CSC 411 Lecture 6: Linear Regression

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

A Timely XKCD

Overview

- So far, we've talked about procedures for learning.
- KNN, decision trees, bagging, boosting
- For the remainder of this course, we'll take a more modular approach:
- choose a model describing the relationships between variables of interest
- define a loss function quantifying how bad is the fit to the data
- choose a regularizer saying how much we prefer different candidate explanations
- fit the model, e.g. using an optimization algorithm
- By mixing and matching these modular components, your ML skills become combinatorially more powerful!

Problem Setup

- Want to predict a scalar t as a function of a scalar x
- Given a dataset of pairs $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- The $\mathbf{x}^{(i)}$ are called inputs, and the $t^{(i)}$ are called targets.

Problem Setup

- Model: y is a linear function of x :

$$
y=w x+b
$$

- y is the prediction
- w is the weight
- b is the bias
- w and b together are the parameters
- Settings of the parameters are called hypotheses

Problem Setup

- Loss function: squared error (says how bad the fit is)

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(w, b) & =\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(w x^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

Problem Setup

Problem setup

- Suppose we have multiple inputs x_{1}, \ldots, x_{D}. This is referred to as multivariable regression.
- This is no different than the single input case, just harder to visualize.
- Linear model:

$$
y=\sum_{j} w_{j} x_{j}+b
$$

Vectorization

- Computing the prediction using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range(M): } \\
& \quad y+=w[j]^{*} \times[j]
\end{aligned}
$$

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{\top} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \\
y=\mathbf{w}^{\top} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and much faster:

$$
y=n p \cdot \operatorname{dot}(w, x)+b
$$

Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries
- Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Vectorization

- We can take this a step further. Organize all the training examples into the design matrix \mathbf{X} with one row per training example, and all the targets into the target vector \mathbf{t}.

$$
\begin{gathered}
\text { one feature across } \\
\mathbf{X}=\left(\begin{array}{l}
\left.\mathbf{x}^{(1) \top} \begin{array}{l}
\text { all training examples } \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top}
\end{array}\right)=\left(\begin{array}{c|c|cc}
8 & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right)
\end{array} \begin{array}{c}
\text { one training } \\
\text { example (vector) }
\end{array}\right.
\end{gathered}
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{\top} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{\top} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \mathbf{w}+b \mathbf{1} \\
\mathcal{J} & =\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- In Python:

$$
\begin{aligned}
& y=n p \cdot \operatorname{dot}(x, w)+b \\
& \operatorname{cost}=n p \cdot \operatorname{sum}((y-t) * * 2) /\left(2 .^{*} N\right)
\end{aligned}
$$

Solving the optimization problem

- We defined a cost function. This is what we'd like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero. We call this direct solution.

Direct solution

- Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct solution

- Chain rule for derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N} y^{(i)}-t^{(i)}
\end{aligned}
$$

Direct solution

- The minimum must occur at a point where the partial derivatives are zero.

$$
\frac{\partial \mathcal{J}}{\partial w_{j}}=0 \quad \frac{\partial \mathcal{J}}{\partial b}=0
$$

- If $\partial \mathcal{J} / \partial w_{j} \neq 0$, you could reduce the cost by changing w_{j}.
- This turns out to give a system of linear equations, which we can solve efficiently. Full derivation in the readings.
- Optimal weights:

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Linear regression is one of only a handful of models in this course that permit direct solution.

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient descent

- Observe:
- if $\partial \mathcal{J} / \partial w_{j}>0$, then increasing w_{j} increases \mathcal{J}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then increasing w_{j} decreases \mathcal{J}.
- The following update decreases the cost function:

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is a learning rate. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient descent

- This gets its name from the gradient:

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_ regression.pdf\#page=21

Gradient descent

- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions, especially with automatic differentiation software
- For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm).

Feature mappings

- Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.
- One option: fit a low-degree polynomial; this is known as polynomial regression

$$
y=w_{3} x^{3}+w_{2} x^{2}+w_{1} x+w_{0}
$$

- Do we need to derive a whole new algorithm?

Feature mappings

- We get polynomial regression for free!
- Define the feature map

$$
\psi(x)=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3}
\end{array}\right)
$$

- Polynomial regression model:

$$
y=\mathbf{w}^{\top} \boldsymbol{\psi}(x)
$$

- All of the derivations and algorithms so far in this lecture remain exactly the same!

Fitting polynomials

$$
y=w_{0}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Generalization

Underfitting : model is too simple - does not fit the data.

Overfitting : model is too complex - fits perfectly, does not generalize.

Generalization

- Training and test error as a function of \# training examples and \# parameters:

\# parameters

Regularization

- The degree of the polynomial is a hyperparameter, just like k in KNN. We can tune it using a validation set.
- But restricting the size of the model is a crude solution, since you'll never be able to learn a more complex model, even if the data support it.
- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

L^{2} Regularization

Observation: polynomials that overfit often have large coefficients.

$$
y=0.1 x^{5}+0.2 x^{4}+0.75 x^{3}-x^{2}-2 x+2
$$

$$
y=-7.2 x^{5}+10.4 x^{4}+24.5 x^{3}-37.9 x^{2}-3.6 x+12
$$

So let's try to keep the coefficients small.

L^{2} Regularization

Another reason we want weights to be small:

- Suppose inputs x_{1} and x_{2} are nearly identical for all training examples. The following two hypotheses make nearly the same predictions:

$$
\mathbf{w}=\binom{1}{1} \quad \mathbf{w}=\binom{-9}{11}
$$

- But the second network might make weird predictions if the test distribution is slightly different (e.g. x_{1} and x_{2} match less closely).

L^{2} Regularization

- We can encourage the weights to be small by choosing as our regularizer the L^{2} penalty.

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \sum_{j} w_{j}^{2} .
$$

- Note: to be pedantic, the L^{2} norm is Euclidean distance, so we're really regularizing the squared L^{2} norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

$$
\mathcal{J}_{\text {reg }}=\mathcal{J}+\lambda \mathcal{R}=\mathcal{J}+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

- Here, λ is a hyperparameter that we can tune using a validation set.

L^{2} Regularization

- The geometric picture:

L^{2} Regularization

- Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- The gradient descent update of the regularized cost has an interesting interpretation as weight decay:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

L^{1} vs. L^{2} Regularization

- The L^{1} norm, or sum of absolute values, is another regularizer that encourages weights to be exactly zero. (How can you tell?)
- We can design regularizers based on whatever property we'd like to encourage.

L2 regularization
-1 regularization

$$
\mathcal{R}=\sum_{i} w_{i}^{2}
$$

$$
\mathcal{R}=\sum_{i}\left|w_{i}\right|
$$

- Bishop, Pattern Recognition and Machine Learning

Conclusion

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the optimization problem using one of two strategies
- direct solution (set derivatives to zero)
- gradient descent
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer

