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The Vector Space Model 
l  Bag-of-words representation of doc 
l  Order ignored, only counts matter 

⇒
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Latent Semantic Indexing  
(Deerwester et al., JASIS’90) 

 
l  Startling applications (Berry et al., SIAM Rev’95) 

l  Cross-language retrieval 
l  TOEFL/GRE synonym 
l  Match paper submissions with reviewers (SIGIR’92!) 
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What is really LSI? 
l  From an optimization point of view 

 
l  Nothing but matrix factorization/approximation ! 

l  K << W,  K << D, otherwise trivial 
l  Solvable by SVD, even though not jointly convex 

l  Things can be improved: 
l  Real-valued? 
l  How to set K? 
l  No probabilistic model?  
l  Squared loss? 
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min
U,V

kX � UV k2F

s.t. U 2 RW⇥K , V 2 RK⇥D



Towards A Prob. Model 

l  What prob. dist. should we use? 
l  Exponential family! 

l  ML with independence: 

l  Low-rank makes estimation possible 
l  Gaussian à                                 à LSI 
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X ⇠ Pr(·|⇥),where

⇥ = UV >
has low-rank

L(⇥) = � log p(X|⇥) / �hX,⇥i+G(⇥)

G(⇥) = 1
2k⇥k2F



Exponential Family PCA  
(Collins et al., NIPS’01) 

l  G: log-partition function, strictly convex and analytic 
l  Alternating minimization 

l  Fix U, solve the convex subproblem w.r.t. V; 
l  Fix V, solve the convex subproblem w.r.t. U; 
l  Converge to a stationary point  

l  Amounts to: 
l  Factorizing X under fancier loss than least squares 

l  Choose Poisson for count data, unconstrained 
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min
U,V

�hX,UV >i+G(UV >)

min

⇥=UV >

X

w,d

�Xw,d⇥w,d + exp(⇥w,d)



Nonnegative Matrix Factorization 
(Lee & Seung, Nature’99) 

l  Count data X is nonnegative 
l  Only (?) make sense to approximate with nonnegative numbers 

l  Can also use KL divergence 

l  Very similar to EXP PCA ! 
l  Yet another fancier loss 

l  Multiplicative updates 
l  Must initialize densely ! 
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Synonymy vs. Polysemy 
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l  LSI (and relatives aforementioned) is good at synonym 
l  Similar words are close in latent semantic space 

l  But less so at polysemy: 
l  “It was a nice shot. ” 



Probabilistic LSI (Hoffman, ML’01) 
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pLSI cont’ 

l  A "generative" model 
l  Models each word in a document as a sample from a mixture 

model. 
l  Each word is generated from a single topic, different words in 

the document may be generated from different topics. 
l  A topic is characterized by a distribution over words. 
l  Each document is represented as a list of admixing 

proportions for the components (i.e. topic vector θ ). 
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pLSI cont’’ 
l  Maximize the marginal likelihood: 

l  Similar to EXP PCA, NMF 
l  But with more stringent normalization constraints 

l  Can use EM to optimize U, V (Hoffman’01) 
l  Or simply alternate U, V  

l  Solves polysemy since same word can be drawn from different topics 
l  But may overfit ! 

l  Parameter V grows with doc size D 

© Eric Xing @ CMU, ACL Tutorial 2012 
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min

⇥=UV

X

w,d

�Xw,d log⇥w,d

s.t. U, V � 0, U>
1 = 1, V 1 = 1



Latent Dirichlet Allocation  
(Blei et al., JMLR’03) 
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Essentially a Bayesian pLSI: 

 
 
 

17 © Eric Xing @ CMU, ACL Tutorial 2012 



LDA 

l  Generative model 
l  Models each word in a document as a sample from a mixture 

model. 
l  Each word is generated from a single topic, different words in 

the document may be generated from different topics. 
l  A topic is characterized by a distribution over words. 
l  Each document is represented as a list of admixing 

proportions for the components (i.e. topic vector). 
l  The topic vectors and the word rates each follows a Dirichlet 

prior --- essentially a Bayesian pLSI  
l  How does LDA avoid overfitting? 
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PCA -- revisited 

l  PCA enjoys a set of salient properties: 
l  Orthogonal basis 
l  Implicit Gaussian assumption 
l  2nd order de-correlation 
l  “noiseless” 

l  All above have been modified: 
l  Overcomplete basis (Sparse coding) 
l  Exponential family (more later) 
l  High order de-correlation (ICA) 
l  Probabilistic model 

l  LDA is Probabilistic PCA 
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Probabilistic PCA (Tipping & Bishop, JRSSB’99) 

l  Probabilistic model (U, sigma hyperparameter): 
 
l  Analytic marginalization:  
 
l  MLE:  
 
 

l  Apply von Neuman’s trace inequality: 

l  Set derivative to 0:  
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X ⇠ N (0, UU> + �2IW )
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PPCA cont’ 
l  Similar to conventional PCA 

l  Take sample covariance eigenvector 
l  Shrink first K eigenvalues by the average of the tail eigenvalues 
l  Recover PCA when sigma = 0, i.e., noiseless 

l  Many extensions 
l  Mixture of PPCA (Tipping & Bishop, NC’99) 
l  Hierarchical PPCA (Bishop & Tipping, PAMI’98) 
l  Sparse PPCA (Guan & Dy, AISTATS’09) 
l  Robust PPCA (Archambeau et al., ICML’06) 
l  Infinite PPCA ?? 
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Multinomial PCA (Buntine, ECML’02) 

l  Apply PPCA to count data X: 

l  Like before, U, alpha are hyperparameters 
l  But each column in U is a probability distribution 

l  This is LDA ! 
l  Essentially marginalizing Z out 

l  But no longer can analytically marginalize out V 
l  Solve by VI, SVI, or Gibbs sampling 
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X:,d|Vd,: ⇠ Mul(UV >
d,:, Nd), Vd,: ⇠ Dir(↵)



What have learned so far 
l  Matrix factorization view of topic models 

l  LSI, EXP PCA, NMF, pLSI are all matrix factorizations, under different loss / 
constraints 

l  Probabilistic view of matrix factorizations 
l  PPCA,   LDA = Multinomial PCA 

l  This connection is exploited in recent theoretical results  
l  Papers have “ .. provable ...”   or   “… spectral …” 

l  Ideas from matrix factorization easily translate to topic 
models, and vice versa 
l  SVI, parallel implementation, etc. 

l  Issues have not been considered: 
l  Sparsity: each doc contains few topics; each word appears in few topics 
l  How to set K? (Yes, you’ve learned Dirichlet processes) 
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Strive after Sparsity 
l  Each doc contains few topics; each word appear in few topics 

l  Each column in V or U needs to be sparse  

l  Cannot achieve exact sparsity with Bayesian methods 
l  Bayesian estimates are conditional mean (under least squares risk) 
l  Averaging never yields exact sparsity ! 
l  Can still achieve sparsity by ad hoc truncation 

l  But, hey, LASSO achieves exact sparsity 
l  LASSO is MAP, not Bayesian 

l  Seen topic model = matrix factorization 
l  There is sparse matrix factorization 
l  Steal ideas from there! 
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Sparse Coding	


 
  

l  U are called dictionary, e.g., topic distributions 
l  V are called coefficients (coding / loading / mixing proportion) 

l  For each column                        , encoding x with v, under dictionary U 

l  For v to be sparse, U needs to be overcomplete 
l  Wavelets, random matrices 
l  Can be learned jointly with V 

…
 

…
 = X 
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X ⇡ UV >

x ⇡ Uv



Sparse coding cont’  
(Olshausen and Field, Nature’96) 

l  ell: likelihood, g: prior on V,  MAP estimate of U, V 
l  Need to constrain U due to indeterminism 
l  Choose g e.g. the 1-norm 

© Eric Xing @ CMU, PGM 
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min
U,V

`(X,UV >)| {z }
Reconstruction

+�
X

d

g(V
d,:)| {z }

sparseness



Sparse coding cont’’ 

l  Exponential family ell (Lee et al., AAAI’10) 

l  Solve by alternating U and V 
l  Converge to stationary point 
l  In general NP-hard, recent global convergence guarantees 

l  Group sparse coding (Bengio et al., NIPS’09) 
l  Group along the doc dim, e.g., l1/l2 
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min
U,V

`(X,UV >)| {z }
Reconstruction
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X

d
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Letting K à infty 
(Zhang et al., AAAI’11, NIPS’12) 

l  Take g = || . || 

l  K à infty,          becomes a norm (convex!) 
l  Gauge induced by the set  
l  Dual norm  

l  For both  
l    
l  Thus need to solve 
l  Induce low-rank, convex, no local minima ! 

l  Can play with other choices of norms (e.g., White et al., NIPS’12) 
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|||⇥|||
{uv> : |u|  1, kvk  1}

|||⇥|||� = max{u>
⇥v : |u|  1, kvk  1}

|u| = kuk2, kvk = kvk2
|||⇥|||� = k⇥ksp

min
⇥

`(X,⇥) + �k⇥ktr

min
⇥

`(X,⇥) + � min
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X

k

kV:,kk
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Sparse Topical Coding 
(Zhu & Xing, UAI’11) 

non-negative codes topical bases 

reconstruction loss 

truncated aggregation 

sparse codes 

l  Goal: design a non-probabilistic topic model that is amenable to 
l  direct control on the posterior sparsity of inferred representations 
l  avoid dealing with normalization constant when considering supervision or rich features 
l  seamless integration with a convex loss function (e.g., svm hinge loss) 

l  We extend sparse coding to hierarchical sparse topical coding 
l  word code θ 
l  document code s 

 
 
 

29 © Eric Xing @ CMU, ACL Tutorial 2012 



Comparisons 

LDA vs. STC 
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Sparse word codes 
l  Sparsity ratio: percentage of zeros 

•  NMF: non-negative matrix factorization 
•  MedLDA (Zhu et al., 2009) 
•  regLDA: LDA with entropic regularizer 
•  gaussSTC: use L2 rather than L1-norm 
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l  Hierarchical sparse coding 
l  for each document 

l  Word code 

 
l  Document code (truncated averaging) 

 
l  Dictionary learning 

l  projected gradient descent 
l  any faster alternative method can be used 

Computation on STC 
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Performance 

~ 10 times speed up in train &test 
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The shocking results on LDA  

Retrieval Classification Annotation 

l  LDA is actually doing very poor on several “objectively” 
evaluatable predictive tasks 
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Why? 
l  LDA is not designed, nor trained for such tasks, such as 

classification, there is no warrantee that the estimated topic 
vector θ is good at discriminating documents 
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Unsupervised Latent Subspace 
Discovery 

l  Finding latent subspace representations (an old topic) 
l  Mapping a high-dimensional representation into a latent low-dimensional representation, where each 

dimension can have some interpretable meaning, e.g., a semantic topic 

l  Examples: 
l  Topic models (aka LDA) [Blei et al 2003] 

 
 

l  Total scene latent space models [Li et al 2009] 
 
 
 
 
 

l  Multi-view latent Markov models [Xing et al 2005] 

l  PCA, CCA, … 

⇒

⇒

⇒

Athlet
e 
Horse 
Grass 
Trees 
Sky 
Saddl
e 
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l  Unsupervised latent subspace representations are generic but 
can be sub-optimal for predictions 

l  Many datasets are available with supervised side information 

 
 

l  Can be noisy, but not random noise (Ames & Naaman, 2007) 
l  labels & rating scores are usually assigned based on some intrinsic property of the data 
l  helpful to suppress noise and capture the most useful aspects of the data 

l  Goals: 
l  Discover latent subspace representations that are both predictive and 

interpretable by exploring weak supervision information 
 

�  Tripadvisor Hotel Review (
http://www.tripadvisor.com) 

 

�  LabelMe 
http://labelme.csail.mit.edu/ 

�  Many others 

Flickr (http://www.flickr.com/) 

Predictive Subspace Learning 
with Supervision 
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Support vector machines 
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Supervised STC 

l  Joint loss minimization 

l  coordinate descent alg. applies with closed-form update rules 
l  No sum-exp function; seamless integration with non-probabilistic large-margin 

principle 
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Classification accuracy 
l  20 newsgroup data: 

l  regLDA+: LDA with entropic regularizer achieveing best classification accuracy  
l  regLDA-: LDA with entropic regularizer achieveing comparable sparsity ratio as 

STC 
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Time efficiency 
l  training & testing time 

l  No calls of digamma function 
l  Converge faster with one additional dimension of freedom 
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Summary 
l  Topic models are intimately related to matrix factorization 

l  LDA = Multinomial PCA 

 
l  Exploring the connection can be beneficial 

l  Understanding 
l  Sparsity 
l  Efficient inference 
l  Supervision 

l  More elaborate matrix factorizations can be devised 
l  Until next time ! 
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