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Manifold Learning

Idea: Perform a non-linear dimensionality reduction 
in a manner that preserves proximity (but not distances)



Manifold Learning



PCA on MNIST Digits
Introduction

Principal Components Analysis
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Swiss Roll

Introduction

Swiss Roll

PCA is mainly concerned dimensionality, with preserving when large
pairwise distances in the map
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a good notion of proximity 



Non-linear Projection

t-Distributed Stochastic Neighbor Embedding
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Bad projection: relative position to neighbors changes



Non-linear Projection

t-Distributed Stochastic Neighbor Embedding
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Intuition: Want to preserve local neighborhood

t-Distributed Stochastic Neighbor Embedding

Introduction

Preserve the neighborhood
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t-Distributed Stochastic Neighbor Embedding

Introduction

Measure pairwise similarities between high-dimensional and
low-dimensonal objects

pj |i =
exp(�||xi � xj ||2/2�2

i
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Stochastic Neighbor Embedding
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t-Distributed Stochastic Neighbor Embedding

Stochastic Neighbor Embedding

Converting the high-dimensional Euclidean distances into conditional
probabilities that represent similarities

Similarity of datapoints in High Dimension
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i
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Similarity of datapoints in Low Dimension

qj |i =
exp(�||yi � yj ||2)P
k 6=i

exp(�||yi � yk ||2)

Cost function

C =
X

i

KL(Pi ||Qi ) =
X

i

X

j

pj |i log
pj |i
qj |i

Minimize the cost function using gradient descent
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Similarity in high dimension Similarity in low dimension



Stochastic Neighbor Embedding

Idea: Optimize yi via gradient descent on C 

t-Distributed Stochastic Neighbor Embedding

Stochastic Neighbor Embedding

Converting the high-dimensional Euclidean distances into conditional
probabilities that represent similarities

Similarity of datapoints in High Dimension
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 Pi = [pj|i]j≠i

 Qi = [qj|i]j≠i

Vector with entries 
  for all  pj|i j ≠ i

≠ i



Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding

Stochastic Neighbor Embedding

Gradient has a surprisingly simple form

@C

@yi
=

X

j 6=i

(pj |i � qj |i + pi |j � qi |j)(yi � yj)

The gradient update with momentum term is given by

Y
(t) = Y

(t�1) + ⌘
@C

@yi
+ �(t)(Y (t�1) � Y

(t�2))

Laurens van der Maaten and Geo↵rey Hinton, JMLR 2008 (MCLab)t-SNE October 30, 2014 12 / 33

  is a matrix containing the low-dimension representation of all 
the points at iteration   
Y(t)

t



Stochastic Neighbor Embedding
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Problem: pj|i is not equal to pi|j



Symmetric SNE

t-Distributed Stochastic Neighbor Embedding

Symmetric SNE

Minimize the sum of the KL divergences between the conditional
probabilities

C =
X

i

KL(Pi ||Qi ) =
X

i

X

j

pj |i log
pj |i
qj |i

Minimize a single KL divergence between a joint probability
distribution

C = KL(P ||Q) =
X

i

X

j 6=i

pij log
pij

qij

The obvious way to redefine the pairwise similarities is

pij =
exp(�||xi � xj ||2/2�2)P
k 6=l

exp(�||xl � xk ||2/2�2)

qij =
exp(�||yi � yj ||2)P
k 6=l

exp(�||yl � yk ||2)
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If the   point is an outlier all  ’s are small. Which means that the cost function   is 
insensitive to the positioning of the   point’s representation in the lower dimensional space

ith pij C
ith

Old cost function
 ∑i ∑j≠i pj|i log

qj|i

pj|i
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 pij =
pj|i + pi|j

2N

Solution for weakly determined outlier points.

 

pi = ∑j≠i pij

=
∑j≠i pj|i + ∑j≠i pi|j

2N

=
1 + ∑j≠i pi|j

2N

≥ 1
2N

The total probability of the 
  point is at least  ith 1

2N



Choosing the bandwidth

Bad σ: Neighborhood is not local in manifold

Introduction

Swiss Roll

PCA is mainly concerned dimensionality, with preserving when large
pairwise distances in the map
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t-Distributed Stochastic Neighbor Embedding

Symmetric SNE

Such that pij = pji , qij = qji , the main advantage is simplifing the gradient

@C

@yi
= 2

X

j

(pij � qij)(yi � yj)

However, in practice we symmetrize (or average) the conditionals

pij =
pj |i + pi |j

2N

Set the bandwidth �i such that the conditional has a fixed perplexity
(e↵ective number of neighbors) Perp(Pi ) = 2H(Pi ), typical value is about 5
to 50
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Stochastic Neighbor Embedding
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Solution: Define σi per point.
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Good σi: Neighborhood contains 5-50 points  
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Set σi  to ensure constant perplexity 



t-SNE: SNE with a t-Distribution

t-Distributed Stochastic Neighbor Embedding

t-Distribution

Use heavier tail distribution than Gaussian in low-dim space, we choose

qij / (1 + ||yi � yj ||2)�1

Then the gradient could be
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@yi
= 4
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j 6=i

(pij � qij)(1 + ||yi � yj ||2)�1(yi � yj)
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t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding

Similarity of datapoints in High Dimension

pij =
exp(�||xi � xj ||2/2�2)P
k 6=l

exp(�||xl � xk ||2/2�2)

Similarity of datapoints in Low Dimension

qij =
(1 + ||yi � yj ||2)�1

P
k 6=l

(1 + ||yk � yl ||2)�1
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Similarity in High Dimension

Similarity in Low Dimension

Gradient
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t-SNE on MNIST Digits
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t-SNE on MNIST Digits



t-SNE on Olivetti Faces



t-SNE on Olivetti Faces



t-SNE on Olivetti Faces



Manifold Learning


