converge to a locally optimal matrix factorization.

3 Cost functions

To find an approximate factorization , we first need to define cost functions
that quantify the quality of the approximation. Such a cost function can be constructed
using some measure of distance between two non-negative matrices and . One useful
measure is simply the square of the Euclidean distance between and [13],

(2)

This is lower bounded by zero, and clearly vanishes if and only if .

Another useful measure is

(3)

Like the Euclidean distance this is also lower bounded by zero, and vanishes if and only
if . But it cannot be called a “distance”, because it is not symmetric in and ,
so we will refer to it as the “divergence” of from . It reduces to the Kullback-Leibler
divergence, or relative entropy, when , so that and can be
regarded as normalized probability distributions.



We now consider two alternative formulations of NMF as optimization problems:

Problem 1 Minimize with respect to and , subject to the constraints
.

Problem 2 Minimize with respect to and , subject to the constraints
.

Although the functions and are convex in only or only, they
are not convex in both variables together. Therefore it is unrealistic to expect an algorithm
to solve Problems 1 and 2 in the sense of finding global minima. However, there are many
techniques from numerical optimization that can be applied to find local minima.

Gradient descent is perhaps the simplest technique to implement, but convergence can be
slow. Other methods such as conjugate gradient have faster convergence, at least in the
vicinity of local minima, but are more complicated to implement than gradient descent
[8]. The convergence of gradient based methods also have the disadvantage of being very
sensitive to the choice of step size, which can be very inconvenient for large applications.

4 Multiplicative update rules

We have found that the following “multiplicative update rules” are a good compromise
between speed and ease of implementation for solving Problems 1 and 2.

Theorem 1 The Euclidean distance is nonincreasing under the update rules

(4)

The Euclidean distance is invariant under these updates if and only if and are at a
stationary point of the distance.

Theorem 2 The divergence is nonincreasing under the update rules

(5)

The divergence is invariant under these updates if and only if and are at a stationary
point of the divergence.

Proofs of these theorems are given in a later section. For now, we note that each update
consists of multiplication by a factor. In particular, it is straightforward to see that this
multiplicative factor is unity when , so that perfect reconstruction is necessarily
a fixed point of the update rules.

5 Multiplicative versus additive update rules

It is useful to contrast these multiplicative updates with those arising from gradient descent
[14]. In particular, a simple additive update for that reduces the squared distance can be
written as

(6)

If are all set equal to some small positive number, this is equivalent to conventional
gradient descent. As long as this number is sufficiently small, the update should reduce

.



Now if we diagonally rescale the variables and set

(7)

then we obtain the update rule for that is given in Theorem 1. Note that this rescaling
results in a multiplicative factor with the positive component of the gradient in the denom-
inator and the absolute value of the negative component in the numerator of the factor.

For the divergence, diagonally rescaled gradient descent takes the form

(8)

Again, if the are small and positive, this update should reduce . If we now
set

(9)

then we obtain the update rule for that is given in Theorem 2. This rescaling can also
be interpretated as a multiplicative rule with the positive component of the gradient in the
denominator and negative component as the numerator of the multiplicative factor.

Since our choices for are not small, it may seem that there is no guarantee that such a
rescaled gradient descent should cause the cost function to decrease. Surprisingly, this is
indeed the case as shown in the next section.

6 Proofs of convergence

To prove Theorems 1 and 2, we will make use of an auxiliary function similar to that used
in the Expectation-Maximization algorithm [15, 16].

Definition 1 is an auxiliary function for if the conditions

(10)

are satisfied.

The auxiliary function is a useful concept because of the following lemma, which is also
graphically illustrated in Fig. 1.

Lemma 1 If is an auxiliary function, then is nonincreasing under the update

(11)

Proof:

Note that only if is a local minimum of . If the derivatives
of exist and are continuous in a small neighborhood of , this also implies that the
derivatives . Thus, by iterating the update in Eq. (11) we obtain a sequence
of estimates that converge to a local minimum of the objective
function:

(12)

We will show that by defining the appropriate auxiliary functions for both
and , the update rules in Theorems 1 and 2 easily follow from Eq. (11).
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Figure 1: Minimizing the auxiliary function guarantees that
for .

Lemma 2 If is the diagonal matrix

(13)
then

(14)

is an auxiliary function for

(15)

Proof: Since is obvious, we need only show that . To
do this, we compare

(16)

with Eq. (14) to find that is equivalent to

(17)
To prove positive semidefiniteness, consider the matrix1:

(18)
which is just a rescaling of the components of . Then is positive
semidefinite if and only if is, and

(19)

(20)

(21)

(22)

(23)
1One can also show that is positive semidefinite by considering the matrix

. Then is a positive eigenvector of with
unity eigenvalue, and application of the Frobenius-Perron theorem shows that Eq. 17 holds.



We can now demonstrate the convergence of Theorem 1:

Proof of Theorem 1 Replacing in Eq. (11) by Eq. (14) results in the update rule:
(24)

Since Eq. (14) is an auxiliary function, is nonincreasing under this update rule, according
to Lemma 1. Writing the components of this equation explicitly, we obtain

(25)

By reversing the roles of and in Lemma 1 and 2, can similarly be shown to be
nonincreasing under the update rules for .

We now consider the following auxiliary function for the divergence cost function:

Lemma 3 Define

(26)

(27)

This is an auxiliary function for

(28)

Proof: It is straightforward to verify that . To show that ,
we use convexity of the log function to derive the inequality

(29)

which holds for all nonnegative that sum to unity. Setting

(30)

we obtain

(31)

From this inequality it follows that .

Theorem 2 then follows from the application of Lemma 1:

Proof of Theorem 2: The minimum of with respect to is determined by setting
the gradient to zero:

(32)

Thus, the update rule of Eq. (11) takes the form

(33)

Since is an auxiliary function, in Eq. (28) is nonincreasing under this update. Rewrit-
ten in matrix form, this is equivalent to the update rule in Eq. (5). By reversing the roles of
and , the update rule for can similarly be shown to be nonincreasing.



7 Discussion

We have shown that application of the update rules in Eqs. (4) and (5) are guaranteed to
find at least locally optimal solutions of Problems 1 and 2, respectively. The convergence
proofs rely upon defining an appropriate auxiliary function. We are currently working to
generalize these theorems to more complex constraints. The update rules themselves are
extremely easy to implement computationally, and will hopefully be utilized by others for
a wide variety of applications.
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