- project on t lies $d \rightarrow t$ line $=|\bar{e}| \quad|e| \mid=1$
a $X_{k} \xrightarrow[\text { ind }]{\text { projected }} e^{\top}\left(X_{K}-\mu\right)$ new rep. on live e
- $J()=$ SSE win \Rightarrow max $e^{T} E, e$
- Solve max $\left.e^{T} \Sigma e\right\}$ Lay mall $\Sigma e=\lambda e$ $e=$ eijun rector (Σ)
- $\Sigma^{\prime}=(x-\mu)(x-\mu)^{\top}\left\{\begin{array}{l}\text { sim } \\ \text { pod et }\end{array} \Rightarrow\right.$ spectimaldima

$t=1 \Rightarrow 1$ dime \Rightarrow new representation will bon 1 line guess: that "one line" now rep
- passes through μ
- passes thisually correspond to of data.
geom line : e, $\frac{a_{1} a_{2} \cdots a_{N}}{\text { new coordinates }}$ SSE/SQ Loss

$$
\begin{aligned}
& =-\underbrace{-\sum_{k}\left(e^{T}\left(x_{k}-\mu\right)\right)^{2}}+\sum_{k}\left\|x_{k}-\mu_{k}\right\|^{2} \\
& =-\sum_{k}\left(e^{T}\left(x_{k}-\mu\right)\left(x_{k}-\mu\right)^{T} e\right)+\sum_{k}\|\mu\|^{2} \\
& =-e^{\tau}\left[\left[\sum_{k}\left(x_{k}-\mu\right)\left(x_{k}-\mu\right)^{\top}\right] e\right. \\
& -e^{T} \sum e^{t} \quad \text { minimus } J(e) \\
& \text { min }-\frac{e^{\top}}{\sqrt{2}} \Sigma^{i} e / \pi / m a x e^{-\tau} \sum i e \\
& \text { max variance (projections) }
\end{aligned}
$$

Mos impolinars: what ir the best e ? Want MAX
(i) Var [projections: new repersentations]

$$
\begin{aligned}
& \left.E\left[\left(\mu+a_{k} e^{2}-E\left[\mu+a_{k} e\right]\right)^{2}\right]=E\left[\left(\mu+a_{k} e-\mu\right)^{2}\right]=E\left[a_{k} k\right)^{2}\right] \\
& \text { pol } \\
& =E\left[e^{\top}\left(\hat{x}_{k}-\mu\right) \cdot e^{\top}\left(x_{k}-\mu\right)\right]=E\left[e^{\top}\left(x_{k}-\mu\right)\left(x_{k}-\mu\right)^{\top} e^{\top}\right]
\end{aligned}
$$

constrained optimization pb maxiluze et $\sum e$ obs

$$
\text { curtait subject to }\|e\|=1 \Leftrightarrow e^{\top} e=\frac{1}{1}
$$

Lagraugian

$$
L=\max \left[e^{T \sum e}\left[\left(e^{\top} e-1\right)\right]\right.
$$

$$
\frac{\partial L}{\partial e}=0 \Leftrightarrow 2 \Sigma_{i} e-2 \lambda e=0
$$

$$
\sum e=\lambda e e^{\text {" }} \text { dire chon when whan }
$$

divection when In multip by Σ o M.V usually changes directon of the rector madxi vector $\quad \Rightarrow$ = eigenvecter for \sum corar

WAT ${ }^{n+\pi} \rightarrow$ take (top) t eigen values make the rest o

Why $\Sigma E E \cdot D \cdot E^{\top}$ (spectral Theorem)? Where E is the matrix of col-eigenvetors and $D=$ diag-watitx of eigenvalues

$$
E=\left[\begin{array}{lll}
1 & 1 & 1 \\
e_{1} & e_{2} & e_{D} \\
1 & 1 & 1
\end{array}\right] D=\left[\begin{array}{ccc}
\lambda_{1} & \\
\lambda_{2} & 0 \\
0 & \ddots & \lambda_{D}
\end{array}\right] \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \ldots \geqslant \lambda_{D} .
$$

- E is orthonormal: $\left\langle e_{i} \cdot e_{i}\right\rangle=\| e_{i} l=1$ and $\left\langle e_{i} e_{j}\right\rangle=0(i \neq j)$

$$
\begin{aligned}
& \left(\lambda_{i} e_{i}\right)^{\top} e_{j}=\left(\sum^{\top} e_{i}\right)^{\top} e_{j}=e^{\top} \Sigma^{\top} e_{j}=e_{i}^{\top}\left(\Sigma e_{j}\right)=e^{\top}\left(\lambda_{j} e_{j}\right) \\
& \lambda_{i} \neq \lambda_{j} \Rightarrow e_{i}^{\top} e_{j}=\left\langle e_{i} \cdot e_{j}\right\rangle=0 \\
& \text { Thus } E^{\top} E=I_{D}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]_{D \times D} \Rightarrow E^{\top}=E^{-1} \Rightarrow E \cdot E^{\top}=I_{D}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\begin{array}{c}
e_{1}- \\
e_{2}- \\
-e_{D}-
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\lambda_{1} e_{1} & \lambda_{2} e_{2} & \cdots \\
1 & \lambda_{D} e_{D}
\end{array}\right] \times\left[\begin{array}{c}
a_{1}-e_{2} \\
-e_{D}- \\
e_{D}-
\end{array}\right]=\lambda_{1} e_{1} e_{1}^{\top}+\lambda_{22} e_{2}^{\top} t+\lambda_{0} e_{D} e_{D}^{\top} \\
& =\left[\begin{array}{lll}
e_{1}^{1} l_{2}^{1} & e_{P}^{1} \\
1 & \cdots & l^{2}
\end{array}\right] \times\left[\begin{array}{cc}
\lambda_{1} & \\
\lambda_{2} & 0 \\
0 & \\
\lambda_{D}
\end{array}\right] \times\left[\begin{array}{c}
-e_{1}- \\
-e_{2} \\
-e_{D}-
\end{array}\right]=E \cdot D \cdot E^{T}
\end{aligned}
$$

take fopteigen values $\lambda_{1}, \lambda_{2}, \ldots \lambda_{t}$, ignore the rest DE:

new representation of data $\left(\begin{array}{l}x \\ a x d\end{array}\right.$ on $t \operatorname{dim}_{x}$
"every eigen vector is a libear cmulnuation of "x dataponts" Uuality / KKT conditions

$$
e_{j}=\sum_{i=1}^{N} \overrightarrow{\beta^{j}} x_{i}=\sum_{i=1}^{N} \beta_{i}^{f} \cdot x_{i}
$$

$$
\begin{aligned}
& \simeq \sum B_{j} \cdot \bar{X} \sum_{i=1}^{N} x_{i}
\end{aligned}
$$

\therefore

KERNEL PCA assume data ceutered $\mu_{x}=0$ on each colomn.
NXN

$$
\begin{aligned}
& \cdot K=x \cdot x^{\top} \text { Kenel matix } \quad \sum_{=}=\operatorname{cosar}(x)_{N}=x^{\top} x \cdot \frac{1}{N} \\
& k_{i j}=\left\langle\lambda_{i} x_{j}\right\rangle=x_{i} \cdot x_{j}^{\top}=\sin \left(x_{i}, x_{j}\right) \\
& K \text { also syumetric, pos-definte }
\end{aligned}
$$

(ey, λ) elgen rector/value pair for $\sum \Rightarrow \lambda e=\sum_{N}^{1} e=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{+} \cdot x_{i}\right) e$

$e=x^{\top} \cdot \bar{\beta}^{e=1}=\sum_{i}\left(\beta_{1} x_{1}, \beta_{i} i_{i} \cdots \beta_{i} x_{j}\right)$
$e=\beta$-linear combination of datapoints X_{i}^{\top}
$\cdot \stackrel{\bar{\beta}}{\bar{\beta}}=\left[\begin{array}{l}\beta_{1}^{e} \\ \beta_{1} \\ p_{2} \\ \beta_{n}\end{array}\right]$ are dual vaniables for e

- PCA representation on new dimension e for datapoint x_{j} is

$$
\begin{aligned}
& P C A \text { representation on new dimension } e^{N} x_{j}^{N} x_{j}^{N} \sum_{i=1}^{e} \beta_{i}^{T} x_{i=1}^{N} \beta_{i}^{e} \cdot x_{j} x_{i}^{T}=\sum_{i=1}^{N} \beta_{i}^{e} K_{i j}=\sum_{i=1}^{N} \beta_{i} \cdot \operatorname{sim}\left(x_{i}, x_{j}\right) \\
& e
\end{aligned}
$$

- For all datapoints X

$$
x \cdot e=\left[\begin{array}{l}
\text { For all datapoints } x \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{N}
\end{array}\right]}
\end{array}\right] \cdot \underbrace{\frac{e}{x^{\top}} \cdot\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{N}
\end{array}\right]}=x \cdot x^{\top} \cdot \beta^{e}=k \cdot \bar{\beta}^{e}
$$

- For all datapoints x on all axis $e_{1}, e_{2}, \ldots e_{r}(r$-dim)
- $K \cdot \beta^{e}=$ coordinates of all paints on new-axis e NaN N al

Calculate β_{i}^{e} dual variables for eigenvector (e, λ) of Σ

$$
\begin{aligned}
& \sum_{i} \beta_{i} x_{i}^{T}=\sum_{i}\left(\beta_{1} \lambda_{i}, \beta_{2} \lambda_{2} \ldots \beta_{N} \alpha_{N}\right)=X^{\top} \bar{\beta} \\
& \bar{\beta}=\overline{\beta^{e}}=\left(\beta_{1}, \beta_{2}, \cdots \beta_{N}\right)^{\top} \\
& \Sigma e=\lambda e \Rightarrow \frac{1}{N} x^{\top} \cdot x \cdot x^{\top} \bar{\beta}=\lambda x^{\top} \hat{\beta}{ }^{e} \\
& \text { mon } x^{2} x^{2} x^{(x)}\left(x \cdot x^{\top} \cdot\left(x \cdot x^{\top}\right) \bar{\beta}=x \cdot N \cdot \lambda \cdot x^{\top} \bar{\beta}\right. \\
& K \cdot K \cdot \bar{\beta}=N \cdot \lambda \cdot\left(x \cdot x^{T}\right) \cdot \bar{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ven } \operatorname{ains}^{0 n} \Rightarrow K \bar{\beta}=N \lambda \bar{\beta} \Rightarrow \bar{\beta} \text { is efganector for } K \\
& \text { with eijenval (} N \cdot \lambda \text {) }
\end{aligned}
$$

Gut in a new mapped space $\Phi(x)$: $K_{i j}-\left\langle\Phi\left(x_{i}\right) \cdot \Phi\left(x_{j}\right)\right\rangle$

- this is saying K is still $x \cdot x^{T}$ like before, but data X is now $\Phi(x)$
- $K=X X^{\top}$ is called linear kernel
- $K_{i}=e^{-\left\|x_{i}-y\right\|^{2} / \sigma^{2}}$ gaussian kerne
- K $K_{i j}=\left(a\left\langle x_{i} x_{j}\right\rangle+b\right)^{d}$ polynomial kernel
- Laplacian exponential, circular
- KERNE TRick: we use K matrix $\left(K_{i j}\right)$ or k function $k_{i j}=$ function $\left(x_{i}, x_{j}\right)^{T}$ assuming $k=\phi(x) \cdot \phi(x)^{\top}$
- but without explicit knowing \varnothing quadratic kenels (see slides below)
we dort know D explicit
- all these kernels have an implicit map ϕ so that $k=\phi(x) \phi^{\top}(x)$
othe theory we developed for $P C A$ with $k=X x^{\top}$ work. for any other kernel K
- $\beta=$ eigen rectors(K) we need for KPCA new dim computed as K' B

CENTERING DATA inside $K \mu=\mu(\phi(x))=\frac{1}{N} \sum_{i=1}^{N} \phi(x)$

- if $\mu \neq 0$ we weed to update K to match our theory
- $K=\phi(x) \cdot \phi^{\top}(x)$; want new $\bar{K}=(\phi(x)-\mu)(\phi(x)-\mu)^{\top}$
- $\bar{K}_{i j}=\left(\phi_{i}-\mu\right) \times\left(\phi_{j}-\mu\right)^{\top} \quad \phi_{i}=\phi\left(x_{i}\right)=1$ ixumusooum moped veda $\left(x^{\prime}\right.$
$=\left(\phi_{i}-\frac{1}{N} \sum_{t=1}^{N} \phi_{t}\right) \times\left(\phi_{j}-\frac{1}{N} \sum_{i=1}^{N} \phi_{l}\right)^{\top}=$
$=\phi_{i} \times \phi_{j}-\frac{1}{N} \sum_{t=1}^{N} \phi_{t} \times \phi_{j}^{\top}-\frac{1}{N} \sum_{k=1}^{N} \phi_{t} \phi_{e}^{\top}+\frac{1}{N^{2}} \sum_{e, t} \phi_{t} \times \phi_{e}^{\top}$.
$=k_{i j}-\frac{1}{N} \sum_{t} k_{t j}-\frac{1}{N} \sum_{e} k_{i e}+\frac{1}{N^{2}} \sum_{e, t} k_{t e}$
- matrix form update for $K \rightarrow \bar{k}$

$$
\bar{K}=k-u k-K u-u K u
$$

$U=\frac{1}{N} \cdot \frac{1}{1} \frac{1}{1}$

Lagrange multipliers, examples

Examples of the Lagrangian and Lagrange multiplier technique in action.

G Google Classroom	f Facebook	\square
V Twitter		

Background

- Introduction to Lagrange multipliers
- Gradient

Lagrange multiplier technique, quick recap

Image credit: By Nexcis (Own work) [Public domain], via Wikimedia Commons

When you want to maximize (or minimize) a multivariable function $f(x, y, \ldots)$ subject to the constraint that another multivariable function equals a constant, $g(x, y, \ldots)=c$, follow these steps:

- Step 1: Introduce a new variable λ, and define a new function \mathcal{L} as follows:

$$
\mathcal{L}(x, y, \ldots, \lambda)=f(x, y, \ldots)-\lambda(g(x, y
$$

This function \mathcal{L} is called the "Lagrangian", and the new variable λ is referred to as a "Lagrange multiplier"

- Step 2: Set the gradient of \mathcal{L} equal to the zero vector.

$$
\nabla \mathcal{L}(x, y, \ldots, \lambda)=\mathbf{0} \quad \leftarrow \text { Zero vector }
$$

In other words, find the critical points of \mathcal{L}.

- Step 3: Consider each solution, which will look something like $\left(x_{0}, y_{0}, \ldots, \lambda_{0}\right)$. Plug each one into f. Or rather, first remove the λ_{0} component, then plug it into f, since f does not have λ as an input. Whichever one gives the greatest (or smallest) value is the maximum (or minimum) point your are seeking.

Example 1: Budgetary constraints

Problem

Suppose you are running a factory, producing some sort of widget that requires steel as a raw material. Your costs are predominantly human labor, which is $\$ 20$ per hour for your workers, and the steel itself, which runs for $\$ 170$ per ton. Suppose your revenue R is loosely modeled by the following equation:

$$
R(h, s)=200 h^{2 / 3} s^{1 / 3}
$$

- h represents hours of labor
- s represents tons of steel

If your budget is $\$ 20,000$, what is the maximum

Solution

The $\$ 20$ per hour labor costs and $\$ 170$ per ton steel costs tell us that the total cost of production, in terms of h and s, is

$$
20 h+170 s
$$

Therefore the budget of $\$ 20,000$ can be translated to the constraint

$$
20 h+170 s=20,000
$$

Before we dive into the computation, you can get a feel for this problem using the following interactive diagram. You can see which values of (h, s) yield a given revenue (blue curve) and which values satisfy the constraint (red line).

Since we need to maximize a function $R(h, s)$, subject to a constraint, $20 h+170 s=20,000$, we begin by writing the Lagrangian function for this setup:

$$
\mathcal{L}(h, s, \lambda)=200 h^{2 / 3} s^{1 / 3}-\lambda(20 h+1
$$

Next, set the gradient $\nabla \mathcal{L}$ equal to the $\mathbf{0}$ vector. This is the same as setting each partial derivative equal to 0 . First, we handle the partial derivative with respect to h.

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{L}}{\partial h} \\
& 0=\frac{\partial}{\partial h}\left(200 h^{2 / 3} s^{1 / 3}-\lambda(20 h+170 s-20,0\right. \\
& 0=200 \cdot \frac{2}{3} h^{-1 / 3} s^{1 / 3}-20 \lambda
\end{aligned}
$$

Next, we handle the partial derivative with respect to s.

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{L}}{\partial s} \\
& 0=\frac{\partial}{\partial s}\left(200 h^{2 / 3} s^{1 / 3}-\lambda(20 h+170 s-20,0\right. \\
& 0=200 \cdot \frac{1}{3} h^{2 / 3} s^{-2 / 3}-170 \lambda
\end{aligned}
$$

Finally we set the partial derivative with respect to λ equal to 0 , which as always is just the same thing as the constraint. In practice, you can of course just write the constraint itself, but l'll write out the partial derivative here just to make things clear.

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{L}}{\partial \lambda} \\
& 0=\frac{\partial}{\partial \lambda}\left(200 h^{2 / 3} s^{1 / 3}-\lambda(20 h+170 s-20,0\right. \\
& 0=-20 h-170 s+20,000
\end{aligned}
$$

$20 h+170 s=20,000$

Putting it together, the system of equations we need to solve is

$$
\begin{aligned}
0 & =200 \cdot \frac{2}{3} h^{-1 / 3} s^{1 / 3}-20 \lambda \\
0 & =200 \cdot \frac{1}{3} h^{2 / 3} s^{-2 / 3}-170 \lambda \\
20 h & +170 s=20,000
\end{aligned}
$$

In practice, you should almost always use a computer once you get to a system of equations like this. Especially because the equation will likely be more complicated than these in real applications.

MULTIVARIABLE
CALCULUS > APPLICATIONS OF MULTIVARIABLE DERIVATIVES

Constrained optimization (articles)Lagrange multipliers, introduction
(F) Lagrange multipliers, examples

Interpretation of Lagrange multipliers

Once you do, you'll find that the answer is

$$
\begin{aligned}
& h=\frac{2,000}{3} \approx 666.667 \\
& s=\frac{2,000}{51} \approx 39.2157 \\
& \lambda=\sqrt[3]{\frac{8,000}{459}} \approx 2.593
\end{aligned}
$$

This means you should employ about 667 hours of labor, and purchase 39 tons of steel, which will give a maximum revenue of

$$
R(667,39)=200(667)^{2 / 3}(39)^{1 / 3} \approx \$ 51,777
$$

Example 2: Maximizing dot product

Problem: Let the three-dimensional vector $\overrightarrow{\mathbf{v}}$ be defined as follows.

$$
\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

Consider every possible unit vector $\hat{\mathbf{u}}$ in threedimensional space. For which one is the dot product $\hat{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ the greatest?

The diagram below is two-dimensional, but not much changes in the intuition as we move to three dimensions.

Two-dimensional analogy to the three-dimensional problem we have. Which unit vector $\hat{\mathbf{u}}$ maximizes the dot product $\hat{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$?

If you are fluent with dot products, you may already know the answer. It's one of those mathematical facts worth remembering. If you don't know the answer, all the better! Because we will now find and prove the result using the Lagrange multiplier method.

Solution:

First, we need to spell out how exactly this is a constrained optimization problem. Write the coordinates of our unit vectors as x, y and z :

$$
\hat{\mathbf{u}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The fact that $\hat{\mathbf{u}}$ is a unit vector means its magnitude is 1 :

$$
\begin{array}{r}
\|\hat{\mathbf{u}}\|=\sqrt{x^{2}+y^{2}+z^{2}}=1 \\
x^{2}+y^{2}+z^{2}=1
\end{array}
$$

This is our constraint.

Maximizing $\hat{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ means maximizing the following quantity:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=2 x+3 y+z
$$

The Lagrangian, with respect to this function and the constraint above, is

$$
\begin{equation*}
\mathcal{L}(x, y, z, \lambda)=2 x+3 y+z-\lambda\left(x^{2}+\right. \tag{2}
\end{equation*}
$$

We now solve for $\nabla \mathcal{L}=\mathbf{0}$ by setting each partial derivative of this expression equal to 0 .

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(2 x+3 y+z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)\right) \\
\frac{\partial}{\partial y}\left(2 x+3 y+z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)\right) \\
\frac{\partial}{\partial z}\left(2 x+3 y+z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)\right)
\end{gathered}
$$

Remember, setting the partial derivative with respect to λ equal to 0 just restates the constraint.

$$
\frac{\partial}{\partial \lambda}\left(2 x+3 y+z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)\right)=-x
$$

Solving for x, y and z in the first three equations above, we get

$$
\begin{aligned}
x & =2 \cdot \frac{1}{2 \lambda} \\
y & =3 \cdot \frac{1}{2 \lambda} \\
z & =1 \cdot \frac{1}{2 \lambda}
\end{aligned}
$$

Ah, what beautiful symmetry. Each of these expressions has the same $\frac{1}{2 \lambda}$ factor, and the coefficients 2,3 and 1 match up with the coordinates of $\overrightarrow{\mathbf{v}}$. Being good math students as we are, we won't let good symmetry go to waste. In this case, combining the three equations above into a single vector equation, we can relate $\hat{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ as follows:

$$
\hat{\mathbf{u}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{2 \lambda}\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=\frac{1}{2 \lambda} \overrightarrow{\mathbf{v}}
$$

Therefore $\hat{\mathbf{u}}$ is proportional to \mathbf{v} ! Geometrically, this means $\hat{\mathbf{u}}$ points in the same direction as $\overrightarrow{\mathbf{v}}$. There are two unit vectors proportional $\overrightarrow{\mathbf{v}}$,

- One which points in the same direction, this is the vector that maximizes $\hat{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$.
- One which points in the opposite direction. This one minimizes $\hat{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$.

We can write these two unit vectors by normalizing $\overrightarrow{\mathbf{v}}$, which just means dividing $\overrightarrow{\mathbf{v}}$ by its magnitude:

$$
\begin{aligned}
& \hat{\mathbf{u}}_{\max }=\frac{\overrightarrow{\mathbf{v}}}{\|\mathbf{v}\|} \\
& \hat{\mathbf{u}}_{\min }=-\frac{\overrightarrow{\mathbf{v}}}{\| \overrightarrow{\mathbf{v} \|}}
\end{aligned}
$$

The magnitude $\|\mathbf{v}\|$ is $\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14}$, so we can write the maximizing unit vector $\hat{\mathbf{u}}_{\text {max }}$ explicitly
as like this:

$$
\hat{\mathbf{u}}_{\max }=\left[\begin{array}{c}
2 / \sqrt{14} \\
3 / \sqrt{14} \\
1 / \sqrt{14}
\end{array}\right]
$$

Just skip the Lagrangian

If you read the last article, you'll recall that the whole point of the Lagrangian \mathcal{L} is that setting $\nabla \mathcal{L}=0$ encodes the two properties a constrained maximum must satisfy:

- Gradient alignment between the target function and the constraint function,

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

- The constraint itself,

$$
g(x, y)=c
$$

When working through examples, you might wonder why we bother writing out the Lagrangian at all. Wouldn't it be easier to just start with these two equations rather than re-establishing them from $\nabla \mathcal{L}=0$ every time? The short answer is yes, it would be easier. If you find yourself solving a constrained
optimization problem by hand, and you remember the idea of gradient alignment, feel free to go for it without worrying about the Lagrangian.

In practice, it's often a computer solving these problems, not a human. Given that there are many highly optimized programs for finding when the gradient of a given function is 0 , it's both clean and useful to encapsulate our problem into the equation $\nabla \mathcal{L}=0$.

Furthermore, the Lagrangian itself, as well as several functions deriving from it, arise frequently in the theoretical study of optimization. In this light, reasoning about the single object \mathcal{L} rather than multiple conditions makes it easier to see the connection between high-level ideas. Not to mention, it's quicker to write down on a blackboard.

In either case, whatever your future relationship with constrained optimization might be, it is good to be able to think about the Lagrangian itself and what it does. The examples above illustrate how it works, and hopefully help to drive home the point that $\nabla \mathcal{L}=0$ encapsulates both $\nabla f=\lambda \nabla g$ and $g(x, y)=c$ in a single equation.

In example 2, why do we put a hat on u ? Is it because it is a unit vector, or because it is the vector that we are looking for?

It is because it is a unit vector. Unit vectors will typically have a hat on them.

7 votes $\boldsymbol{\lambda}$ •Comment • Flag

Use the method of Lagrange multipliers to compute the Optimal investments x and y in mutual Funds 1 and 2 respectively.An expressions for x and y should not contain the lagrange multiplier

2 votes $\Delta \nabla$. Comment • Flag
about a year ago by Learner

Instead of constraining optimization to a curve on $x-y$ plane, is there which a method to constrain the optimization to a region/area on the $x-y$ plane. Like the region
$x^{\wedge} 2+y^{\wedge} 2<=2$ which r all the points in the unit circle
including the boundary.
1 vote $\boldsymbol{\sim}$ •Comment \cdot Flag
9 months ago by hamadmo77

For problems where the number of constraints is one less than the number of variables (ie every example we've gone over except the unit vector one), is there a reason why we can't just solve the system of equations of the function and constraint? ie the result is a single-variable function; take its derivative and set to 0 .

1 vote $\boldsymbol{\lambda} \cdot$ Comment \cdot Flag
about a year ago by David O'Connor
how do you maximize this function subject to the constraint
$f(x, y)=x^{\wedge} 2-y^{\wedge} 2+3,2 x+y=3$
1 vote $\boldsymbol{\sim} \boldsymbol{\nabla}$. Comment \cdot Flag 10 months ago by jam008

Hello and really thank you for your amazing site. Can you please explain me why we dont use the whole Lagrange but only the first part? Why we dont use the 2nd derivatives

1 vote $\boldsymbol{\sim} \boldsymbol{\nabla}$ •Comment •Flag
what shuld we do if we have constraints as well as boundaries and we need a local extrima?

1 vote $\boldsymbol{\sim}$ • Comment • Flag
2 years ago by Garbage can jr

At the start of example 1, it would be good if you mentioned that the problem is very hard to solve completely by hand, so that people don't waste their time.

O votes $\boldsymbol{\Delta} \boldsymbol{\nabla}$ •Comment • Flag
about a year ago by Zaz Brown

Its indeed tricky, but I found it usefull and good practice.

1 vote $\boldsymbol{\sim}$ •Comment •Flag
10 months ago by 幾 aflenoir
find the temperature $f(x, y, z)$ at any point in space is $f=400 x y z^{\wedge} 2$.find the highest temperature on the surface of the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

0 votes $\boldsymbol{\lambda} \cdot 1$ comment \cdot Flag
2 years ago by gakhil1018
\qquad

<Lagrange multipliers, introduction

 Interpretation of Lagrange multipliers >Our mission is to provide a free, worldclass education to anyone, anywhere.

Khan Academy is a 501(c)(3) nonprofit organization. Donate or volunteer today!

About

News

Impact

Our team

Our interns

Our content specialists

Our leadership

Our supporters

Our contributors

Careers

Internships

Contact

Help center

Support community

Share your story

Press

Download our apps
iOS app

Android app

Subjects

Math by subject

Math by grade

Science \& engineering

Computing

Arts \& humanities

Economics \& finance

Test prep

College, careers, \& more

Language English ∇
© 2018 Khan Academy Terms of use Privacy notice

UNSUPERVISED LEARNING 2011

LECTURE :KERNEL PCA

Rita Osadchy

Some slides are due to Scholkopf, Smola, Muller, and Precup

Dimensionality Reduction

- Data representation

Inputs are real-valued vectors in a high dimensional space.

- Linear structure

Does the data live in a low dimensional subspace?

- Nonlinear structure

Does the data live on a low dimensional submanifold?

Dimensionality Reduction so far

PCA
Manifold learning methods
for non linear structure

but does not unfold the data

Notations

- Inputs (high dimensional)
$\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ points in R^{D}
○ Outputs (low dimensional)
$\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}$ points in $\mathrm{R}^{\mathrm{d}}(\mathrm{d} \ll \mathrm{D})$

The "magic" of high dimensions

- Given some problem, how do we know what classes of functions are capable of solving that problem?
- VC (Vapnik-Chervonenkis) theory tells us that often mappings which take us into a higher dimensional space than the dimension of the input space provide us with greater classification power.

Example in \mathbb{R}^{2}

These classes are linearly inseparable in the input space.

Example: High-Dimensional Mapping

We can make the problem linearly separable by a simple mapping

$$
\begin{aligned}
& \Phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \\
& \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

Renal trick : dunt hied ϕ
just $K\left(x, x_{i}\right)$
math

Kernel Trick

- High-dimensional mapping can seriously increase computation time.
- Can we get around this problem and still get the benefit of high-D?
- Yes! Kernel Trick Kens-1
- Given any algorithm that can be expressed solely in terms of dot products, this trick allows us to construct different nonlinear versions of it.

Popular Kernels

Gaussian $K\left(\vec{x}, \overrightarrow{x^{\prime}}\right)=\exp \left(-\beta\left\|\vec{x}-\overrightarrow{x^{\prime}}\right\|^{2}\right)$
Polynomial $K\left(\vec{x}, \overrightarrow{x^{\prime}}\right)=\left(1+\vec{x} \cdot \vec{x}^{\prime}\right)$
Hyperbolic tangent $K\left(\bar{x}, \overrightarrow{x^{\prime}}\right)=\tanh \left(\vec{x} \cdot \vec{x}^{\prime}+\delta\right)$

Kernel Principal Component

 Analysis (KPCA)- Extends conventional principal component analysis (PCA) to a high dimensional feature space using the "kernel trick".
- Can extract up to n (number of samples) nonlinear principal components without expensive computations.

Making PCA Non-Linear

- Suppose that instead of using the points x_{i} we would first map them to some nonlinear feature space $\phi\left(x_{i}\right)$
E.g. using polar coordinates instead of cartesian coordinates would help us deal with the circle.
- Extract principal component in that space (PCA)
- The result will be non-linear in the original data space!

Derivation

- Suppose that the mean of the data in the feature space is
- Covariance:

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)=0
$$

$$
\mathrm{C}=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T}
$$

- Eigenvectors

$$
\mathrm{C} v=\lambda v
$$

Derivation Cont.

- Eigenvectors can be expressed as linear combination of features:

$$
v=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)
$$

© Proof:

$$
\mathrm{C} v=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T} v=\lambda v
$$

thus

$$
v=\frac{1}{\lambda n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T} v=\frac{1}{\lambda n} \sum_{i=1}^{n}\left(\phi\left(x_{i}\right) \cdot v\right) \phi\left(x_{i}\right)^{T}
$$

Showing that $x x^{T} v=(x \cdot v) x^{T}$

$$
\begin{aligned}
\left(\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{v} & =\left(\begin{array}{cccc}
x_{1} x_{1} & x_{1} x_{2} & \ldots & x_{1} x_{M} \\
x_{2} x_{1} & x_{2} x_{2} & \ldots & x_{2} x_{M} \\
\vdots & \vdots & \ddots & \vdots \\
x_{M} x_{1} & x_{M} x_{2} & \ldots & x_{M} x_{M}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{M}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} x_{1} v_{1}+x_{1} x_{2} v_{2}+\ldots+x_{1} x_{M} v_{M} \\
x_{2} x_{1} v_{1}+x_{2} x_{2} v_{2}+\ldots+x_{2} x_{M} v_{M} \\
\vdots \\
x_{M} x_{1} v_{1}+x_{M} x_{2} v_{2}+\ldots+x_{M} x_{M} v_{M}
\end{array}\right)
\end{aligned}
$$

Showing that $\quad x x^{T} v=(x \cdot v) x^{T}$

$$
\begin{aligned}
& =\left(\begin{array}{c}
\left(x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{M} v_{M}\right) x_{1} \\
\left(x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{M} v_{M}\right) x_{2} \\
\vdots \\
\left(x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{M} v_{M}\right) x_{M}
\end{array}\right) \\
& =\left(x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{M} v_{M}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{M}
\end{array}\right) \\
& =(\boldsymbol{x} \cdot \boldsymbol{v}) \boldsymbol{x}
\end{aligned}
$$

Derivation Cont.

- So, from before we had,

$$
v=\frac{1}{n \lambda} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T} v=\frac{1}{n \lambda} \sum_{i=1}^{n}\left(\phi\left(x_{i}\right) \cdot v\right) \phi\left(x_{i}\right)^{T}
$$

just a scalar

- this means that all solutions v with $\lambda=0$
lie in the span of $\phi\left(x_{1}\right), . ., \phi\left(x_{n}\right)$, i.e.,

$$
\text { eisenve }<(v)=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)
$$

- Finding the eigenvectors is equivalent to finding the coefficients α_{i}

Derivation Cont.

- By substituting this back into the equation we get:

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T}\left(\sum_{l=1}^{n} \alpha_{j l} \phi\left(x_{l}\right)\right)=\lambda_{j} \sum_{l=1}^{n} \alpha_{j l} \phi\left(x_{l}\right)
$$

- We can rewrite it as

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)\left(\sum_{l=1}^{n} \alpha_{j l} K\left(x_{i}, x_{l}\right)\right)=\lambda_{j} \sum_{l=1}^{n} \alpha_{j l} \phi\left(x_{l}\right)
$$

- Multiply this by $\phi\left(x_{k}\right)$ from the left:

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{k}\right)^{T} \phi\left(x_{i}\right)\left(\sum_{l=1}^{n} \alpha_{j l} K\left(x_{i}, x_{l}\right)\right)=\lambda_{j} \sum_{l=1}^{n} \alpha_{j l} \phi\left(x_{k}\right)^{T} \phi\left(x_{l}\right)
$$

Derivation Cont.

- By plugging in the kernel and rearranging we get:

$$
\mathrm{K}^{2} \alpha_{j}=n \lambda_{j} \mathrm{~K} \alpha_{\mathrm{j}}
$$

We can remove a factor of K from both sides of the matrix (this will only affects the eigenvectors with zero eigenvalue, which will not be a principle component anyway):

$$
\mathrm{K} \alpha_{j}=n \lambda_{j} \alpha_{\mathrm{j}}
$$

- We have a normalization condition for the α_{j} vectors:

$$
v_{j}^{T} v_{j}=1 \Rightarrow \sum_{k=1}^{n} \sum_{l=1}^{n} \alpha_{j l} \alpha_{j k} \phi\left(x_{l}\right)^{T} \phi\left(x_{k}\right)=1 \Rightarrow \alpha_{\mathrm{j}}^{\mathrm{T}} \mathrm{~K} \alpha_{\mathrm{j}}=1
$$

Derivation Cont.

- By multiplying $\mathrm{K} \alpha_{j}=n \lambda_{j} \alpha_{j}$ by α_{j} and using the normalization condition we get:

$$
\lambda_{j} n \alpha_{j}^{T} \alpha_{j}=1, \quad \forall j
$$

- For a new point x, its projection onto the principal components is:

$$
\phi(x)^{T} v_{j}=\sum_{i=1}^{n} \alpha_{j i} \phi(x)^{T} \phi\left(x_{i}\right)=\sum_{i=1}^{n} \alpha_{j i} K\left(x, x_{i}\right)
$$

Normalizing the feature space

- In general, $\phi\left(x_{i}\right)$ may not be zero mean.
- Centered features:

$$
\widetilde{\phi}\left(x_{k}\right)=\phi\left(x_{i}\right)-\frac{1}{n} \sum_{k=1}^{n} \phi\left(x_{k}\right)
$$

- The corresponding kernel is:

$$
\begin{aligned}
& \widetilde{K}\left(x_{i}, x_{j}\right)=\widetilde{\phi}\left(x_{i}\right)^{T} \widetilde{\phi}\left(x_{j}\right) \\
& =\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{k=1}^{n} \phi\left(x_{k}\right)\right)^{T}\left(\phi\left(x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n} \phi\left(x_{k}\right)\right) \\
& =K\left(x_{i}, x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n} K\left(x_{i}, x_{k}\right)-\frac{1}{n} \sum_{k=1}^{n} K\left(x_{j}, x_{k}\right)+\frac{1}{n^{2}} \sum_{l, k=1}^{n} K\left(x_{l}, x_{k}\right)
\end{aligned}
$$

Normalizing the feature space (cont)

$$
\widetilde{K}\left(x_{i}, x_{j}\right)=K\left(x_{i}, x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n} K\left(x_{i}, x_{k}\right)-\frac{1}{n} \sum_{k=1}^{n} K\left(x_{j}, x_{k}\right)+\frac{1}{n^{2}} \sum_{l, k=1}^{n} K\left(x_{l}, x_{k}\right)
$$

- In a matrix form

$$
\widetilde{\mathrm{K}}=\mathrm{K}-2 \mathbf{1}_{1 / \mathrm{n}} \mathrm{~K}+\mathbf{1}_{1 / \mathrm{n}} \mathrm{~K} \mathbf{1}_{1 / n}
$$

- where $1_{1 / n}$ is a matrix with all elements $1 / n$.

Summary of kernel PCA

- Pick a kernel
- Construct the normalized kernel matrix of the data (dimension $m \times m$):

$$
\widetilde{\mathrm{K}}=\mathrm{K}-2 \mathbf{1}_{1 / \mathrm{n}} \mathrm{~K}+\mathbf{1}_{1 / \mathrm{n}} \mathrm{~K} \mathbf{1}_{1 / \mathrm{n}}
$$

- Solve an eigenvalue problem:

$$
\widetilde{\mathrm{K}} \alpha_{i}=\lambda_{i} \alpha_{i}
$$

- For any data point (new or old), we can represent it as $\begin{aligned} & x=\text { orris paint } \\ & \text { New } \\ & \text { golf }\end{aligned} \rightarrow y_{j}=\sum_{i=1}^{n} \alpha_{i i} K\left(x, x_{i}\right), \mathrm{j}=1, \ldots, d$

Example: Input Points

Example: KPCA

Example: De-noising images

Original data

Data corrupted with Gaussian noise

Result after linear PCA

Result after kernel PCA, Gaussian kernel

Properties of KPCA

- Kernel PCA can give a good reencoding of the data when it lies along a non-linear manifold.
- The kernel matrix is $n \times n$, so kernel PCA will have difficulties if we have lots of data points.

