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†Ecole Polytechnique, Palaiseau, France

Abstract—Humans can learn word-object associations from
ambiguous data using cross-situational learning and have been
shown to be more efficient when actively choosing the learning
sample order. Implementing such a capacity in robots has been
performed using several models, among which are the latent-topic
learning models based on Non-Negative Matrix Factorization and
Latent Dirichlet Allocation. We compare these approaches on the
same data in a batch and in an incremental learning scenario
to analyze their strength and weaknesses and furthermore show
that they can be the basis for efficient active learning strategies.
The proposed modeling deals with both the referential ambiguity
and the noisy linguistic descriptions and is grounding meanings
of object’s modal features (color and shape) and not only the
object identity. The resulting active learning strategy is briefly
discussed in comparison with active cross-situational learning of
object names performed by humans.

I. INTRODUCTION

Learning new words describing objects and their mean-
ings during direct interaction between a robot and a human
is a challenging task. This problem, related to the symbol
grounding problem [1], faces several sources of ambiguities.
Linguistic ambiguity exists in the words to be learned as the
human pronounces complex sentences where not all the words
are relevant for describing an object (such as pronouns or
verbs). Referential ambiguity is present in the described object
when the robot is facing a complex scene where multiple
objects appear in its field of view (Figure 1).

When learning word-object associations, human use several
strategies to reduce these ambiguities. The linguistic ambiguity
may be reduced by taking advantage of the grammar that will
highlight the relevant nouns and adjectives in a sentence [2].
The referential ambiguity may be reduced by the use of joint
attention that makes both teacher and learner focus on the same
object [3]. Nevertheless, it has been shown that humans and
infants, as young as 12 months old, can learn in ambiguous
situations by relying on cross-situational learning [4], i.e, by
analyzing the common factors between several ambiguous
situations displaying various objects and associated words. In
this paper, we therefore focus on the problem of learning from
ambiguous data, rather than studying the techniques that could
reduce this ambiguity, while in complete application scenario,
both approaches should obviously be applied.

Several models of cross-situational learning have been pro-
posed (e.g., [5], [6], [7]). In particular, this problem can be

“Here are a red ring, a yellow cup 

and a green lego.”

Fig. 1. Example of an ambiguous teaching situation presenting referential
and linguistic ambiguities.

treated by latent topic discovery approaches [8] that will find
the underlying element (the object or feature) that will generate
both the visual perception and the associated word. Among
these approaches, we focus in this paper on comparing Non
Negative Matrix Factorization (NMF) [9] and Latent Dirichlet
Allocation (LDA) [10] that have been used to model cross-
situational learning in different setups [11], [12].

Another strategy used by humans to improve learning is
active learning, where learners choose the learning samples so
as to improve learning speed. Implementation of active learn-
ing may rely on intrinsic motivations and computational mod-
els with this capacity have been proposed in developmental
robotics [13] and studied for the problem of language learning
[14]. However, the definition of the intrinsic motivation often
depends on the task and the particular learning algorithm. In
our case, it is therefore not clear if both NMF and LDA would
be well suited to implement active learning.

Our main contribution is a detailed comparison of the
performances of NMF and LDA for the task of learning
the meaning of nouns and adjectives describing objects in
ambiguous setups. We focus on their performance evolution
while incrementally learning from a limited set of examples
and explore whether they are well suited to define a value
function for active learning. Unlike most models of cross-
situational learning [4], [5], [6], [7], [12], [15], we moreover
focus on the learning of object’s descriptive features instead of
only its identity and deal with the linguistic ambiguity besides
the classical referential ambiguity in experimental settings.
Tackling both these ambiguities, our model lays the basis for



interactive learning of concept for developmental robots.
In the remainder of the paper, we review the related work

in the next section, then present our application of NMF and
LDA to cross-situational and active learning before presenting
a quantitative comparison of these approaches on a dataset of
objects described by human teachers.

II. RELATED WORK

Several models of cross-situational learning have been pro-
posed using different techniques such as hypothesis testing
and associative learning [7], Expectation-Maximisation [6] or
measures of co-occurences and mutual information [5]. In
this paper, we focus on latent topic discovery approaches
[8] that are well suited to this problem. The main idea is
to find a limited number of hidden topics that explain the
data. In our case, a topic would be an object or a colour that
would generate both its visual perception and its associated
name. This definition is closely related to concept, ie. mental
representation of patterns in a flow of multimodal perception
(see [16] for a more in-depth discussion).

Among the existing topic discovery algorithms, two have
been used for cross-situational learning: Non Negative Matrix
Factorization in [16], [11] and Latent Dirichlet Allocation in
[12], [17]. However, they are applied in different settings and
it is not clear which one is better-suited for this task. We
propose here a direct comparison to highlight their strength
and weaknesses, particularly in the case where the number of
training samples is limited as when they are acquired through
direct interaction between a human and a robot.

Active learning by the use of intrinsic motivations has been
proposed as a way to control the complexity of learning
situations so as to improve learning speed and coverage of the
learnable space [13]. It has been applied to many sensorymotor
skills, and has also been argued as one of the important bias
for learning language [18]. Indeed, active learning has been
shown to be a factor strongly improving learning quality in
cross-situational learning for humans [15]. Several specific
strategies have also been proposed for the application of active
learning to language learning computational models in [14] by
controlling the exploration of new objects based on the current
success rate in a naming game. Following this idea, we will
study if NMF and LDA can support the definition of intrinsic
motivation based on the current knowledge of objects and can
provide improvement in the learning speed.

III. PROPOSED APPROACHES

In order to compare NMF and LDA for object-word asso-
ciation learning, we use experimental data consisting of two
channels: symbolic information for the language and contin-
uous data for the visual perception that represents objects
and the description of their shapes and colors. Noise and
ambiguity exist in both channels since the visual presentation
is sensitive to the changes in environmental conditions (e.g.,
lighting conditions) and may contain several objects, while the
language description may contain words not related to the ob-
ject identities or features (e.g., pronouns or errors from speech

recognition). To highlight the importance of these factors, we
designed two cases for the object ambiguity where either one
or three objects are presented simultaneously to the system
(named respectively “single” and “triple”) and two cases for
the language ambiguity: “keywords only” where the language
channel has been manually corrected to contain only relevant
words and “full sentence” where raw full sentences were
used. Note that even in the “single”,“keywords only” scenario,
ambiguity is present in the keyword-feature association as the
two keywords may correspond to shape or color.

A. Data representation

As input for our models, we have a corpus V of vectors V
i

(i = 1, 2, ..., n) representing the appearance of an object and
an associated sentence pronounced by a human partner (Figure
2). The first part of each vector is a continuous channel that
represents features obtained through computer vision. These
features are currently constructed to represent color (V color

i

)
and shape (V shape

i

) of the object (see section IV-A), but they
could be the results of a more generic feature computation
algorithm. The features are encoded as vectors of constant size,
and multiple objects of interest are represented by summing
the description of each individual object, thanks to the fact
that the features are histograms, which can be added. The
second part of each vector is a binary vector of the size of
the dictionary of all known words (V word

i

) and represents the
word occurrences in the sentence. The dictionary is created
incrementally, starting from an empty dictionary and adding
each new word encountered in sentences at the end.

For the application of LDA and Term Frequency-Inverse
Document Frequency (TF-IDF, see below), the non symbolic
(visual) channel in the observation vectors in V needs to be
quantized. The clustering is performed by a simple incremental
clustering that puts each observation in the same cluster as a
previous observation if its distance is smaller than a threshold
(we used 0.7 in all subsequent experiments), or creates a
new cluster otherwise. We use the �2 distance which is well
adapted for histogram features :

�2(x, y) =
dX

k=1

(x
k

� y
k

)2/(x
k

+ y
k

)

Each of the resulting shape cluster will be labelled as
s
t

2 S, while all member vectors within a cluster will be
averaged as v

st 2 V
S

, then S and V
S

act as entries and
corresponding contents of the shape dictionary. The same
procedure takes place for the formation of the color dictionary
{C : V

C

}. A corpus (D) of vector-quantized samples d
i

,
(i = 1, 2, ..., n) is then established by finding the items s

i

2 S
and c

i

2 C whose member vectors are most similar to V shape

i

and V color

i

respectively by applying �2 distance. Using the
words wi whose corresponding indices in V word

i

are positive,
d
i

indicates a collection of symbols, containing all words in
wi plus s

i

and c
i

.
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Fig. 2. Illustration of the data representation used in our experiments.

B. Language channel filtering
In the “full sentence” scenario, LDA will filter keywords

thanks to its statistical properties, but NMF will provide better
performance after an initial filtering of keywords [11].

The filtering method (see details in [11]) relies on statistics
on the word occurrences through the Term Frequency-Inverse
Document Frequency (TF-IDF) approach [19] popular in text
processing. In the current paper, we computed the TF-IDF
values using the clusters defined by the pairs (s

i

,c
i

) described
in section III-A as documents. We improved the method
by using an adaptive threshold on the Inverse Document
Frequency value whose goal is to remove too common or too
rare words. Thus we only retain words whose IDF value is
between idf

low

and idf
high

defined as :

idf
low

= idf
min

+ ⌘
low

(idf
max

� idf
min

)
idf

high

= idf
min

+ ⌘
high

(idf
max

� idf
min

)
(1)

where idf
min

and idf
max

are the maximum and minimum of
idf values for all words. For the reported experiments, ⌘

low

and ⌘
high

values are optimized to reach the highest possible
final performance in each scenario.

C. Learning using NMF
Using the V

i

samples with the filtered linguistic part (or raw
samples in the “keywords only” scenario), we use NMF [9]
in order to discover reference vectors that explain data as sum
of these vectors with positive weights. More precisely, NMF
will find matrices W and H so that:

V
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(2)

where V is the matrix containing the observations in columns,
W , H are the matrices computed by NMF, W containing the
k latent topics we are looking for and H being the weights to
reconstruct the observations from the topics.

The W and H matrices are found by minimizing the
following Kullback-Leibler divergence:

D
KL

(V kWH)=
X

ij

(V
ij

ln
V
ij

(WH
i

)
j

�V
ij

+(WH
i

)
j

) (3)

For this, we use the algorithm based on multiplicative
updates proposed by Lee and Seung [20]. This method con-
verges to a local minima, so the initialization is important. In
order to favor the solution with one word for each reference
element [11], we initialize the W

word

matrix to the identity
and (W

shape

,W
color

) to random values.

D. Learning through LDA

LDA is used to infer statistical correlation between visual
channel and keywords. Every sample d

i

is thus seen as
a collection of exchangeable discrete items !

j

(which can
be colors c

i

, shapes s
i

or words w
i

) and is modeled as
a generative mixture model over a set of K hidden topics
{z1, . . . , zK} defined by a probability distribution on the items
p(!

j

, z
k

,�). The likelihood of a sample is thus given by (see
[10] for details):
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where p(✓|↵) is a Dirichlet distribution defining the topic
mixture, p(z

k

|✓) the probability of the topic z
k

for this
mixture and p(!

j

|z
k

,�) the probability of the item for a given
topic. The parameters ⇥ = {↵,�} of the model which have
to be estimated includes the parameter ↵ of the Dirichlet
distribution, and the parameter � defining the probabilities
p(!

j

|z
k

,�) we are ooking for. ⇥ is estimated by maximizing
the likelihood of the corpus

L
LDA

(D) =
mY

i=1

L
LDA

(d
i

)

using Collapsed Gibbs Sampling1. In practice, we observe that
for a given k, the distribution p(., z

k

,�) is only significant for
a couple (c

j

, w
j

) or a couple (s
j

, w
j

).

E. Incremental learning

In our tests, both NMF and LDA should deal with incre-
mental learning, where new observations are added to the
matrix V . While dedicated incremental learning algorithms

1We use the implementation from https://github.com/ariddell/lda with all
parameters initialized with default settings



Fig. 3. The 39 objects used for the experiments.

could be used, in the current paper, we simply completely
retrain the models using all the data of the updated matrix V
and the corresponding D corpus. This approach therefore gives
an upper bound of the performance an incremental learning
algorithm could achieve.

F. Active learning

For active learning, we want to see if NMF and LDA can be
used to define an efficient value function for the choice of the
next samples. This value should estimate how well a sample is
currently known, so we naturally use its reconstruction error
estimated by the Kullback-Leibler divergence for NMF (eq. 3)
and by its likelihood for LDA (eq. 4).

In the “single” scenario, we estimate D
KL

(V
i

) or L
LDA

(d
i

)
for all the training samples and randomly select a sample
among the 6 samples with the highest values. This slack
strategy has been chosen to ensure some diversity in the
object choice and was found important to improve the overall
performances. For the “triple” scenario we select three objects
among the ones with the top 12 values.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The experiment is conducted with a camera installed over
a table, facing down to capture objects, and a microphone.
39 objects (Figure 3) are used, one at a time for recording,
while a human teacher is describing it with complex sentences.
The objects exist in 5 colors and 10 shapes, thus giving 15
keywords.

We used the image processing approach presented in [11]
which segments the object, then produces a 900 elements
shape descriptor, and a 80 elements color descriptor. The
speech-text conversion uses Google speech-api2 to convert a
sentence into a word occurrence vector.

We recorded 153 samples with the help of ten volunteers, in
which every object is described at least three times and most of
them four times. Each object is described by two keywords, but
the mean sentence length is 4.026, thus containing in average
2.026 irrelevant words. We create a training set by selecting 3
samples for each of the 39 objects (a total of 117 samples) and
keep the remaining 36 samples, which cover all the keywords,
as testing data to monitor the performance of learning.

2https://github.com/gillesdemey/google-speech-v2

For testing, we simulate the situation where the teacher
utters a textual description encoded as a binary format T

j

about an object j and the learner has to choose the right
object from the pool of all 36 testing objects. For NMF,
we first compute the coefficient vector of hidden topics H

i

associated with the visual description of each testing ob-
ject i by minimizing the distance D

KL

([V shape

i

, V color

i

] k
[W shape,W color]TH

i

), and reconstruct the textual description
of each object: V word

i

= WwordH
i

. We then find the object
in the testing set whose textual description is the closest to T

j

by computing �2(T
j

, V word

i

) for all i. We finally count the
percentage of all right answers among the 36 testing objects.

For LDA, we estimate the hidden topic distribution asso-
ciated to T

j

: P (z|T
j

), and reconstruct the associated vision
feature channel using P (!

j

|T
j

) =
P

k

P (!
j

|z
k

, T
j

)·P (z
k

|T
j

)
where !

j

2 S[C. Then for every testing sample d
i

, we com-
pute the log-likelihood L(d

i

|T
j

) =
P
l

Cnt(!
l

) · lnP (!
l

|T
j

),

where !
l

2 S [ C and Cnt(!
l

) is number of occurrence of
visual cluster !

l

from the testing sample d
i

. The object whose
likelihood is the highest is taken as the answer and we compute
the overall percentage of correct answers.

B. Experimental results
The proposed models are first tested for their overall learn-

ing abilities through a batch learning experiment given the
complete set of training samples with keywords only (sec.
IV-B1). We then evaluate their learning progress when training
data are chosen incrementally from the set in a random
manner, in the ”keywords only” scenario (sec. IV-B2) and in
the “full sentence” scenario in order to better approach real-
istic interactive scenarios (sec. IV-B3). We then demonstrate
the effect of active learning strategy compared with random
learning performance in the final experiment (sec. IV-B4).

1) Batch learning: In order to validate the overall per-
formance and set the algorithm parameters (the number of
topics), we use all “keywords only” data in the “single” and
“triple” scenario. We were able to reach 100% performance
in all cases. The ambiguity in multi-object cases (“triple”) do
not decrease performance; showing that both approaches are
able to perform cross-situational learning efficiently with the
number of samples considered.

For this, we set the number of topics in NMF to the number
of total keywords (i.e., 15) as it achieves the best performance.
For LDA, the best performance occurs when its topic number
is higher (i.e., 20). However, the optimal number of topics was
observed to depend on the data. Therefore, in the subsequent
experiments, the number of topics is incrementally adapted by
setting this number equal to the number of detected clusters
from S [C and then, at each learning step, letting it increase
by 1 if the training with n

topics

+1 produces larger overall log-
likelihood than that with n

topics

. This simple policy leads to
optimal performances in our experiments despite the fact that
the added topic do not correspond to keywords but account for
a few noisy samples in the training data, representing either a
feature description associated with a non-keyword symbol or
a feature description without symbols.
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Fig. 4. Incremental learning with “keywords only” data.

2) Incremental learning with “keywords only” data: This
experiment simulates the incremental learning scenario when
a teacher randomly chooses an object (or a triple of objects)
and describes it (or them) with their associated keywords. We
report the testing performance as a function of the number of
samples used for training, up to the total number of samples
of 117. The curves display the 75

th

, 50
th

and 25
th

percentile
of performance among 50 repetitions of the experiments.

Figure 4 shows that despite a similar final performance of
100%, the learning progress of the methods appears different.
First it is clear that learning in the “triple” case requires more
samples than learning in the single case where a performance
above 90% is reached already after 50 samples. We can also
see that NMF consistently outperforms LDA regarding the
learning speed in all cases, showing its adaptation to the case
of limited ambiguities in the language part.

3) Incremental learning with “full sentence” data: This
experiment is similar to the previous one, but using the full
sentences. In figure 5, we observe that due to much more
ambiguities in data compared to that of “keywords only”,
the performances are not guaranteed at the end of training
to reach 100%, although this performance is still reached in
the “single” case. Contrary to the previous scenario using
only keywords, LDA learns much faster than NMF coupled
with the statistical TF-IDF filtering and achieves higher final
performances. This illustrates the better adaptation of the
probabilistic model of LDA to this problem compared to NMF
which requires a more complex pre-processing.

4) Active learning vs. random learning: The last experi-
ment measures the performance of active learning compared to
the random choice of samples. For this experiment, contrary to
the previous ones, the training samples can be selected multi-
ple times because all the 117 training samples are considered
for the choice of the next sample using either the random
or active strategy. This was made to highlight the ability of
active learning to efficiently ignore the already known samples.
Figure 6 shows the resulting performances for NMF and LDA.

We observe that active learning makes it possible to improve
learning speed and performance in all scenarios, for both NMF
and LDA, showing that a criterion relevant for active learning
(section III-F) can be defined in both cases. However, the
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Fig. 5. Incremental learning with “full sentence” data.

performance reached by NMF remains lower than those of
LDA that achieves final almost perfect performances in all
cases (see also table 6 below). We can also observe that
the gain of active learning for LDA, compared to “single”
scenario, is greater in the more ambiguous “triple” scenario,
reaching full performance with only 60 samples.

TABLE I
AREA UNDER THE LEARNING CURVES OF FIGURE 6

Active Learning Random Learning

single case triple case single case triple case
NMF 0.92 0.72 0.87 0.56
LDA 1 0.86 0.96 0.71

In order to quantify the differences between the cases, we
computed the areas under the 50

th

percentile learning curves
from figure 6. Table I shows these values relative to the best
performance obtained by LDA in the “single” case, with active
learning. We observe that the overall worst approach is the
use of NMF with random samples, and that the gain of using
active learning with NMF is smaller than the gain of using
LDA with random samples in “single” case, thus showing the
importance of the learning approach over the learning strategy
in our experiment.

V. DISCUSSION AND CONCLUSION

We compared two models of cross-situational learning of
word meanings based on topic discovery algorithms, NMF
and LDA. Both models achieved high performance in every
experimental cases when there is a set of sufficient learning
samples. They proved to be robust to both linguistic and
referential ambiguities and both models were able to support
active learning which was shown to accelerate the learning
speed by comparison with random sample selection.

Each algorithm has its own better-suited scenario. NMF
would be more adapted when dealing with only visual ambigu-
ities and raw visual data (“keywords only” scenario), resulting
in precise mono-modal concepts, once a correct number of
components is provided. LDA shows better adaptability and
robustness with clustered visual data when linguistic ambiguity
and noise are involved (“full sentence” scenario) due to its



Fig. 6. Comparison between active learning and random learning by applying NMF (left) or LDA (right) with “full sentence” data

statistics-based nature. Contrary to this embedded mechanism
of keywords selection in LDA, NMF has to be associated with
a language filtering mechanism but is not able to reach similar
performances in the “full sentence” scenario.

While our work is not intended at computational modeling
of human performances, it is interesting to compare the active
learning strategies implemented in our model to those used
by humans. Kachergis et al. [15] shown that humans use
various active strategies, but mainly rely on immediate sample
repetition to facilitate learning. Yet from our implementation,
the resulting strategy is different: random sample choices in
the “triple” scenario led to a mean repetition of 2.42 words
in successive steps, while the active choice led to a mean
repetition of 1.89 words. Two basic reasons could be used to
explain such a difference in applying the repetition strategy.
On one hand, in [15], each trial consists of four mutually
different objects thus no “within-trial repetition of objects”
is allowed, however in our “triple” scenario experiment, the
same features (shape or color) from different objects could
appear in a triple and this gives rise to a “within-triple feature
repetition” which can simply reduce the complexity of each
triple. In fact, the number of repeated features inside a triple is
0.86 with the random strategy and 2.06 with the active choice.
On the other hand, unlike computational models, humans are
less efficient at keeping a long-term memory of the past co-
occuring records and hence the successive repetition facilitates
learning for humans but not for our model.

In future work, a better vision descriptor could be consid-
ered to record shape information, since the current pixel based
method will obviously be limited in more realistic scenarios.
We also plan to extend our approach to deal with homonyms,
both for the language part and for the visual part, where an
object can present different visual appearances depending on
the observation point of view.
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