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e Matrix factorizations are ... simple

X ~AB

e But, they are intimately related

e Allow knowledge transfer
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The Vector Space Model :

e Bag-of-words representation of doc

e Orderignored, only counts matter o1 5
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Latent Semantic Indexing ece’
(Deerwester et al., JASIS’90) o

Document

Term

X U A V'
(W x D) (W x K) (K x K) (Kx D)

e Startling applications (Berry et al., SIAM Rev’95)
e Cross-language retrieval
e TOEFL/GRE synonym
e Match paper submissions with reviewers (SIGIR’92!)
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What is really LSI? o

e From an optimization point of view

min - |.X = UV[p

s.t. UeRW*XE e REXP

e Nothing but matrix factorization/approximation !
o K<<W, K<<D, otherwise trivial
e Solvable by SVD, even though not jointly convex

e Things can be improved:
e Real-valued?
e How to set K?
e No probabilistic model?
e Squared loss?

© Eric Xing @ CMU, ACL Tutorial 2012 9



Towards A Prob. Model

X ~ Pr(:|©), where
® = UV has low-rank

e \What prob. dist. should we use?
e Exponential family!

e ML with independence:
L(©) = —logp(X|0) x —(X,0) + G(O)

e Low-rank makes estimation possible

o Gaussian > G(©) = 1||O||7 > LsI

© Eric Xing @ CMU, ACL Tutorial 2012 10



Exponential Family PCA oot

(Collins et al., NIPS’01)

min —(X, oV +GUvV")

e G: log-partition function, strictly convex and analytic

e Alternating minimization
e Fix U, solve the convex subproblem w.r.t. V;
e FixV, solve the convex subproblem w.r.t. U;
e Converge to a stationary point

e Amounts to:

e Factorizing X under fancier loss than least squares

e Choose Poisson for count data, unconstrained

min — X dOw.d + exp(Oy.q)
e=UVT
w,d
© Eric Xing @ CMU, ACL Tutorial 2012 11



000
000
. = = " o0
Nonnegative Matrix Factorization |
(Lee & Seung, Nature’99)
e Count data X is nonnegative
e Only (?) make sense to approximate with nonnegative numbers
min [|[X —UV " |%
U,V >0
e Can also use KL divergence
min —Xw.alog®yu a4+ Ow.d
U,VZO ) ’ ’
w,d
Z Vd,ka,d/@w,d
e Very similar to EXP PCA | U,k + Uy, =2
| > aVik
e Yet another fancier loss U X o
e Multiplicative updates Vi < Var 2w U kXw,d/Ow,d

e Must initialize densely ! Zw Uw,k
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Synonymy vs. Polysemy

=5

e LSI (and relatives aforementioned) is good at synonym
e Similar words are close in latent semantic space

e But less so at polysemy:

o “ltwas anice Shot.”

© Eric Xing @ CMU, ACL Tutorial 2012 13



PrObabiIiStiC LSI (Hoffman, ML’01)

@
@

— H p(d) H Z X d|Zw kZP(Zw d = k|d)

d=1 w=1 k=1
Uw k Va,k

N
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pLSI cont’ -

e A "generative" model

e Models each word in a document as a sample from a mixture
model.

e Each word is generated from a single topic, different words in
the document may be generated from different topics.

e A topic is characterized by a distribution over words.

e Each document is represented as a list of admixing
proportions for the components (i.e. topic vector 6 ).

@

N
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pLSI cont” -

e Maximize the marginal likelihood:

min E —X,, 4log ©
O—UV - w,d 108 D . d
w

Y

st. UV>0U"l=1,V1=1

e Similar to EXP PCA, NMF

e But with more stringent normalization constraints

e Can use EM to optimize U, V (Hoffman’01)

° Or simply alternate U, V
e Solves polysemy since same word can be drawn from different topics

e But may overfit !
° Parameter V grows with doc size D

© Eric Xing @ CMU, ACL Tutorial 2012 16



Latent Dirichlet Allocation

(Blei et al., JMLR’03)

Essentially a Bayesian pLSI:

® o)

0 ~ Dir(«)

Wn ~ p(Wn|Zn, 16)

@ (6w

M

pw) =Y [ pw)p(/s)(ﬂp(zn 0)p(w,

© Eric Xing @ CMU, ACL Tutorial 2012
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LDA e

e (Generative model

e Models each word in a document as a sample from a mixture
model.

e Each word is generated from a single topic, different words in
the document may be generated from different topics.

e A topic is characterized by a distribution over words.

e Each document is represented as a list of admixing
proportions for the components (i.e. topic vector).

e The topic vectors and the word rates each follows a Dirichlet
prior --- essentially a Bayesian pLSI @

e How does LDA avoid overfitting?
e o®

N
© Eric Xing @ CMU, ACL Tutorial 2012 18




PCA -- revisited

e PCA enjoys a set of salient properties:

Orthogonal basis

Implicit Gaussian assumption
2"d order de-correlation
“noiseless”

e All above have been modified:

Overcomplete basis (Sparse coding)
Exponential family (more later)

High order de-correlation (ICA)
Probabilistic model

e LDA is Probabilistic PCA

© Eric Xing @ CMU, ACL Tutorial 2012
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Probabilistic PCA (Tipping & Bishop, JRSSB’99)

e Probabilistic model (U, sigma hyperparameter):
X|V~NUV 6?Iy), V' ~NO,Ig)

e Analytic marginalization:

X ~NO,UU" + o*Iy)
e MLE:
I(]]mr%log det(UU " + o*I) + (S, (UU " + o*I)~ 1)

e Apply von Neuman s trace inequality:
2

114
mm Zlog or +0°) p j’ja + log o° —|—
k=K+1

2

e Set derivative to O:

2 2 2 2
O-k—Sk_O- o~ =

k=K+1
© Eric Xing @ CMU, ACL Tutorial 2012 20



PPCA cont’

e Similar to conventional PCA

Take sample covariance eigenvector

Shrink first K eigenvalues by the average of the tail eigenvalues

Recover PCA when sigma = 0, i.e., noiseless

e Many extensions

Mixture of PPCA (Tipping & Bishop, NC’'99)
Hierarchical PPCA (Bishop & Tipping, PAMI’98)
Sparse PPCA (Guan & Dy, AISTATS’09)
Robust PPCA (Archambeau et al., ICML’06)
Infinite PPCA ??

© Eric Xing @ CMU, ACL Tutorial 2012

Diagonal Gaussan [-2.7195)

FPUA Mixture (-1.4258)
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Multinomial PCA (Buntine, ECML’02)

e Apply PPCA to count data X:

X. a|Va: ~Mul(UV,',,Ng), Va.~ Dir(a)

e Like before, U, alpha are hyperparameters
e But each column in U is a probability distribution

e Thisis LDA

e Essentially marginalizing Z out

e But no longer can analytically marginalize out V
e Solve by VI, SVI, or Gibbs sampling

© Eric Xing @ CMU, ACL Tutorial 2012 22



What have learned so far

<5

e Matrix factorization view of topic models

e LSI, EXP PCA, NMF, pLSI are all matrix factorizations, under different loss /
constraints

e Probabilistic view of matrix factorizations
e PPCA, LDA = Multinomial PCA

e This connection is exploited in recent theoretical results

e Papers have “ .. provable ...” or “... spectral ...”

e Ideas from matrix factorization easily translate to topic
models, and vice versa
e SVI, parallel implementation, etc.

e Issues have not been considered:

e Sparsity: each doc contains few topics; each word appears in few topics
e How to set K? (Yes, you’ve learned Dirichlet processes)

© Eric Xing @ CMU, ACL Tutorial 2012 23



Strive after Sparsity

e Each doc contains few topics; each word appear in few topics
e Each columninV or U needs to be sparse

e Cannot achieve exact sparsity with Bayesian methods
e Bayesian estimates are conditional mean (under least squares risk)
e Averaging never yields exact sparsity !
e Can still achieve sparsity by ad hoc truncation

e But, hey, LASSO achieves exact sparsity
e LASSO is MAP, not Bayesian

e Seen topic model = matrix factorization

e There is sparse matrix factorization
e Steal ideas from there!

© Eric Xing @ CMU, ACL Tutorial 2012 24



Sparse Coding :

|

L
TH R
[l

e U are called dictionary, e.g., topic distributions

e V are called coefficients (coding / loading / mixing proportion)
e Foreach column X = UV , encoding x with v, under dictionary U

e Forvto be sparse, U needs to be overcomplete

e \Wavelets, random matrices
e Can be learned jointly with V

© Eric Xing @ CMU, ACL Tutorial 2012 05



Sparse coding cont’

(Olshausen and Field, Nature’96)

UV & N s

min 4(X,UV ") —I—)\Z g(Va..)
g o~

Reconstruction

sSparseness

e ell: likelihood, g: prior on V, MAP estimate of U, V

e Need to constrain U due to indeterminism
e Choose g e.g. the 1-norm

© Eric Xing @ CMU, PGM
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Sparse coding cont” :

—|_ N\
I(Ijllél {(X Uv —I—)\> > 9g(Vax)

Reconstructzon sparseness

e Exponential family ell (Lee et al., AAAI'"10)
e Solve by alternating U and V

e Converge to stationary point
e In general NP-hard, recent global convergence guarantees

e Group sparse coding (Bengio et al., NIPS’09)
e Group along the doc dim, e.g., I11/12

© Eric Xing @ CMU, ACL Tutorial 2012 27



Letting K - infty 3
(Zhang et al., AAAI'11, NIPS’12)

L

o Takeg=]|. |l "

inf(X,0)+ \ i V.
Yo" ( ) ¥ @:Uvrﬂg,lfllf;,mgzkju o

\ 4

iel

Oy Ot eoe o £ N SO
O O eoe ] [0

Oy O o o [+ oo

ey O vy o [r

O Ot ey o o=

Ol o .

e K= infty, [|©]| becomes a norm (convex!)
e Gauge induced by the set {uv—r Cul < 1, ||v]| < 1}
» Dualnorm [|O]|° = max{u'Ov : u| <1, [v| <1}

o Forboth [u| = [lullz, v = [|v]|2
o [I©[° = [IO]ls .
e Thus need to solve ménﬁ(X, @) + )‘H@Htr
e Induce low-rank, convex, no local minima !

e Can play with other choices of norms (e.g., White et al., NIPS’12)

© Eric Xing @ CMU, ACL Tutorial 2012 28



Sparse Topical Coding T

(Zhu & Xing, UAI'11)

e Goal: design a non-probabilistic topic model that is amenable to
e direct control on the posterior sparsity of inferred representations
e avoid dealing with normalization constant when considering supervision or rich features
e seamless integration with a convex loss function (e.g., svm hinge loss)

e \We extend sparse coding to hierarchical sparse topical coding
e word code 6

e document code s 0 S . ,8
a an k

nely) | k=1.K

: d=1:D
reconstruction loss sparse codes

min Z E(wdn,S;Zrn +>\Z||9d”l+ Z ('YHSdn —Od”z"‘PHsdnHl)
{9d7sd}7ﬁ dnGId ankh

t39d20, SanO, Vd,’n,EId, /Bk;ep7 Vka .
truncated aggregation

non-negative codes topical bases
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Sparse word codes

e Sparsity ratio: percentage of zeros

0.9}
0.8F
0.7+
-% 0.6} “—STC
o’ 5 —f— - gaussSTC
> 05f =— MedSTC
%’ - —f— - gaussMedSTC
= 04r [ —Xx-—- MedLDA
NMF
0.3} — =¥
....... regLDA+ * - . *
02 |~ =+ —LDA " ook
- * ‘ /X'-'/‘.‘)*‘_—~¢
0.1F -)kf-‘* * _ L —%3'
./' \‘\ﬁ’*/d ’l_ ’J.\ - (a
el BT TE e T ) T -

1

20 30 40 50 60 70 80 90 100
Topics
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* NMF: non-negative matrix factorization
* MedLDA (Zhu et al., 2009)

* regLDA: LDA with entropic regularizer
» gaussSTC: use L2 rather than L1-norm
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Computation on STC :

£

e Hierarchical sparse coding
e for each document

min Y l(wn, s, Br) M0+ (VlIsn—0]5+pllsnll1))
nel nel

st.: 0>0; sp>0, VYnel,

Word code

Spkr =max(0, vy)

where 2v8inv7 + (2vp + Binn)Vk + 11 — WnBrpn = 0

Document code (truncated averaging)
) A o1
0, = max(0, 5, — —— ) where Sk:—ZSnk
oy : 27‘1‘ m nel
e Dictionary learning
e projected gradient descent
e any faster alternative method can be used

© Eric Xing @ CMU, ACL Tutorial 2012 32
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~ 10 times speed up in train &test
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The shocking results on LDA .o

Classification Emor

—= -Baseline
~—&—-L 8l
- GM-Mix

-0~ GM-LDA |

——DWH
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# of Latent Variables
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T T
- = -Baseline
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V.. v e e & - " TP 9
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) # of Latent Variables
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Annotation

e LDA is actually doing very poor on several “objectively”
evaluatable predictive tasks
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Why? -

e LDA is not designed, nor trained for such tasks, such as
classification, there is no warrantee that the estimated topic
vector 6 is good at discriminating documents

Per-word

Dirichlet . .
topic assignment

parameter

Per-document Observed
topic proportions word Topics

)
\ l v l 1 ] i # ) 3. ( 0.70 0.05 0.03 ... )
0.8 0.3 “\ 012 052 005 ...
OO0 O 02 ... 07
@ B4 Zan Wan N O
"I D K
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Unsupervised Latent Subspace cece

Discovery

e Finding latent subspace representations (an old topic)

° Mapping a high-dimensional representation into a latent low-dimensional representation, where each
dimension can have some interpretable meaning, e.g., a semantic topic

e Examples:

e Topic models (aka LDA) [Blei et al 2003]

Or-O0O—0

@ B4 Zin Win

N

QA =N
- N
\—/. ’ ; \}!; : ’(’uf //y 3
Ok [y SN %

o Total scene latent space models [Li et al 2009]

i e regions

@) @] |

switch distr.
|

s [ Q] [@) ] prenger
e Multi-view latent Markov models [Xing et al 2005]

e PCA CCA, ..
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Predictive

Supervision

e Unsupervised latent subspace representations are generic b
can be sub-optimal for predictions

ut

e Many datasets are available with supervised side information

Tripadvisor Hotel Review ( LabelMe

http: / /www.tripadvisor. (()m) http://labelme. csail mit.edu
Lovely welcomming staff, good rooms that give a good \ dl wioman entering shop
nlghts sleep, downtown location man W@lkln towards camera
eeeeeee Hostel i ‘ —g—alcon il
. SheikhSahib E 10 contributions bu”dlﬂg
London 03
| 30l 7, 2009 | Tri type: Friends getaway a -1 i i1 | sidewalk
This htl s just of the d ets of Talat Ha b of the main \ 3 - f
rt < to downtown Ca It wlk gdt tth NI ;
rf t hotels Egk\:'pt M ” b I nd the I a h h d ss' ! ’ “ ht .
at nig t Stil BUSting. Only & Short o away 4%
fhe area ot mant wher | i person wornan walking
The staff a e young a d yf ndly a d able to sort out things like \ el s lCE Cream
mobile cha g nd I:h y ha kyp nstalled on their
comp ute swh h b II I: The ms ar rthen the Luna
{nearby) and mucl h qui r as eIL

My ratings for this hotel

ooooo lue @@@@® Service
Rooms
CEEO® L

Cleanl sssss
Date of stay February 2009

Visit was for Leisure Many Others

Traveled with with Friends

Wli(ggi\/l/ﬁwﬂickr-com/>
e Can be noisy, but not random noise (Ames & Naaman, 2007)

e labels & rating scores are usually assigned based on some intrinsic property of the data

e helpful to suppress noise and capture the most useful aspects of the data

o Goals:

e Discover latent subspace representations that are both predictive and

interpretable by exploring weak supervision information
© Eric Xing @ CMU, ACL Tutorial 2012
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Support vector machines

y.(w'x +b)=1-&, Vi
& =0, Vi
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Supervised STC =

Oy > San—— :8//((

N
(Ya) m

e Joint loss minimization

1
min 04}, {sa}, B) + CRL ({04}, m) + = ||nli3
oy f({6a} {sa}, ) + ORn({8a}m) + 5 lllz

s.t. 0q 20, Vd; sqn, 20, Vd,n € Ig; Br €P,

e coordinate descent alg. applies with closed-form update rules

e No sum-exp function; seamless integration with non-probabilistic large-margin
principle
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Classification accuracy

e 20 newsgroup data:

0.85 H sTC 0.85 I edsTC
0.8 BN gausssTC T MedLDA
[ JregLDA [ IDiscLDA
0.75 I oA 08 I s DA
0.7 [ F i)y Rt
> 0.65 2 0.75
o ©
3 06 il 3
(&) (&)
< 0.55 < 07
05
0.45 0.65
04
0.35 0.6 = = =
K=40 K=70 K=90 K=110 K=40 K=70 K=90 K=110
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Time efficiency

cpu-seconds

o

10

10

10°

10

e training & testing time

IV cdSTC
EsTc
[ IMedLDA
= sLDA
I DA

K=20

K=40

K=70

K=90

=y
o
]

cpu-seconds
=

10
K=110

e No calls of digamma function

e Converge faster with one additional dimension of freedom

o000
X XX
o0 0
o0
o

I VedSTC

R sTC

[ IMedLDA

[sLba

I DA

K=20 K=40 K=70 K=90 K=110
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Summary oe

e Topic models are intimately related to matrix factorization

e LDA = Multinomial PCA

e Exploring the connection can be beneficial

e Understanding
e Sparsity
e Efficient inference

e Supervision

e More elaborate matrix factorizations can be devised

e Until next time !
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