
CS 6140: Machine Learning Spring 2015
College of Computer and Information Science
Northeastern University
Lecture 2 January, 26
Instructor: Bilal Ahmed Scribe: Bilal Ahmed & Virgil Pavlu

Linear Regression1

Consider the housing dataset where the objective is to predict the price of a house based on a
number of features that include the average number of rooms, living area, pollution levels of the
neighborhood, etc. In this example we are going to use a single feature: the average number of
rooms to predict the value of the house. Our input is a single number x ∈ R and the output (label)
is also a continuous number y ∈ R, and our task is to find a function f(x) : R → R that takes as
input the average number of rooms and outputs the value of the house (in tens of thousands of
dollars). Here is a snippet of the data:

Average No. of Rooms 3 3 3 2 4 ...

Price (10,000 $) 40.0 33 .0 36.9 23.2 54.0 ...

and here is how the data looks like,

3 4 5 6 7 8 9
5

10

15

20

25

30

35

40

45

Average No. of Rooms

P
ri

c
e
 (

1
0

,0
0
0
$
)

Figure 1: Plot of the average number of rooms (x-axis) and the price of the house (y-axis). Note
that the input and the output are not normalized.

1Based on lecture notes by Andrew Ng. These lecture notes are intended for in-class use only.

1

Assume that the function that we are searching for is a straight line. In which case we can
represent the function as:

y = f(x) = w0 + w1x (1)

where w0 is the y-intercept of the line, and w1 is the slope. Based on this formulation searching
for the “best” line then translates into finding the optimal values of the parameters w0 and w1. It
should be noted here that for a given training dataset having N observations, the xi and yi are
fixed and we need to find the values of the parameters that satisfy the N equations:

y1 =w0 + w1x1

y2 =w0 + w1x2

· · ·
yN =w0 + w1xN

If N > 2, then this system of equations is overdetermined and has no solution. Instead of looking
for an exact solution that satisfies the N equations, we will search for an approximate solution,
that satisfies these equations with some error. In order to find the approximate solution we need a
way to decide the “goodness” of a given line (specific values for w0 and w1). For example, consider
Figure-2, we have two candidate lines l1 and l2, which one should we choose? In other words how
can we say that a given line is the optimal line with respect to the criterion we have defined for the
approximate satisfiability of the set of equations given above?

3 4 5 6 7 8 9
5

10

15

20

25

30

35

40

45

Average No. of Rooms

P
ri

c
e
 (

1
0
,0

0
0
$
)

l
1

l
2

Figure 2: Two candidate lines, that can be used to predict the price of the house based on the
average number of rooms. Which line is better?

2

1 Setup and Notation

So far in the example we have dealt with a single input feature and in most real-world cases we
would have multiple features that define each instance. We are going to assume that our data
is arranged in a matrix with each row representing an instance, and the columns representing
individual features. We can visualize the data matrix as:

X =


x11 x12 . . . x1m
x21 x22 . . . x2m

...
...

. . .
...

xN1 xN2 . . . xNm


where, X is also known as the “design matrix”. There are N labels corresponding to each instance
xi ∈ Rm, arranged as a vector y ∈ RN as:

y =


y1
y2
...
yN


the training data D can be described as consisting of (xt, yt); ∀t ∈ {1, 2, . . . , N}.

The regression function that we want to learn from the data can then be described analogously
to Equation-1 as:

y = fw(x) = w0 + w1x1 + w2x2 + . . .+ +wmxm (2)

where, f(x) : Rm → R and w = [w0, w1, w2, . . . , wm] are the parameters of the regression function.
The learning task is then to find the “optimal” weight vector w ∈ Rm+1, based on the given training
data D. When there is no risk of confusion, we will drop w from the f notation, and we will assume
a dummy feature x0 = 1 for all instances such that we can re-write the regression function as:

f(x) = w0x0 + w1x1 + w2x2 + . . .+ wmxm =
m∑
i=1

wixi = wTx (3)

Note: In the above equation xi is the ith feature, and to incorporate the augmented constant
feature (which is always equal to one) we can augment the design matrix X with a column of 1s
(as the first column) if w = [w0, w1, w2, . . . , wm].

2 Cost Function:

What do we mean by the best regression fit? For a given training dataset D and a parameter vector
w, we can measure the error (or cost) of the regression function as the sum of squared errors (SSE)
for each xi ∈ D:

Ew =

N∑
i=1

(fw(xi)− yi)2 =

N∑
i=1

(wTxi − yi)2

3

the error function measures the squared difference between the predicted label and the actual label.
The goal of the learning algorithm would then be to find the parameter vector w that minimizes
the error on the training data. The optimal parameter vector w∗ can be found as:

w∗ = arg min
w

J(w) = arg min
w

N∑
i=1

(wTxi − yi)2 (4)

3 Minimizing a Function

Consider the function:
f(x) = 3x2 + 4x+ 1

and we want to find the minimizer x∗ such that ∀x f(x∗) ≤ f(x).
Since, this is a simple function we can find the minimizer analytically by taking the derivative

of the function and equating it equal to zero:

f ′(x) = 6x+ 4 = 0

⇒ x∗ = −2

3

As the second derivative of the function 0 < f ′′(x) = 6 we know that x∗ is a minimizer of f(x).
Figure-3a shows a plot of the function.

Assume that we have x0 as out starting point (Figure-3b), and we want to reach the minimum
of the function. The derivative gives the slope of the tangent line to the function at x0, which is
positive in this case. So moving in the direction of the negative slope we will move to a point x1
such that f(x1) ≤ f(x0) (Figure-3b).

−5 −4 −3 −2 −1 0 1 2 3 4
−10

0

10

20

30

40

50

60

70

x

f(
x
)

x
0

(a)

−5 −4 −3 −2 −1 0 1 2 3 4
−10

0

10

20

30

40

50

60

x

f(
x
)=

3
x

2
+

4
x
+

1

(b)

Figure 3: (a) A plot of the function f(x) = 3x2 + 4x+ 1 and the tangent to the function at x0 = 3,
if we move in the direction as shown we will be getting closer to the function minimum. (b) shows
the next point x1 that we reach by moving in the shown direction, which is closer to the minimum.

4

3.1 Gradient Vector

Most of the problems that we are working with involve more than one parameter, that need to be
estimated by minimizing the cost function. For example the cost function defined in Equation-4
defines a mapping: J(w) : Rm → R. To minimize such function we need to define the gradient
vector which is given as:

∇wf =
[
δf
δw1

δf
δw2

. . . δf
δwm

]T
where, the ith element corresponds to the partial derivative of f w.r.t. wi. The gradient vector
specifies the direction of maximum increase in f at a given point.

3.2 Gradient Descent for Function Minimization

To minimize a function w.r.t. multiple variables, we can use the gradient vector to find the direction
of maximum increase, and then move in the opposite direction. Algorithm-1 outlines the steps of
the gradient descent algorithm.

3.3 Learning Rate

The gradient specifies the direction that we should take to minimize the function, but it is not
clear how much we should move in that direction. The learning rate (η) (also known as step size)
specifies the distance we should move to calculate the next point. The algorithm in general is
sensitive to the learning rate, if the value is too small it would take a long time to converge, on
the other hand if the value is too large we can overshoot the minimum value and oscillate between
intermediate values. Figure-4, shows the case when the learning rate is too large.

3.4 When to stop?

We need a termination condition for the gradient descent. For this purpose a number of different
heuristics can be employed:

• Maximum Number of Iterations: Run the gradient descent for as long as we can afford
to run.

• Threshold on function change: We can check for the decrease in function values between
iterations, and if the change in values is lower than a suitable threshold τ then we can stop
the algorithm i.e., f(xi+1)− f(xi) < τ .

Data: Starting point:x0, Learning Rate: η
Result: Minimizer: x∗

while convergence criterion not satisfied do
estimate the gradient at xi: ∇f(xi);
calculate the next point: xi+1 = xi − η∇f(xi)

end
Algorithm 1: The gradient descent algorithm for minimizing a function.

5

−5 −4 −3 −2 −1 0 1 2 3 4
−10

0

10

20

30

40

50

60

x

f(
x
)

=
 3

x
2
+

4
x
+

1

Figure 4: Behavior of gradient descent when the learning rate is too large. It can be seen that the
algorithm keeps oscillating about the minimum value.

• Thresholding the gradient: At the optimal point (the minimizer), the gradient should
theoretically be equal to zero. In most practical implementation it will not be possible to
achieve achieve this, in such a case we can define a tolerance parameter ε and stop when
||∇f || < ε.

4 Gradient Descent for Linear Regression

Recall, that for linear regression we are trying to minimize the cost function:

J(w) =
1

2

N∑
i=1

(wTxi − yi)2

where, we have multiplied the function by 0.5 which only scales the function and does not affect
where the minimum occurs. We need to calculate the gradient ∇wJ . To this end we are going to
calculate the partial derivatives of J(w) w.r.t. the individual parameters wk:

δ

δwk
J =

1

2

δ

δwk

N∑
i=1

(wTxi − yi)2

=

N∑
i=1

(wTxi − yi)
δ

δwk

N∑
i=1

(wTxi − yi)

=
N∑
i=1

(wTxi − yi)(xik)

based on these calculation we can define the gradient descent update rule for wk as:

wi+1
k = wik − η

N∑
i=1

((wi)Txi − yi)(xik) ∀k ∈ {1, 2, . . . ,m}

6

Data: Design Matrix: X ∈ RNxm, Label Vector: y ∈ RN
Initial weights:w0 ∈ Rm, Learning Rate: η
Result: Least squares minimizer: w∗

while convergence criterion not satisfied do
estimate the gradient at wi: ∇J(wi);
updatet: wi+1 = wi − η∇J(wi)

end
Algorithm 2: The gradient descent algorithm for finding the least squares estimator (LSE) for
the regression function.

Instead of updating each weight individually we can formulate the gradient vector and define a
vector update rule that updates all the weights simultaneously,

∇wJ =

N∑
i=1

(wTxi − yi)(xi)

the update rule is:

wi+1 = wi − η
N∑
i=1

((wi)Txi − yi)(xi) (5)

Algorithm-2 outlines the algorithm for learning the optimal weight vector for linear regression. It
should be noted here that the optimality of the weight vector is based on the SSE criterion, and
therefore the optimal weight vector is known as Least Squares Estimator (LSE).

Example: For our initial example we need to calculate the least squares solution for w =
[
w0 w1

]T
.

For the housing dataset, using only the average number of rooms in the dwelling to predict the
house price, the sum of squares error (SSE) is shown in Figure-5.

An example run of the gradient descent algorithm on the housing data is shown in Figure-6.

−10

−5

0

5

10

−50

0

50

0

1

2

3

4

5

6

7

x 10
4

w
0

w
1

S
S

E

(a)

w
0

w
1

−10 −8 −6 −4 −2 0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

20

30

40

50

(b)

Figure 5: (a) A plot of the sum of squares cost function for the housing dataset, where we are
trying to predict the price of the house based only on the average number of rooms in the house.
(a) shows a three-dimensional plot of the cost function, while (b) shows the contours of this plot,
where red indicates higher values of SSE while blue indicates lower SSE.

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Average Number of Rooms

P
ri

c
e

w
0

w
1

−5 −4 −3 −2 −1 0 1 2

−5

0

5

10

15

20

25

30

35

40

45

Figure 6: A run of the gradient descent algorithm on the housing dataset from our example.
(b) shows the convergence trajectory taken by the gradient descent algorithm, and (a) shows the
optimal regression line corresponding to w∗ estimated from the gradient descent algorithm.

5 Least squares via normal equations

Given training data (xi, yi) for i = 1, 2, ..., N , with m input features, arranged in the design matrix
X and the label vector y.

X =


x11 x12 . . . x1m
x21 x22 . . . x2m

...
...

. . .
...

xN1 xN2 . . . xNm

 y =


y1
y2
...
yN


Then the error array associated with our regressor fw(x) =

∑m
k=1wkxk is:

E =

 fw(x1)− y1
...

fw(xN)− yN

 =

 xT1 w
...

xTNw

−
 y1

...
yN

 = Xw − y

(we used w = (w0, w1, ...wm)T as a column vector). We can now write the sum of squares error as

J(w) =
1

2

N∑
i=1

(fw(xi)− yi)2 =
1

2
ETE =

1

2
(Xw − y)T (Xw − y)

8

Then,

∇wJ(w) = ∇w
1

2
ETE = ∇w

1

2
(Xw − y)T (Xw − y)

=
1

2
∇w(wTXTXw −wTXTy − yTXw + yTy)

=
1

2
∇w(wTXTXw −wTXTy −wTXTy + yTy)

=
1

2
∇w(wTXTXw − 2wTXTy + yTy)

=
1

2
2(XTXw −XTy)

= XTXw −XTy

where, in the third step we have (AB)T = BTAT .
Since we are trying to minimize J , a convex function, a sure way to find w that minimizes J is

to set its derivative to zero. In doing so we obtain

XTXw = XTy or w = (XTX)−1XTy

This is the exact w that minimizes the sum of squares error.

9

