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Please contact me if you find errors or have doubts. There is always room
for improvement and learning.

Stochastic Neighbor Embedding (SNE)

If you have stumbled upon this document, you probably already know the
formulation of the problem, therefore I will avoid writing things that can be

easily found in the article.
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Notice that E;; = Ej;. The loss function is defined as
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We derive with respect to y;. To make the derivation less cluttered, I will
omit the Jy; term at the denominator.
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We start with the first term, noting that the derivative is non-zero when
Vj#i,k=iorl=1
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Since (9EU = Ezg(_z(yz - y])) we have
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We conclude with the second term. Since » . py; = 1 and Z; does not
depend on k, we can write (changing variable from [ to j to make it more
similar to the already computed terms)
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The derivative is non-zero when k = ¢ or j = ¢ (also, in the latter case we
can move Z; inside the summation because constant)
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Combining eq. (4) and (5) we arrive at the final result
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t-distributed Stochastic Neighbor Embedding
(t-SNE)

Define
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Notice that E;; = Ej;. The loss function is defined as
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We derive with respect to y;. To make the derivation less cluttered, I will
omit the Jy; term at the denominator.
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We start with the first term, noting that the derivative is non-zero when Vj,
k=1 or [l =1, that p;; = p;; and Ej; = Ej;
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Since aEi;l = E;Q(—Z(yi —y;)) we have
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We conclude with the second term. Using the fact that Zk#k pr = 1 and
that Z does not depend on k or [
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Combining eq. (10) and (11) we arrive at the final result
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