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Recall: Projections

Projection of a point x onto a direction w is
computed as:

projw (x) = w
w⊤x

‖w‖2

Directions in an RKHS expressed as linear combination of points:

w =
∑N

i=1 αiφ (xi )

The norm of the projection onto w thus can be expressed as

‖projw (x)‖ = w⊤x
‖w‖ =

∑N
i=1 αiκ (xi , x)

√
∑N

i ,j=1 αiαjκ (xi , xj )
=

∑N
i=1 βiκ (xi , x)

Thus, the size of the projection onto w can be expressed as a linear
combination of the kernel valuations with x
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Recall: Fisher/Linear Discriminant Analysis (LDA)

In LDA, we chose a projection direction w to
maximize the cost function

J(w) =
‖µ+w − µ−w‖

2

(σ+w )2 + (σ−w )2
=

wTSBw

wT (S+
W

+ S−
W
)w

where µ+ & µ− are the averages of the sets,
σ+ & σ− are their standard deviations, SB is
the between scatter matrix & S+

W
and S−

W
are

the within scatter matrices

The optimal solution w∗ is given by the first
eigenvector of the matrix

(S+
W

+ S−
W
)−1SB
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Recall: Kernel LDA

When the projection direction is in feature space, wα =
∑N

i=1 αiφ (xi )

From this, the LDA objective can be expressed as

max
α

J(α) =
α

⊤Mα

α⊤Nα

where

M = (K+ −K−)1N1
⊤
N(K+ −K−)

N = K+

(

IN+ − 1
N+1N+1⊤N+

)

K⊤
+ +K−

(

IN− − 1
N−1N−1⊤N−

)

K⊤
−

Solutions α∗ to the above generalized eigenvalue problem (as discussed
later) allow us to project data onto this discriminant direction as

‖projw (x)‖ = ∑N
i=1 α

∗
i κ (xi , x)
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General Subspace Learning & Projections

Objective: find a subspace that captures an important aspect of the
training data. . . we find K axes that span this subspace

General Problem: we will solve problems

max
g(w)=1

f (w)

for projection direction w. . . iteratively solving these problems will yield
a subspace defined by {wk}Kk=1

General Approach: find a center µ and a set of K orthonormal
directions {wk}Kk=1 used to project data into the subspace:

x̃←
(

wk
⊤(x− µ)

)K

k=1

This is a K -dimensional representation of the data regardless of the original
space’s dimensionality—the coordinates in the space spanned by {wk}Kk=1

This projection will be centered at 0 (in feature space)
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Subspace Learning

We want to find subspace that captures important aspects of our data
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Overview

LDA found 1 direction for discriminating between 2 classes

In this lecture, we will see 3 subspace projection objectives / techniques:

Find directions that maximize variance in X (PCA)
Find directions that maximize covariance between X & Y (MCA)
Find directions that maximize correlation X & Y (CCA)

These techniques extract underlying structure from the data allowing us
to. . .

Capture fundamental structure of the data
Represent the data in low dimensions

Each of these techniques can be kernelized to operate in a feature space
yielding kernelized projections onto w:

‖projw (φ (x))‖ = w⊤φ (x) =
∑N

i=1 αiκ (xi , x) (1)

where α is the vector of dual values defining w
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Part I

Principal Component Analysis
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Motivation: Directions of Variance

We want to find a direction w that maximizes the data’s variance

Consider a random variable x ∼ PX (Assume 0-mean). The variance of
its projection onto (normalized) w is

Ex∼X
[

projw (x)2
]

= E
[

w⊤xx⊤w
]

= w⊤ E
[

xx⊤
]

︸ ︷︷ ︸

Cxx

w = w⊤Cxxw

In input space X , the empirical covariance
matrix (of centered data) is

Ĉx,x =
1
N
X⊤X ;

an D ×D matrix

How can we find directions that maximize
w⊤Cxxw? How can we kernelize it?
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Recall: Eigenvalues & Eigenvectors

Given an N × N matrix A, an eigenvector of A is a non-trivial vector v
that satisfies Av = λv; the corresponding value λ is an eigenvalue
Eigen-values/vector pairs satisfy Rayleigh quotients:

λ = v⊤Av
v⊤v

λ1 = max
‖x‖=1

x⊤Ax
x⊤x

Eigen-vectors/values form orthonormal matrix V & diagonal matrix Λ

V =





| | |
v1 v2 . . . vN
| | |



 Λ =








λ1 (A) 0 . . . 0
0 λ2 (A) . . . 0
...

...
. . .

...
0 0 λN (A)








which form the eigen-decomposition of A: A = VΛV⊤

Deflation: for any eigen-value/vector pair (λ,v) of A, the transform

Ã← A− λvv⊤

deflates the matrix; i.e., v is an eigenvector of Ã but has eigenvalue 0
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Principle Components Analysis (PCA)

Principle Components Analysis (PCA) - algorithm for finding the
principle axes of a dataset

PCA finds subspace spanned by {ui} that maximizes the data’s variance:

u1 = argmax
‖w‖=1

w⊤Cxxw Cxx =
1

N
X⊤X

This is achieved by computing Cxx ’s eigenvectors
1 Compute the data’s mean: µ = 1

N

∑N

i=1 xi =
1
N
X⊤1N

2 Compute the data’s covariance: Cxx = 1
N

∑N

i=1 (xi − µ) (xi − µ)
⊤

3 Find its principle axes: [U,Λ] = eig (Cxx )

4 Project data {xi} onto the first K eigenvectors: x̃i ← U⊤

1:K (xi − µ)

P. Laskov and B. Nelson (Tübingen) Lecture 5: Subspace Transforms May 22, 2012 11 / 44



Properties of PCA

Directions found by PCA are orthonormal: ui
⊤uj = δi ,j

When projected onto the space spanned by {ui} , resulting data has
diagonal covariance matrix

The eigenvalues λi are the amount of variance captured by the direction
ui

Variance captured by 1st K directions is
∑K

i=1 λi (Cxx)

Using all directions, we can completely reconstruct the data in an
alternative basis.

Directions with low eigenvalues λi ≪ λ1 correspond to irrelevant aspects
of data. . . often we use top K directions to re-represent the data.
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Applications of PCA

Denoising/Compression: PCA removes the (D − K )-dimensional
subspace with the least information. The PCA transform thus retains
the most salient information about the data.

Correction: Reconstruction of data that has been damaged or has
missing elements

Visualization: The PCA transform produces a small dimensional
projection of data which is convenient for visualizing high dimensional
datasets

Document Analysis: PCA can be used to find common themes in a set
of documents
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Application: Eigenfaces for Face Recognition [1]
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Application: Eigenfaces for Face Recognition [1]
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Part II

Kernel PCA
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Kernelizing PCA

PCA works in the primal space, but not all data structure is
well-captured by these linear projections

How can we kernelize PCA?
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Singular Value Decomposition I

Suppose X is any N × D matrix

The eigen-decomposition of PSD matrices Cxx = X⊤X & K = XX⊤ are

Cxx = UΛDU
⊤ K = VΛNV

⊤

where U & V are orthogonal and ΛD & ΛN have the eigenvalues

Consider any eigen-pair (λ, v) of K. . . then X⊤v is an eigenvector of Cxx :

CxxX
⊤v = X⊤XX⊤v = X⊤Kv = λX⊤v

and
∥
∥X⊤v

∥
∥ =
√
λ. Thus there is an eigenvector of Cxx such that

u = 1√
λ
X⊤v

In fact, we have the following correspondences:

u = λ−1/2X⊤v v = λ−1/2Xv
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Singular Value Decomposition II

Further, let t = rank (X) ≤ min [D,N]. It can be shown that

rank (Cxx) = rank (K) = t

The singular value decomposition (SVD) of non-square X is

X = VΣU⊤

where U is D × D & orthogonal, V is N × N & orthogonal, and Σ is
N × D with diagonal given by values σi =

√
λi

The SVD is an analog of eigen-decomposition for non-square matrices.
X is non-singular iff all its singular values are non-zero
It yields a spectral decomposition:

X =
∑

i

σiviu
⊤

i

Matrix-vector multiply Xw can be viewed as first projecting w into
eigen-space {ui} of X, deforming according to its singular values σi and
reprojecting into N-space using {vi}
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Covariance & Kernel Matrix Duality

The SVD decomposition of X showed a duality in eigenvectors of Cxx

and K that allows us to kernelize it

If uj is the j th eigenvector of Cxx , then

uj = λ
−1/2
j X⊤vj = λ

−1/2
j

∑N
i=1Xi ,•vj ,i

i.e., a linear combination of the data points

Replacing Xi ,• with φ (xi ), the eigenvector uj in feature space is

uj = λ
−1/2
j

∑N
i=1 vj ,iφ (xi ) =

∑N
i=1 αj ,iφ (xi )

αj = λ
−1/2
j vj

with αj acting as a dual vector defined by eigen-vector vj of the kernel

matrix K

P. Laskov and B. Nelson (Tübingen) Lecture 5: Subspace Transforms May 22, 2012 19 / 44



Projections into Feature Space

Suppose uj =
∑N

i=1 αj ,iφ (xi ) is a normalized direction in the feature
space

For any data point x, the projection of φ (x) onto uj is

‖projuj (φ (x)) ‖ = uj
⊤φ (x) =

∑N
i=1 αj ,iκ (xi , x)

which represents the value of φ (x) in terms of the j th axis

Thus, if we have a set of K orthonormal basis vectors {uj}Kj=1, the
projection of φ (x) onto each would produce a new K -vector—

x̃ =








‖proju1 (φ (x)) ‖
‖proju2 (φ (x)) ‖

...
‖projuK (φ (x)) ‖








the representation of φ (x) in that basis

Thus, we can perform the PCA transform in feature space
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Kernel PCA

Performing PCA directly in feature space is not feasible since the
covariance matrix is D × D

However, duality between Cxx & K allows us to perform PCA indirectly

Projecting data onto 1st K directions yields a K -dimensional
representation

The algorithm is thus

1 Center kernel matrix: K̂ = K− 1
N
11⊤K− 1

N
K11⊤ + 1⊤K1

N2 11⊤

2 Find its eigenvectors: [V,Λ] = eig
(

K̂
)

3 Find dual vectors: αj = λ
−1/2
j vj

4 Project data onto subspace: x̃←
(
∑N

i=1 αj,iκ (xi , x)
)K

j=1
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Kernel PCA - Application
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Kernel PCA - Application

Usual PCA fails to capture the data’s two ring structure—the rings are not
separated in the first two components.
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Kernel PCA - Application

Kernel PCA (RBF) does capture the data’s two ring structure & the
resulting projections separate the two rings
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Part III

Maximum Covariance Analysis
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Motivation: Directions that Capture Covariance

Suppose we have a pair of related variables: input variable x ∼ PX and
output variable y ∼ PY—paired data

We’d like to find directions of high covariance in spaces wx ∈ X and
wy ∈ Y such that changes in direction wx yield changes in wy

Assuming mean-centered variables, we again have that the covariance of
its projection onto (normalized) wx & wy is

Ex∼X ,y∼Y
[

wx
⊤xwy

⊤y
]

= w⊤
x E

[

xy⊤
]

︸ ︷︷ ︸

Cxy

wy = w⊤
x Cxywy

The empirical covariance matrix (of centered data) is

Ĉx,y =
1
N
X⊤Y ;

an DX × DY matrix

How can we find directions that maximize w⊤
x Cxywy for non-square,

non-symmetric matrix? How can we kernelize it in space X ?
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Maximum Covariance Analysis (MCA)

PCA captures structure in data X, but what data is paired (x, y)? We
would like to find correlated directions in X and Y

Suppose we project x onto direction wx and y onto direction wy . . . the
covariance of these random variables is

E
[

wx
⊤xwy

⊤y
]

= wx
⊤E

[

xy⊤
]

wy = wx
⊤Cxywy

The problem we want to solve can again be cast as

max
‖wx‖=1,‖wy‖=1

1
N
wx

⊤X⊤Ywy

that is, finding a pair of directions to maximize the covariance

The solution is simply the first singular vectors wx = u1 & wy = v1 of
the SVD Cxy = UΣV⊤. Naturally, singular vectors (u2, v2), (u3, v3), . . .
capture additional covariance
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Kernelized MCA

As with PCA, MCA can also be kernelized by projecting x→ φ (x)

Consider that eigen-analysis of CxyC
⊤
xy gives us U & of C⊤

xyCxy gives us
V of the SVD of Cxy . . . in fact

C⊤
xyCxy = 1

N2Y
⊤KxxY

which has dimension Dy × Dy & eigen-analysis of this matrix yields
(kernelized) directions vk

Then, in decomposing CxyC
⊤
xy , we have again a relationship between uk

& vk : uk = 1
σk
Cxyvk , allowing us to project onto uk when X is

kernelized:

‖projuk (φ (x)) ‖ = ∑N
i=1 αk,iκ (xi , x) αk = 1

Nσk
Yvk
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Part IV

Generalized Eigenvalues & CCA
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Motivation: Directions of Correlation

Suppose that instead of input & output variables, we have 2 variables
that are different representations of the same data x:

xa ← ψa(x) xb ← ψb(x)

We’d like to find directions of high correlation in these spaces wa ∈ Xa

and wb ∈ Xb such that changes in direction wa yield changes in wb

Assuming mean-centered variables, we have that the correlation of its
projection onto (normalized) wa & wb is

ρab =
Exa∼X ,xb∼Xb

[
wa

⊤xawb
⊤xb

]

√

E [wa
⊤xawa

⊤xa]E [wb
⊤xbwb

⊤xb]
=

w⊤
a Cabwb

√

w⊤
a Caawa · w⊤

b Cbbwb

where Cab, Caa & Cbb are the covariance matrices between xa & xb
(with usual empirical versions)

How can we find directions that maximize ρab? How can we kernelize it
in spaces Xa & Xb?
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Applications of CCA

Climate Prediction: Researchers have used CCA techniques to find
correlations in sea level pressure & sea surface temperature:

CCA is used with bilingual corpora (same text in two languages) aiding
in translation tasks.
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Canonical Correlation Analysis (CCA) I

Our objective is to find directions of maximal correlation:

max
wa,wb

ρab (wa,wb) =
w⊤

a Cabwb
√

w⊤
a Caawa ·w⊤

b Cbbwb

(2)

a problem we call canonical correlation analysis (CCA)

As with previous problems this can be expressed as

max
wa,wb

w⊤
a Cabwb (3)

such that w⊤
a Caawa = 1 and w⊤

b Cbbwb = 1
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Canonical Correlation Analysis (CCA) II

The Lagrangian function for this optimization is

L(wa,wb, λa, λb) = w⊤
a Cabwb−

λa

2
(w⊤

a Caawa−1)− λb
2
(w⊤

b Cbbwb−1)

Differentiating it w.r.t. wa & wb & setting equal to 0 gives

Cabwb − λaCaawa = 0 Cbawa − λbCbbwb = 0

λaw
⊤
a Caawa = λbw

⊤
b Cbbwb

which implies that λa = λb = λ

The constraints on wa & wb can be written in matrix form as
[

0 Cab

Cba 0

] [
wa

wb

]

= λ

[
Caa 0
0 Cbb

] [
wa

wb

]

(4)

Aw = λBw ;

a generalized eigenvalue problem for the primal problem
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Generalized Eigenvectors I

Suppose A & B are symmetric & B ≻ 0, then the generalized
eigenvalue problem (GEP) is to find (λ,w) s.t.

Aw = λBw (5)

which are equivalent to

max
w

w⊤Aw
w⊤Bw

max
w⊤Bw=1

w⊤Aw

Note, eigenvalues are special case with B = I

Since B ≻ 0, any GEP can be converted to an Eigenvalue problem by
inverting B:

B−1Aw = λw
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Generalized Eigenvectors II

However, to ensure symmetry, we can instead use B ≻ 0 to decompose

B = B−1/2B−1/2 where B−1/2 =
√
B

−1
is a symmetric real

matrix—taking w = B−1/2v for some v we obtain (symmetric)

B−1/2AB−1/2v = λv

an eigenvalue problem for C = B−1/2AB−1/2 providing solutions to
Eq. (5)

wi = B−1/2vi
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Generalized Eigenvectors III

Proposition 1

Solutions to GEP of Eq. (5) have following properties: if eigenvalues are

distinct, then

wi
⊤Bwj = δi ,j

wi
⊤Awj = λiδi ,j

that is, the vectors wi are orthonormal after applying transformation

B1/2—that is, they are conjugate with respect to B.

P. Laskov and B. Nelson (Tübingen) Lecture 5: Subspace Transforms May 22, 2012 34 / 44



Generalized Eigenvectors IV

Theorem 2

If (λi ,wi ) are eigen-solutions to GEP of Eq. (5), then A can be

decomposed as

A =
∑N

i=1 λiBwi(Bwi)
⊤

This yields the generalized deflation of A:

Ã← A− λiBwiw
⊤
i B

⊤

while B is unchanged.
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Solving CCA as a GEP

As shown in Eq. (4), CCA is a GEP Aw = λBw where

A =

[
0 Cab

Cba 0

]

B =

[
Caa 0
0 Cbb

]

w =

[
wa

wb

]

Since this is a solution to Eq. (2), the eigenvalues will be correlations ⇒
λ ∈ [−1,+1]. Further, the eigensolutions will pair: for each λi > 0 with

eigenvector

[
wa

wb

]

, there is a λj = −λi with eigenvector

[
wa

−wb

]

. Hence,

we only need to consider the positive spectrum.

Larger eigenvalues correspond to the strongest correlations.

Finally, the solutions are conjugate w.r.t. matrix B which reveals that
for i 6= j

w⊤
a,jCaawa,i = 0 w⊤

b,jCbbwb,i = 0

However, the directions will not be orthogonal in the original input
space.
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Dual Form of CCA I

Let’s take the directions to be linear combinations of data:

wa = X⊤
a αa wb = X⊤

b αb

Substituting these directions into Eq. (3) gives

max
αa,αb

α
⊤
a KaKbαb

such that α
⊤
a K

2
aαa = 1 and α

⊤
b K

2
bαb = 1

where Ka = XaX
⊤
a and Kb = XbX

⊤
b .
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Dual Form of CCA II

Differentiating the Lagrangian again yields equations

KaKbαb − λK2
aαa = 0 KbKaαa − λK2

bαb = 0

However, these equations reveal a problem. When the dimension of the
feature space is large compared number of data points (Da ≫ N),
solutions will overfit the data.

For the Gaussian kernel, data will always be independent in feature
space & Ka will be invertible. Hence, we have

αa =
1

λ
K−1

a Kbαb

K2
bαb − λ2K2

bαb = 0

but the latter holds for all αb with perfect correlation λ = 1—Solution

is Overfit!!!

P. Laskov and B. Nelson (Tübingen) Lecture 5: Subspace Transforms May 22, 2012 38 / 44



Regularized CCA I

To avoid overfitting, we can regularize the solutions wa & wb by
controlling their norms. The Regularized CCA Problem is

max
wa,wb

ρ̃ab (wa,wb) =

w⊤
a Cabwb

√
(

(1− τa)w⊤
a Caawa + τa ‖wa‖2

)

·
(

(1− τb)w⊤
b
Cbbwb + τb ‖wb‖2

)

where τa ∈ [0, 1] & τb ∈ [0, 1] serve as regularization parameters

Again this yields an optimization program for the dual variables

max
wa,wb

α
⊤
a KaKbαb

such that (1− τa)α⊤
a K

2
aαa + τaα

⊤
a Kaαa = 1

and (1− τb)α⊤
b K

2
bαb + τbα

⊤
b Kbαb = 1
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Regularized CCA II

Using the Lagrangian technique, we again arrive at a GEP:

[
0 KaKb

KbKa 0

] [
αa

αb

]

= λ

[
(1− τa)K2

a + τaKa 0
0 (1− τb)K2

b + τbKb

] [
αa

αb

]

Solutions (α∗
a,α

∗
b) can now be used as usual projection directions of

Eq. (1)

Solving CCA using the above GEP is impractical! The matrices required
are 2N × 2N. Instead, the usual approach is to make an incomplete
Cholesky decomposition of the kernel matrices:

Ka = R⊤
a Ra Kb = R⊤

b Rb

The resulting GEP can be solved more efficiently (see book for
algorithms details)
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Regularized CCA III

Finally CCA can be extended to multiple representations of the data,
which result in the following GEP:








C11 C12 . . . C1k

C21 C22 . . . C2k
...

...
. . .

...
Ck1 Ck2 . . . Ckk















w1

w2
...
wk







= ρ








C11 0 . . . 0
0 C22 . . . 0
...

...
. . .

...
0 0 . . . Ckk















w1

w2
...
wk
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LDA as a GEP

You should note, that the Fisher Discriminant Analysis problem can be
expressed as

max
α

J(α) =
α

⊤Mα

α⊤Nα

which is a GEP. In fact, this is how solutions to LDA are obtained.
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Summary

In this lecture, we saw how different objectives for projection directions
yield different subspaces. . . we saw 3 different algorithms:
1 Principal Component Analysis
2 Maximum Covariance Analysis
3 Canonical Correlation Analysis

We saw that each of these techniques can be solved using eigenvalue,
singular value, and generalized eigenvector decompositions.

We saw that each of these techniques yielded linear projections and thus
could be kernelized.

In the next lecture, we will explore the general technique of minimizing
loss & how allows us to develop a wide range of kernel algorithms. In
particular, we will see the Support Vector Machine for classification
tasks.
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