
The Dirichlet-Multinomial and Dirichlet-Categorical
models for Bayesian inference

Stephen Tu
tu.stephenl@gmail.com

1 Introduction

This document collects in one place various results for both the Dirichlet-multinomial and
Dirichlet-categorical likelihood model. Both models, while simple, are actually a source of
confusion because the terminology has been very sloppily overloaded on the internet. We’ll
clear the confusion in this writeup.

2 Preliminaries

Let’s standardize terminology and outline a few preliminaries.

2.1 Dirichlet distribution

The Dirichlet distribution, which we denote Dir(α1, ..., αK), is parameterized by positive
scalars αi > 0 for i=1, ..., K, where K ≥ 2. The support of the Dirichlet distribution is
the (K − 1)-dimensional simplex SK ; that is, all K dimensional vectors which form a valid
probability distribution. The probability density of x = (x1, ..., xK) when x ∈ SK is

f(x1, ..., xK ;α1, ..., αK) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1
i

There are some pedagogical concerns to be noted. First, the pdf f(x) is technically
defined only in (K−1)-dimensional space and not K; this is because SK has zero measure in
K dimensions1. Second, the support is actually the open simplex, meaning all xi > 0 (which
implies no xi = 1).

The Dirichlet distribution is a generalization of the Beta distribution, which is the con-
jugate prior for coin flipping.

1If you read the Wikipedia entry on the Dirichlet distribution, this is what the mathematical jargon
referring to the Lebesgue measure is saying.
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2.2 Multinomial distribution

The Multinomial distribution, which we denote Mult(p1, ..., pK , n), is a discrete distribution
over K dimensional non-negative integer vectors x ∈ ZK+ where

∑K
i=1 xi = n. Here, p =

(p1, ..., pK) is a element of SK and n ≥ 1. The probability mass function is given as

f(x1, ..., xK ; p1, ..., pK , n) =
Γ(n+ 1)∏K
i=1 Γ(xi + 1)

K∏
i=1

pxii

The interpretation is simple; a draw x from Mult(p1, ..., pK ;n) can be intepreted as
drawing n iid values from a Categorical distribution with pmf f(X=i) = pi. Each entry
xi counts the number of times value i was drawn. The strange looking gamma functions in
the pmf account for the combinatorics of a draw; it is simply the number of ways of placing
n balls in K bins. Indeed, since Γ(n+ 1) = n! for non-negative integer n,

Γ(n+ 1)∏K
i=1 Γ(xi + 1)

=
n!

x1! · · ·xK !

The Multinomial distribution is a generalization of the Binomial distribution.

2.3 Categorical distribution

The Categorical distribution, which we denote as Cat(p1, ..., pK), is a discrete distribution
with support {1, ..., K}. Once again, p = (p1, ..., pK) ∈ SK . It has a probability mass
function given as

f(x=i) = pi

The source of confusion with the Multinomial distribution is because often the popular
1-of-K encoding is used to encode a value drawn from the Categorical distribution, and in
this case, we can actually see the Categorical distribution is just a Multinomial with n = 1.

In the scalar form, the Categorical distribution is a generalization of the Bernoulli dis-
tribution (coin flipping).

2.4 Conjugate priors

Much ink has been spilled on conjugate priors, so we won’t attempt to provide any lengthy
discussion. What we will mention now is that, when doing Bayesian inference, we are often
interested in a few key distributions. Below, D refers to the dataset we have at hand, and
we typically assume each yi ∈ D is drawn iid from the same distribution f(y; θ), where θ
parameterizes the likelihood model. When people say they are “being Bayesian”, what this
often means is they are treating θ as an unknown, but postulating that θ follows some prior
distribution f(θ;α), where α parameterizes the prior distribution (and is often called the
hyper-parameter). Of course you can keep playing this game and put a prior on α (called
the hyper-prior), but we won’t go there.
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While so far this seems reasonable, often Bayesian analysis is intractable since we have
to integrate out the unknown θ, and for many problems the integral cannot be solved ana-
lytically (and one has to resort to numerical techniques). Conjugate priors, however, are the
(tiny2) class of models where we can analytically compute distributions of interest. These
distributions are:

Posterior predictive. This is the distribution denoted notationally by f(y|D), where y
is a new datapoint of interest. By the iid assumption, we have

f(y|D) =

∫
f(y, θ|D) dθ =

∫
f(y|θ)f(θ|D) dθ

The distribution f(θ|D), often called the posterior distribution, can be broken down further

f(θ|D) =
f(θ,D)

f(D)
∝ f(θ,D) = f(θ|α)

∏
yi∈D

f(yi|θ)

Marginal distribution of the data. This is denoted f(D), and is derived by integrating
out the model parameter

f(D) =

∫
f(D, θ) dθ =

∫
f(θ|α)

∏
yi∈D

f(yi|θ) dθ

Dirichlet distribution as a prior. It turns out (to further the confusion), that the Dirich-
let distribution is the conjugate prior for both the Categorical and Multinomial distributions!
For the remainder of this document, we will list the results of both the posterior predictive
and marginal distribution on both Dirichlet-Categorical and Dirichlet-Multinomial.

3 Dirichlet-Multinomial

Model.

p1, ..., pK ∼ Dir(α1, ..., αK)

y1, ...yK ∼ Mult(p1, ..., pK)

2This class is essentially just the exponential family of distributions.
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Posterior.

f(θ|D) ∝ f(θ,D)

= f(p1, ..., pK |α1, ..., αK)
∏
yi∈D

f(yi|p1, ...pK)

∝
K∏
j=1

p
αj−1
j

∏
yi∈D

K∏
j=1

p
y
(j)
i
j

=
K∏
j=1

p
αj−1+

∑
yi∈D y

(j)
i

j

This density is exactly that of a Dirichlet distribution, except we have

α′j = αj +
∑
yi∈D

y
(j)
i

That is, f(θ|D) = Dir(α′1, ..., α
′
K).

Posterior Predictive.

f(y|D) =

∫
f(y|θ)f(θ|D) dθ

=

∫
f(y|p1, ..., pK)f(p1, ..., pK |D) dSK

=

∫
Γ(n+ 1)∏K

j=1 Γ(y(j) + 1)

K∏
j=1

py
(j)

j

Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

K∏
j=1

p
α′
j−1
j dSK

=
Γ(n+ 1)∏K

j=1 Γ(y(j) + 1)

Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∫ K∏
j=1

p
y(j)+α′

j−1
j dSK

=
Γ(n+ 1)∏K

j=1 Γ(y(j) + 1)

Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∏K
j=1 Γ(y(j) + α′j)

Γ(n+
∑K

j=1 α
′
j)

(1)

where dSK denotes integrating (p1, ..., pK) with respect to the (K − 1) simplex.
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Marignal. This derivation is almost the same as the posterior predictive.

f(D) =

∫
f(θ|α)

∏
yi∈D

f(yi|θ) dθ

=

∫
f(p1, ..., pK |α1, ..., αK)

∏
yi∈D

f(yi|p1, ..., pK) dSK

=

∫
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

K∏
j=1

p
αj−1
j

∏
yi∈D

Γ(n+ 1)∏K
j=1 Γ(y

(j)
i + 1)

K∏
j=1

p
y
(j)
i
j dSK

=
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

[∏
yi∈D

Γ(n+ 1)∏K
j=1 Γ(y

(j)
i + 1)

]∫ K∏
j=1

p
∑

yi∈D y
(j)
i +αj−1

j dSK

=
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

[∏
yi∈D

Γ(n+ 1)∏K
j=1 Γ(y

(j)
i + 1)

] ∏K
j=1 Γ(

∑
yi∈D y

(j)
i + αj)

Γ(|D|n+
∑K

j=1 αj)
(2)

4 Dirichlet-Categorical

The derivations here are almost identical to before (with some minor syntatic differences).

Model.

p1, ..., pK ∼ Dir(α1, ..., αK)

y ∼ Cat(p1, ..., pK)

Posterior.

f(θ|D) ∝ f(θ,D)

= f(p1, ..., pK |α1, ..., αK)
∏
yi∈D

f(yi|p1, ...pK)

∝
K∏
j=1

p
αj−1
j

∏
yi∈D

K∏
j=1

p
1{yi=j}
j

=
K∏
j=1

p
αj−1+

∑
yi∈D 1{yi=j}

j

This density is exactly that of a Dirichlet distribution, except we have

α′j = αj +
∑
yi∈D

1{yi = j}

That is, f(θ|D) = Dir(α′1, ..., α
′
K).
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Posterior Predictive.

f(y=x|D) =

∫
f(y=x|θ)f(θ|D) dθ

=

∫
f(y=x|p1, ..., pK)f(p1, ..., pK |D) dSK

=

∫
px

Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

K∏
j=1

p
α′
j−1
j dSK

=
Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∫ K∏
j=1

p
1{x=j}+α′

j−1
j dSK

=
Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∏K
j=1 Γ(1{x = j}+ α′j)

Γ(1 +
∑K

j=1 α
′
j)

=
α′x∑K
j=1 α

′
j

(3)

where we used the fact that Γ(n+ 1) = nΓ(n) to simplify the second to last line.

Marignal.

f(D) =

∫
f(θ|α)

∏
yi∈D

f(yi|θ) dθ

=

∫
f(p1, ..., pK |α1, ..., αK)

∏
yi∈D

f(yi|p1, ..., pK) dSK

=

∫
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

K∏
j=1

p
αj−1
j

∏
yi∈D

K∏
j=1

p
1{yi=j}
j dSK

=
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

∫ K∏
j=1

p
∑

yi∈D 1{yi=j}+αj−1
j dSK

=
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

∏K
j=1 Γ(

∑
yi∈D 1{yi = j}+ αj)

Γ(|D|+
∑K

j=1 αj)
(4)
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