Lecture 5
 Supspace Tranformations Eigendecompositions, kernel PCA and CCA

Pavel Laskov ${ }^{1} \quad$ Blaine Nelson ${ }^{1}$
${ }^{1}$ Cognitive Systems Group
Wilhelm Schickard Institute for Computer Science Universität Tübingen, Germany

Advanced Topics in Machine Learning, 2012

Recall: Projections

- Projection of a point \mathbf{x} onto a direction \mathbf{w} is computed as:

$$
\operatorname{proj}_{\mathbf{w}}(\mathbf{x})=\mathbf{w} \frac{\mathbf{w}^{\top} \mathbf{x}}{\|\mathbf{w}\|^{2}}
$$

- Directions in an RKHS expressed as linear combination of points:

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- The norm of the projection onto \mathbf{w} thus can be expressed as

$$
\left\|\operatorname{proj}_{\mathbf{w}}(\mathbf{x})\right\|=\frac{w^{\top} x}{\|\mathbf{w}\|}=\frac{\sum_{i=1}^{N} \alpha_{i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)}{\sqrt{\sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}}=\sum_{i=1}^{N} \beta_{i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Thus, the size of the projection onto \mathbf{w} can be expressed as a linear combination of the kernel valuations with \mathbf{x}

Recall: Fisher/Linear Discriminant Analysis (LDA)

- In LDA, we chose a projection direction \mathbf{w} to maximize the cost function

$$
J(\mathbf{w})=\frac{\left\|\mu_{\mathbf{w}}^{+}-\mu_{\mathbf{w}}^{-}\right\|^{2}}{\left(\sigma_{\mathbf{w}}^{+}\right)^{2}+\left(\sigma_{\mathbf{w}}^{-}\right)^{2}}=\frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T}\left(S_{W}^{+}+S_{W}^{-}\right) \mathbf{w}}
$$

where $\mu^{+} \& \mu^{-}$are the averages of the sets, $\sigma^{+} \& \sigma^{-}$are their standard deviations, \mathbf{S}_{B} is the between scatter matrix $\& \mathbf{S}_{W}^{+}$and \mathbf{S}_{W}^{-}are the within scatter matrices

- The optimal solution \mathbf{w}^{*} is given by the first
 eigenvector of the matrix

$$
\left(\mathbf{S}_{W}^{+}+\mathbf{S}_{W}^{-}\right)^{-1} \mathbf{S}_{B}
$$

Recall: Kernel LDA

- When the projection direction is in feature space, $\mathbf{w}_{\boldsymbol{\alpha}}=\sum_{i=1}^{N} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)$
- From this, the LDA objective can be expressed as

$$
\max _{\alpha} J(\boldsymbol{\alpha})=\frac{\boldsymbol{\alpha}^{\top} \mathbf{M} \boldsymbol{\alpha}}{\boldsymbol{\alpha}^{\top} \mathbf{N} \boldsymbol{\alpha}}
$$

where

$$
\begin{aligned}
\mathbf{M} & =\left(\mathbf{K}_{+}-\mathbf{K}_{-}\right) \mathbf{1}_{N} \mathbf{1}_{N}^{\top}\left(\mathbf{K}_{+}-\mathbf{K}_{-}\right) \\
\mathbf{N} & =\mathbf{K}_{+}\left(\mathbf{I}_{N^{+}}-\frac{1}{N^{+}} \mathbf{1}_{N^{+}} \mathbf{1}_{N^{+}}^{\top}\right) \mathbf{K}_{+}^{\top}+\mathbf{K}_{-}\left(\mathbf{I}_{N^{-}}-\frac{1}{N^{-}} \mathbf{1}_{N^{-}} \mathbf{1}_{N^{-}}^{\top}\right) \mathbf{K}_{-}^{\top}
\end{aligned}
$$

- Solutions $\boldsymbol{\alpha}^{*}$ to the above generalized eigenvalue problem (as discussed later) allow us to project data onto this discriminant direction as

$$
\left\|\operatorname{proj}_{\mathbf{w}}(\mathbf{x})\right\|=\sum_{i=1}^{N} \alpha_{i}^{*} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

General Subspace Learning \& Projections

- Objective: find a subspace that captures an important aspect of the training data... we find K axes that span this subspace
- General Problem: we will solve problems

$$
\max _{g(\mathbf{w})=1} f(\mathbf{w})
$$

for projection direction \mathbf{w}... iteratively solving these problems will yield a subspace defined by $\left\{\mathbf{w}_{k}\right\}_{k=1}^{K}$

- General Approach: find a center $\boldsymbol{\mu}$ and a set of K orthonormal directions $\left\{\mathbf{w}_{k}\right\}_{k=1}^{K}$ used to project data into the subspace:

$$
\tilde{\mathbf{x}} \leftarrow\left(\mathbf{w}_{k}^{\top}(\mathbf{x}-\boldsymbol{\mu})\right)_{k=1}^{K}
$$

- This is a K-dimensional representation of the data regardless of the original space's dimensionality-the coordinates in the space spanned by $\left\{\mathbf{w}_{k}\right\}_{k=1}^{K}$
- This projection will be centered at $\mathbf{0}$ (in feature space)

Subspace Learning

We want to find subspace that captures important aspects of our data

Overview

- LDA found 1 direction for discriminating between 2 classes
- In this lecture, we will see 3 subspace projection objectives / techniques:
- Find directions that maximize variance in X (PCA)
- Find directions that maximize covariance between $X \& Y$ (MCA)
- Find directions that maximize correlation $X \& Y$ (CCA)
- These techniques extract underlying structure from the data allowing us to...
- Capture fundamental structure of the data
- Represent the data in low dimensions
- Each of these techniques can be kernelized to operate in a feature space yielding kernelized projections onto w:

$$
\begin{equation*}
\left\|\operatorname{proj}_{\mathbf{w}}(\phi(\mathbf{x}))\right\|=\mathbf{w}^{\top} \phi(\mathbf{x})=\sum_{i=1}^{N} \alpha_{i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right) \tag{1}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ is the vector of dual values defining w

Principal Component Analysis

Motivation: Directions of Variance

- We want to find a direction \mathbf{w} that maximizes the data's variance
- Consider a random variable $\mathbf{x} \sim P_{\mathcal{X}}$ (Assume $\mathbf{0}$-mean). The variance of its projection onto (normalized) \mathbf{w} is

$$
\mathrm{E}_{\mathbf{x} \sim \mathcal{X}}\left[\operatorname{proj}_{\mathbf{w}}(\mathbf{x})^{2}\right]=\mathrm{E}\left[\mathbf{w}^{\top} \mathbf{x} \mathbf{x}^{\top} \mathbf{w}\right]=\mathbf{w}^{\top} \underbrace{\mathrm{E}\left[\mathbf{x x}^{\top}\right]}_{\mathbf{C}_{x x}} \mathbf{w}=\mathbf{w}^{\top} \mathbf{C}_{x x} \mathbf{w}
$$

- In input space \mathcal{X}, the empirical covariance matrix (of centered data) is

$$
\hat{\mathbf{C}}_{\mathrm{x}, \mathbf{x}}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{X} ;
$$

an $D \times D$ matrix

- How can we find directions that maximize $\mathbf{w}^{\top} \mathbf{C}_{x x} \mathbf{w}$? How can we kernelize it?

Recall: Eigenvalues \& Eigenvectors

- Given an $N \times N$ matrix \mathbf{A}, an eigenvector of \mathbf{A} is a non-trivial vector \mathbf{v} that satisfies $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$; the corresponding value λ is an eigenvalue
- Eigen-values/vector pairs satisfy Rayleigh quotients:

$$
\lambda=\frac{\mathbf{v}^{\top} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}} \quad \lambda_{1}=\max _{\|\mathbf{x}\|=1} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

- Eigen-vectors/values form orthonormal matrix \mathbf{V} \& diagonal matrix $\boldsymbol{\Lambda}$

$$
\mathbf{V}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{N} \\
\mid & \mid & & \mid
\end{array}\right] \quad \mathbf{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1}(\mathbf{A}) & 0 & \ldots & 0 \\
0 & \lambda_{2}(\mathbf{A}) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & \lambda_{N}(\mathbf{A})
\end{array}\right]
$$

which form the eigen-decomposition of $\mathbf{A}: \quad \mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\top}$

- Deflation: for any eigen-value/vector pair (λ, \mathbf{v}) of \mathbf{A}, the transform

$$
\tilde{\mathbf{A}} \leftarrow \mathbf{A}-\lambda \mathbf{v} \mathbf{v}^{\top}
$$

deflates the matrix; i.e., \mathbf{v} is an eigenvector of $\tilde{\mathbf{A}}$ but has eigenvalue 0

Principle Components Analysis (PCA)

- Principle Components Analysis (PCA) - algorithm for finding the principle axes of a dataset
- PCA finds subspace spanned by $\left\{\mathbf{u}_{i}\right\}$ that maximizes the data's variance:

$$
\mathbf{u}_{1}=\underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \mathbf{w}^{\top} \mathbf{C}_{x x} \mathbf{w} \quad \mathbf{C}_{x x}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}
$$

- This is achieved by computing $\mathbf{C}_{x x}$'s eigenvectors
(1) Compute the data's mean: $\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{1}_{N}$
(2) Compute the data's covariance: $\quad \mathbf{C}_{x x}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\top}$
(3) Find its principle axes: $[\mathbf{U}, \boldsymbol{\Lambda}]=e i g\left(\mathbf{C}_{x x}\right)$
(9) Project data $\left\{\mathbf{x}_{i}\right\}$ onto the first K eigenvectors: $\quad \tilde{\mathbf{x}}_{i} \leftarrow \mathbf{U}_{1: K}^{\top}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)$

Properties of PCA

- Directions found by PCA are orthonormal: $\mathbf{u}_{i}{ }^{\top} \mathbf{u}_{j}=\delta_{i, j}$
- When projected onto the space spanned by $\left\{\mathbf{u}_{i}\right\}$, resulting data has diagonal covariance matrix
- The eigenvalues λ_{i} are the amount of variance captured by the direction \mathbf{u}_{i}
- Variance captured by $1^{\text {st }} K$ directions is $\sum_{i=1}^{K} \lambda_{i}\left(\mathbf{C}_{x x}\right)$
- Using all directions, we can completely reconstruct the data in an alternative basis.
- Directions with low eigenvalues $\lambda_{i} \ll \lambda_{1}$ correspond to irrelevant aspects of data.... often we use top K directions to re-represent the data.

Applications of PCA

- Denoising/Compression: PCA removes the ($D-K$)-dimensional subspace with the least information. The PCA transform thus retains the most salient information about the data.
- Correction: Reconstruction of data that has been damaged or has missing elements
- Visualization: The PCA transform produces a small dimensional projection of data which is convenient for visualizing high dimensional datasets
- Document Analysis: PCA can be used to find common themes in a set of documents

Application: Eigenfaces for Face Recognition [1]

Application: Eigenfaces for Face Recognition [1]

Part II

Kernel PCA

Kernelizing PCA

- PCA works in the primal space, but not all data structure is well-captured by these linear projections
- How can we kernelize PCA?

Singular Value Decomposition I

- Suppose \mathbf{X} is any $N \times D$ matrix
- The eigen-decomposition of PSD matrices $\mathbf{C}_{x x}=\mathbf{X}^{\top} \mathbf{X} \& \mathbf{K}=\mathbf{X} \mathbf{X}^{\top}$ are

$$
\mathbf{C}_{x x}=\mathbf{U} \boldsymbol{\Lambda}_{D} \mathbf{U}^{\top} \quad \mathbf{K}=\mathbf{V} \boldsymbol{\Lambda}_{N} \mathbf{V}^{\top}
$$

where $\mathbf{U} \& \mathbf{V}$ are orthogonal and $\boldsymbol{\Lambda}_{D} \& \boldsymbol{\Lambda}_{N}$ have the eigenvalues

- Consider any eigen-pair (λ, \mathbf{v}) of $\mathbf{K} \ldots$ then $\mathbf{X}^{\top} \mathbf{v}$ is an eigenvector of $\mathbf{C}_{x x}$:

$$
\mathbf{C}_{x x} \mathbf{X}^{\top} \mathbf{v}=\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{v}=\mathbf{X}^{\top} \mathbf{K} \mathbf{v}=\lambda \mathbf{X}^{\top} \mathbf{v}
$$

and $\left\|\mathbf{X}^{\top} \mathbf{v}\right\|=\sqrt{\lambda}$. Thus there is an eigenvector of $\mathbf{C}_{x x}$ such that $\mathbf{u}=\frac{1}{\sqrt{\lambda}} \mathbf{X}^{\top} \mathbf{v}$

- In fact, we have the following correspondences:

$$
\mathbf{u}=\lambda^{-1 / 2} \mathbf{X}^{\top} \mathbf{v} \quad \mathbf{v}=\lambda^{-1 / 2} \mathbf{X} \mathbf{v}
$$

Singular Value Decomposition II

- Further, let $t=\operatorname{rank}(\mathbf{X}) \leq \min [D, N]$. It can be shown that

$$
\operatorname{rank}\left(\mathbf{C}_{x x}\right)=\operatorname{rank}(\mathbf{K})=t
$$

- The singular value decomposition (SVD) of non-square \mathbf{X} is

$$
\mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}
$$

where \mathbf{U} is $D \times D$ \& orthogonal, \mathbf{V} is $N \times N \&$ orthogonal, and $\boldsymbol{\Sigma}$ is $N \times D$ with diagonal given by values $\sigma_{i}=\sqrt{\lambda_{i}}$

- The SVD is an analog of eigen-decomposition for non-square matrices.
- \mathbf{X} is non-singular iff all its singular values are non-zero
- It yields a spectral decomposition:

$$
\mathbf{X}=\sum_{i} \sigma_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{\top}
$$

- Matrix-vector multiply $\mathbf{X w}$ can be viewed as first projecting winto eigen-space $\left\{\mathbf{u}_{i}\right\}$ of \mathbf{X}, deforming according to its singular values σ_{i} and reprojecting into N-space using $\left\{\mathbf{v}_{i}\right\}$

Covariance \& Kernel Matrix Duality

- The SVD decomposition of \mathbf{X} showed a duality in eigenvectors of $\mathbf{C}_{x x}$ and \mathbf{K} that allows us to kernelize it
- If \mathbf{u}_{j} is the $j^{\text {th }}$ eigenvector of $\mathbf{C}_{x x}$, then

$$
\mathbf{u}_{j}=\lambda_{j}^{-1 / 2} \mathbf{X}^{\top} \mathbf{v}_{j}=\lambda_{j}^{-1 / 2} \sum_{i=1}^{N} \mathbf{X}_{i, \bullet} v_{j, i}
$$

i.e., a linear combination of the data points

- Replacing $\mathbf{X}_{i, \bullet}$ with $\phi\left(\mathbf{x}_{i}\right)$, the eigenvector \mathbf{u}_{j} in feature space is

$$
\begin{aligned}
\mathbf{u}_{j} & =\lambda_{j}^{-1 / 2} \sum_{i=1}^{N} v_{j, i} \phi\left(\mathbf{x}_{i}\right)=\sum_{i=1}^{N} \alpha_{j, i} \phi\left(\mathbf{x}_{i}\right) \\
\boldsymbol{\alpha}_{j} & =\lambda_{j}^{-1 / 2} \mathbf{v}_{j}
\end{aligned}
$$

with $\boldsymbol{\alpha}_{j}$ acting as a dual vector defined by eigen-vector \mathbf{v}_{j} of the kernel matrix \mathbf{K}

Projections into Feature Space

- Suppose $\mathbf{u}_{j}=\sum_{i=1}^{N} \alpha_{j, i} \phi\left(\mathbf{x}_{i}\right)$ is a normalized direction in the feature space
- For any data point \mathbf{x}, the projection of $\phi(\mathbf{x})$ onto \mathbf{u}_{j} is

$$
\left\|\operatorname{proj}_{\mathbf{u}_{j}}(\phi(\mathbf{x}))\right\|=\mathbf{u}_{j}^{\top} \phi(\mathbf{x})=\sum_{i=1}^{N} \alpha_{j, i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

which represents the value of $\phi(\mathbf{x})$ in terms of the $j^{\text {th }}$ axis

- Thus, if we have a set of K orthonormal basis vectors $\left\{\mathbf{u}_{j}\right\}_{j=1}^{K}$, the projection of $\phi(\mathbf{x})$ onto each would produce a new K-vector-

$$
\tilde{\mathbf{x}}=\left[\begin{array}{c}
\left\|\operatorname{proj}_{\mathbf{u}_{1}}(\phi(\mathbf{x}))\right\| \\
\left\|\operatorname{proj}_{\mathbf{u}_{2}}(\phi(\mathbf{x}))\right\| \\
\vdots \\
\left\|\operatorname{proj}_{\mathbf{u}_{K}}(\phi(\mathbf{x}))\right\|
\end{array}\right]
$$

the representation of $\phi(\mathbf{x})$ in that basis

- Thus, we can perform the PCA transform in feature space

Kernel PCA

- Performing PCA directly in feature space is not feasible since the covariance matrix is $D \times D$
- However, duality between $\mathbf{C}_{x x} \& \mathbf{K}$ allows us to perform PCA indirectly
- Projecting data onto $1^{\text {st }} K$ directions yields a K-dimensional representation
- The algorithm is thus
(1) Center kernel matrix: $\hat{\mathbf{K}}=\mathbf{K}-\frac{1}{N} \mathbf{1 1}^{\top} \mathbf{K}-\frac{1}{N} \mathbf{K} \mathbf{1 1}^{\top}+\frac{\mathbf{1}^{\top} \mathbf{K} \mathbf{1}}{N^{2}} \mathbf{1 1}^{\top}$
(2) Find its eigenvectors: $[\mathbf{V}, \boldsymbol{\Lambda}]=\operatorname{eig}(\hat{\mathbf{K}})$
(3) Find dual vectors: $\boldsymbol{\alpha}_{j}=\lambda_{j}^{-1 / 2} \mathbf{v}_{j}$
(9) Project data onto subspace: $\tilde{\mathbf{x}} \leftarrow\left(\sum_{i=1}^{N} \alpha_{j, i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)_{j=1}^{K}$

Kernel PCA - Application

Kernel PCA - Application

Usual PCA fails to capture the data's two ring structure-the rings are not separated in the first two components.

Kernel PCA - Application

Kernel PCA (RBF) does capture the data's two ring structure \& the resulting projections separate the two rings

Part III

Maximum Covariance Analysis

Motivation: Directions that Capture Covariance

- Suppose we have a pair of related variables: input variable $\mathbf{x} \sim P_{\mathcal{X}}$ and output variable $\mathbf{y} \sim P_{\mathcal{Y}}$ —paired data
- We'd like to find directions of high covariance in spaces $\mathbf{w}_{x} \in \mathcal{X}$ and $\mathbf{w}_{y} \in \mathcal{Y}$ such that changes in direction \mathbf{w}_{x} yield changes in \mathbf{w}_{y}
- Assuming mean-centered variables, we again have that the covariance of its projection onto (normalized) $\mathbf{w}_{x} \& \mathbf{w}_{y}$ is

$$
\mathrm{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y} \sim \mathcal{Y}}\left[\mathbf{w}_{x}^{\top} \mathbf{x} \mathbf{w}_{y}^{\top} \mathbf{y}\right]=\mathbf{w}_{x}^{\top} \underbrace{\mathrm{E}\left[\mathbf{x} \mathbf{y}^{\top}\right]}_{\mathbf{C}_{x y}} \mathbf{w}_{y}=\mathbf{w}_{x}^{\top} \mathbf{C}_{x y} \mathbf{w}_{y}
$$

- The empirical covariance matrix (of centered data) is

$$
\hat{\mathbf{C}}_{\mathbf{x}, \mathbf{y}}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{Y}
$$

an $D_{\mathcal{X}} \times D_{\mathcal{Y}}$ matrix

- How can we find directions that maximize $\mathbf{w}_{x}^{\top} \mathbf{C}_{x y} \mathbf{w}_{y}$ for non-square, non-symmetric matrix? How can we kernelize it in space \mathcal{X} ?

Maximum Covariance Analysis (MCA)

- PCA captures structure in data \mathbf{X}, but what data is paired (\mathbf{x}, y) ? We would like to find correlated directions in X and Y
- Suppose we project \mathbf{x} onto direction \mathbf{w}_{x} and y onto direction $\mathbf{w}_{y} \ldots$ the covariance of these random variables is

$$
\mathrm{E}\left[\mathbf{w}_{x}^{\top} \mathbf{x} \mathbf{w}_{y}^{\top} \mathbf{y}\right]=\mathbf{w}_{x}^{\top} \mathrm{E}\left[\mathbf{x} \mathbf{y}^{\top}\right] \mathbf{w}_{y}=\mathbf{w}_{x}^{\top} \mathbf{C}_{x y} \mathbf{w}_{y}
$$

- The problem we want to solve can again be cast as

$$
\max _{\left\|\mathbf{w}_{x}\right\|=1,\left\|\mathbf{w}_{y}\right\|=1} \frac{1}{N} \mathbf{w}_{x}^{\top} \mathbf{X}^{\top} \mathbf{Y} \mathbf{w}_{y}
$$

that is, finding a pair of directions to maximize the covariance

- The solution is simply the first singular vectors $\mathbf{w}_{x}=\mathbf{u}_{1} \& \mathbf{w}_{y}=\mathbf{v}_{1}$ of the SVD $\mathbf{C}_{x y}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$. Naturally, singular vectors $\left(\mathbf{u}_{2}, \mathbf{v}_{2}\right),\left(\mathbf{u}_{3}, \mathbf{v}_{3}\right), \ldots$ capture additional covariance

Kernelized MCA

- As with PCA, MCA can also be kernelized by projecting $\mathbf{x} \rightarrow \phi(\mathbf{x})$
- Consider that eigen-analysis of $\mathbf{C}_{x y} \mathbf{C}_{x y}^{\top}$ gives us $\mathbf{U} \&$ of $\mathbf{C}_{x y}^{\top} \mathbf{C}_{x y}$ gives us \mathbf{V} of the SVD of $\mathbf{C}_{x y} \ldots$ in fact

$$
\mathbf{C}_{x y}^{\top} \mathbf{C}_{x y}=\frac{1}{N^{2}} \mathbf{Y}^{\top} \mathbf{K}_{x x} \mathbf{Y}
$$

which has dimension $D_{y} \times D_{y}$ \& eigen-analysis of this matrix yields (kernelized) directions \mathbf{v}_{k}

- Then, in decomposing $\mathbf{C}_{x y} \mathbf{C}_{x y}^{\top}$, we have again a relationship between \mathbf{u}_{k} \& \mathbf{v}_{k} : $\quad \mathbf{u}_{k}=\frac{1}{\sigma_{k}} \mathbf{C}_{x y} \mathbf{v}_{k}$, allowing us to project onto \mathbf{u}_{k} when X is kernelized:

$$
\left\|\operatorname{proj}_{\mathbf{u}_{k}}(\phi(\mathbf{x}))\right\|=\sum_{i=1}^{N} \alpha_{k, i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right) \quad \boldsymbol{\alpha}_{k}=\frac{1}{N \sigma_{k}} \mathbf{Y}_{\mathbf{v}_{k}}
$$

Part IV

Generalized Eigenvalues \& CCA

Motivation: Directions of Correlation

- Suppose that instead of input \& output variables, we have 2 variables that are different representations of the same data \mathbf{x} :

$$
\mathbf{x}_{a} \leftarrow \psi_{a}(\mathbf{x}) \quad \mathbf{x}_{b} \leftarrow \psi_{b}(\mathbf{x})
$$

- We'd like to find directions of high correlation in these spaces $\mathbf{w}_{a} \in \mathcal{X}_{a}$ and $\mathbf{w}_{b} \in \mathcal{X}_{b}$ such that changes in direction \mathbf{w}_{a} yield changes in \mathbf{w}_{b}
- Assuming mean-centered variables, we have that the correlation of its projection onto (normalized) $\mathbf{w}_{a} \& \mathbf{w}_{b}$ is
where $\mathbf{C}_{a b}, \mathbf{C}_{a a} \& \mathbf{C}_{b b}$ are the covariance matrices between $\mathbf{x}_{a} \& \mathbf{x}_{b}$ (with usual empirical versions)
- How can we find directions that maximize $\rho_{a b}$? How can we kernelize it in spaces $\mathcal{X}_{a} \& \mathcal{X}_{b}$?

Applications of CCA

- Climate Prediction: Researchers have used CCA techniques to find correlations in sea level pressure \& sea surface temperature:

- CCA is used with bilingual corpora (same text in two languages) aiding in translation tasks.

Canonical Correlation Analysis (CCA) I

- Our objective is to find directions of maximal correlation:

$$
\begin{equation*}
\max _{\mathbf{w}_{a}, \mathbf{w}_{b}} \rho_{a b}\left(\mathbf{w}_{a}, \mathbf{w}_{b}\right)=\frac{\mathbf{w}_{a}^{\top} \mathbf{C}_{a b} \mathbf{w}_{b}}{\sqrt{\mathbf{w}_{a}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a} \cdot \mathbf{w}_{b}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b}}} \tag{2}
\end{equation*}
$$

a problem we call canonical correlation analysis (CCA)

- As with previous problems this can be expressed as

$$
\begin{equation*}
\max _{\mathbf{w}_{a}, \mathbf{w}_{b}} \mathbf{w}_{a}^{\top} \mathbf{C}_{a b} \mathbf{w}_{b} \tag{3}
\end{equation*}
$$

such that $\mathbf{w}_{a}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a}=1$ and $\mathbf{w}_{b}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b}=1$

Canonical Correlation Analysis (CCA) II

- The Lagrangian function for this optimization is
$\mathcal{L}\left(\mathbf{w}_{a}, \mathbf{w}_{b}, \lambda_{a}, \lambda_{b}\right)=\mathbf{w}_{a}^{\top} \mathbf{C}_{a b} \mathbf{w}_{b}-\frac{\lambda_{a}}{2}\left(\mathbf{w}_{a}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a}-1\right)-\frac{\lambda_{b}}{2}\left(\mathbf{w}_{b}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b}-1\right)$
- Differentiating it w.r.t. $\mathbf{w}_{a} \& \mathbf{w}_{b} \&$ setting equal to 0 gives

$$
\begin{gathered}
\mathbf{C}_{a b} \mathbf{w}_{b}-\lambda_{a} \mathbf{C}_{a a} \mathbf{w}_{a}=0 \quad \mathbf{C}_{b a} \mathbf{w}_{a}-\lambda_{b} \mathbf{C}_{b b} \mathbf{w}_{b}=0 \\
\lambda_{a} \mathbf{w}_{a}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a}=\lambda_{b} \mathbf{w}_{b}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b}
\end{gathered}
$$

which implies that $\lambda_{a}=\lambda_{b}=\lambda$

- The constraints on $\mathbf{w}_{a} \& \mathbf{w}_{b}$ can be written in matrix form as

$$
\begin{aligned}
{\left[\begin{array}{cc}
\mathbf{0} & \mathbf{C}_{a b} \\
\mathbf{C}_{b a} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{w}_{a} \\
\mathbf{w}_{b}
\end{array}\right] } & =\lambda\left[\begin{array}{cc}
\mathbf{C}_{a a} & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{b b}
\end{array}\right]\left[\begin{array}{l}
\mathbf{w}_{a} \\
\mathbf{w}_{b}
\end{array}\right] \\
\mathbf{A w} & =\lambda \mathbf{B} \mathbf{w}
\end{aligned}
$$

a generalized eigenvalue problem for the primal problem

Generalized Eigenvectors I

- Suppose $\mathbf{A} \& \mathbf{B}$ are symmetric \& $\mathbf{B} \succ 0$, then the generalized eigenvalue problem (GEP) is to find ($\lambda, \mathbf{w})$ s.t.

$$
\begin{equation*}
\mathbf{A} \mathbf{w}=\lambda \mathbf{B} \mathbf{w} \tag{5}
\end{equation*}
$$

which are equivalent to

$$
\max _{\mathbf{w}} \frac{\mathbf{w}^{\top} \mathbf{A w}}{\mathbf{w}^{\top} \mathbf{B w}}
$$

$$
\max _{\mathbf{w}^{\top} \mathbf{B} \mathbf{w}=1} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}
$$

Note, eigenvalues are special case with $\mathbf{B}=\mathbf{I}$

- Since $\mathbf{B} \succ 0$, any GEP can be converted to an Eigenvalue problem by inverting \mathbf{B} :

$$
\mathbf{B}^{-1} \mathbf{A} \mathbf{w}=\lambda \mathbf{w}
$$

Generalized Eigenvectors II

- However, to ensure symmetry, we can instead use $\mathbf{B} \succ 0$ to decompose $\mathbf{B}=\mathbf{B}^{-1 / 2} \mathbf{B}^{-1 / 2}$ where $\mathbf{B}^{-1 / 2}=\sqrt{\mathbf{B}}^{-1}$ is a symmetric real matrix-taking $\mathbf{w}=\mathbf{B}^{-1 / 2} \mathbf{v}$ for some \mathbf{v} we obtain (symmetric)

$$
\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2} \mathbf{v}=\lambda \mathbf{v}
$$

an eigenvalue problem for $\mathbf{C}=\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}$ providing solutions to Eq. (5)

$$
\mathbf{w}_{i}=\mathbf{B}^{-1 / 2} \mathbf{v}_{i}
$$

Generalized Eigenvectors III

Proposition 1

Solutions to GEP of Eq. (5) have following properties: if eigenvalues are distinct, then

$$
\begin{aligned}
\mathbf{w}_{i}^{\top} \mathbf{B} \mathbf{w}_{j} & =\delta_{i, j} \\
\mathbf{w}_{i}^{\top} \mathbf{A} \mathbf{w}_{j} & =\lambda_{i} \delta_{i, j}
\end{aligned}
$$

that is, the vectors \mathbf{w}_{i} are orthonormal after applying transformation $\mathbf{B}^{1 / 2}$-that is, they are conjugate with respect to \mathbf{B}.

Generalized Eigenvectors IV

Theorem 2

If $\left(\lambda_{i}, \mathbf{w}_{i}\right)$ are eigen-solutions to GEP of Eq. (5), then \mathbf{A} can be decomposed as

$$
\mathbf{A}=\sum_{i=1}^{N} \lambda_{i} \mathbf{B} \mathbf{w}_{i}\left(\mathbf{B} \mathbf{w}_{i}\right)^{\top}
$$

This yields the generalized deflation of \mathbf{A} :

$$
\tilde{\mathbf{A}} \leftarrow \mathbf{A}-\lambda_{i} \mathbf{B} \mathbf{w}_{i} \mathbf{w}_{i}^{\top} \mathbf{B}^{\top}
$$

while \mathbf{B} is unchanged.

Solving CCA as a GEP

- As shown in Eq. (4), CCA is a GEP $\mathbf{A w}=\lambda \mathbf{B w}$ where

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{C}_{a b} \\
\mathbf{C}_{b a} & \mathbf{0}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}
\mathbf{C}_{a a} & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{b b}
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
\mathbf{w}_{a} \\
\mathbf{w}_{b}
\end{array}\right]
$$

- Since this is a solution to Eq. (2), the eigenvalues will be correlations \Rightarrow $\lambda \in[-1,+1]$. Further, the eigensolutions will pair: for each $\lambda_{i}>0$ with eigenvector $\left[\begin{array}{l}\mathbf{w}_{a} \\ \mathbf{w}_{b}\end{array}\right]$, there is a $\lambda_{j}=-\lambda_{i}$ with eigenvector $\left[\begin{array}{c}\mathbf{w}_{a} \\ -\mathbf{w}_{b}\end{array}\right]$. Hence, we only need to consider the positive spectrum.
- Larger eigenvalues correspond to the strongest correlations.
- Finally, the solutions are conjugate w.r.t. matrix \mathbf{B} which reveals that for $i \neq j$

$$
\mathbf{w}_{a, j}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a, i}=0 \quad \mathbf{w}_{b, j}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b, i}=0
$$

However, the directions will not be orthogonal in the original input space.

Dual Form of CCA I

- Let's take the directions to be linear combinations of data:

$$
\mathbf{w}_{a}=\mathbf{X}_{a}^{\top} \boldsymbol{\alpha}_{a} \quad \mathbf{w}_{b}=\mathbf{X}_{b}^{\top} \boldsymbol{\alpha}_{b}
$$

- Substituting these directions into Eq. (3) gives

$$
\max _{\boldsymbol{\alpha}_{a}, \boldsymbol{\alpha}_{b}} \boldsymbol{\alpha}_{a}^{\top} \mathbf{K}_{a} \mathbf{K}_{b} \boldsymbol{\alpha}_{b}
$$

such that $\boldsymbol{\alpha}_{a}^{\top} \mathbf{K}_{a}^{2} \boldsymbol{\alpha}_{a}=1$ and $\boldsymbol{\alpha}_{b}^{\top} \mathbf{K}_{b}^{2} \boldsymbol{\alpha}_{b}=1$
where $\mathbf{K}_{a}=\mathbf{X}_{a} \mathbf{X}_{a}^{\top}$ and $\mathbf{K}_{b}=\mathbf{X}_{b} \mathbf{X}_{b}^{\top}$.

Dual Form of CCA II

- Differentiating the Lagrangian again yields equations

$$
\mathbf{K}_{a} \mathbf{K}_{b} \boldsymbol{\alpha}_{b}-\lambda \mathbf{K}_{a}^{2} \boldsymbol{\alpha}_{a}=\mathbf{0} \quad \mathbf{K}_{b} \mathbf{K}_{a} \boldsymbol{\alpha}_{a}-\lambda \mathbf{K}_{b}^{2} \boldsymbol{\alpha}_{b}=\mathbf{0}
$$

- However, these equations reveal a problem. When the dimension of the feature space is large compared number of data points ($D_{a} \gg N$), solutions will overfit the data.
- For the Gaussian kernel, data will always be independent in feature space \& \mathbf{K}_{a} will be invertible. Hence, we have

$$
\begin{aligned}
\boldsymbol{\alpha}_{a} & =\frac{1}{\lambda} \mathbf{K}_{a}^{-1} \mathbf{K}_{b} \boldsymbol{\alpha}_{b} \\
\mathbf{K}_{b}^{2} \boldsymbol{\alpha}_{b}-\lambda^{2} \mathbf{K}_{b}^{2} \boldsymbol{\alpha}_{b} & =\mathbf{0}
\end{aligned}
$$

but the latter holds for all $\boldsymbol{\alpha}_{b}$ with perfect correlation $\lambda=1$-Solution is Overfit!!!

Regularized CCA I

- To avoid overfitting, we can regularize the solutions $\mathbf{w}_{a} \& \mathbf{w}_{b}$ by controlling their norms. The Regularized CCA Problem is

$$
\max _{\mathbf{w}_{a}, \mathbf{w}_{b}} \tilde{\rho}_{a b}\left(\mathbf{w}_{a}, \mathbf{w}_{b}\right)=
$$

$$
\mathbf{w}_{a}^{\top} \mathbf{C}_{a b} \mathbf{w}_{b}
$$

$$
\sqrt{\left(\left(1-\tau_{a}\right) \mathbf{w}_{a}^{\top} \mathbf{C}_{a a} \mathbf{w}_{a}+\tau_{a}\left\|\mathbf{w}_{a}\right\|^{2}\right) \cdot\left(\left(1-\tau_{b}\right) \mathbf{w}_{b}^{\top} \mathbf{C}_{b b} \mathbf{w}_{b}+\tau_{b}\left\|\mathbf{w}_{b}\right\|^{2}\right)}
$$

where $\tau_{a} \in[0,1] \& \tau_{b} \in[0,1]$ serve as regularization parameters

- Again this yields an optimization program for the dual variables

$$
\begin{aligned}
\max _{\mathbf{w}_{a}, \mathbf{w}_{b}} & \boldsymbol{\alpha}_{a}^{\top} \mathbf{K}_{a} \mathbf{K}_{b} \boldsymbol{\alpha}_{b} \\
\text { such that } & \left(1-\tau_{a}\right) \boldsymbol{\alpha}_{a}^{\top} \mathbf{K}_{a}^{2} \boldsymbol{\alpha}_{a}+\tau_{a} \boldsymbol{\alpha}_{a}^{\top} \mathbf{K}_{a} \boldsymbol{\alpha}_{a}=1 \\
\text { and } & \left(1-\tau_{b}\right) \boldsymbol{\alpha}_{b}^{\top} \mathbf{K}_{b}^{2} \boldsymbol{\alpha}_{b}+\tau_{b} \boldsymbol{\alpha}_{b}^{\top} \mathbf{K}_{b} \boldsymbol{\alpha}_{b}=1
\end{aligned}
$$

Regularized CCA II

- Using the Lagrangian technique, we again arrive at a GEP:

$$
\left[\begin{array}{cc}
\mathbf{0} & \mathbf{K}_{a} \mathbf{K}_{b} \\
\mathbf{K}_{b} \mathbf{K}_{a} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\alpha}_{a} \\
\boldsymbol{\alpha}_{b}
\end{array}\right]=\lambda\left[\begin{array}{cc}
\left(1-\tau_{a}\right) \mathbf{K}_{a}^{2}+\tau_{a} \mathbf{K}_{a} & \mathbf{0} \\
\mathbf{0} & \left(1-\tau_{b}\right) \mathbf{K}_{b}^{2}+\tau_{b} \mathbf{K}_{b}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\alpha}_{a} \\
\boldsymbol{\alpha}_{b_{-}}
\end{array}\right.
$$

- Solutions $\left(\boldsymbol{\alpha}_{a}^{*}, \boldsymbol{\alpha}_{b}^{*}\right)$ can now be used as usual projection directions of Eq. (1)
- Solving CCA using the above GEP is impractical! The matrices required are $2 N \times 2 N$. Instead, the usual approach is to make an incomplete Cholesky decomposition of the kernel matrices:

$$
\mathbf{K}_{a}=\mathbf{R}_{a}^{\top} \mathbf{R}_{a} \quad \mathbf{K}_{b}=\mathbf{R}_{b}^{\top} \mathbf{R}_{b}
$$

The resulting GEP can be solved more efficiently (see book for algorithms details)

Regularized CCA III

- Finally CCA can be extended to multiple representations of the data, which result in the following GEP:

$$
\left[\begin{array}{cccc}
\mathbf{C}_{11} & \mathbf{C}_{12} & \ldots & \mathbf{C}_{1 k} \\
\mathbf{C}_{21} & \mathbf{C}_{22} & \ldots & \mathbf{C}_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{C}_{k 1} & \mathbf{C}_{k 2} & \ldots & \mathbf{C}_{k k}
\end{array}\right]\left[\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\vdots \\
\mathbf{w}_{k}
\end{array}\right]=\rho\left[\begin{array}{cccc}
\mathbf{C}_{11} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{22} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{C}_{k k}
\end{array}\right]\left[\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\vdots \\
\mathbf{w}_{k}
\end{array}\right]
$$

LDA as a GEP

You should note, that the Fisher Discriminant Analysis problem can be expressed as

$$
\max _{\alpha} J(\boldsymbol{\alpha})=\frac{\boldsymbol{\alpha}^{\top} \mathbf{M} \boldsymbol{\alpha}}{\boldsymbol{\alpha}^{\top} \mathbf{N} \boldsymbol{\alpha}}
$$

which is a GEP. In fact, this is how solutions to LDA are obtained.

Summary

- In this lecture, we saw how different objectives for projection directions yield different subspaces. . . we saw 3 different algorithms:
(1) Principal Component Analysis
(2) Maximum Covariance Analysis
(3) Canonical Correlation Analysis
- We saw that each of these techniques can be solved using eigenvalue, singular value, and generalized eigenvector decompositions.
- We saw that each of these techniques yielded linear projections and thus could be kernelized.
- In the next lecture, we will explore the general technique of minimizing loss \& how allows us to develop a wide range of kernel algorithms. In particular, we will see the Support Vector Machine for classification tasks.

Bibliography I

The Majority of the work from this talk can be found in the lecture's accompanying book, "Kernel Methods for Pattern Analysis."
[1] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 586-591, 1991.

