
CS6140 Machine Learning Kernels

Kernels
Virgil Pavlu November 30, 2014

1 Intro to similarity functions

Similarities and distances are often the critical aspect of machine learning : knowing these, one can make
the prediction/classification problem easy. Trivial examples: kNN, Clustering, Collaborative Filtering

SVM-dual formulation: in the SVM dual form problem, all datapoints x appear only as part of a dot
product < x1 ∗ x2 >, never alone. Also the prediction function on a test point z, F (z), can be computed as
a formula of dot products between z and the support vectors in the training set < x ∗ z >.

Non-separable data: SVMs and other kernel machines have two ways to deal with non-separable data:

• by model/representation which is by design, in advance : deciding on a kernel that is likely to make
data [more] separable

• by dealing with the actual data, after the model/kernel is decided : use slack variables to allow for
“points inside the margins” that cost a regularization penalty.

1.1 data similarities and dot product

• measurement of data similarities : a fundamental problem in ML

• reflects a priori knowledge of the problem/data

• dot product : a natural measure for similarity
〈x · y〉 =

∑
i xi · yi

• dot product amounts to being able to carry all geometric constructions formulated in terms of angles,
lengths and distances

cos(x,y) = 〈x·y〉
‖x‖‖y‖ ‖x‖ =

√
〈x · x〉

1.2 Data similarity and kernels

feature space, kernels
• general measure for similarity
k : X ×X → R, symetric k(x,y) = k(y,x)

1



• symmetry is too general, we want something that feels like dot product
∃Φ : X → H mapping function
k(x,y) = Φ(x) · Φ(y)
where H=feature space (Hilbert space, supports dot product)

H= feature space, Φ= map(feature) function

• for which k there exits Φ ?

• given k, if Φ exists, it may be not unique

2 Kernels examples, polynomial: how non-separable data becomes sep-
arable through a mapping into a high-dimension space

polynomial kernel : example 1

use the map x=(x1, x2)→ Φ(x) = (x21, x
2
2,
√

2x1x2)
ellipse from 2D-input space becomes hyperplane into 3D-feature space

Note that a different mapping Φ2(x) = (x21, x
2
2, x1x2, x2x1) maps data in a 4D-feature space, but it

generates the same kernel k
k(x,y) = 〈Φ2(x) ∗ Φ2(y)〉 = x21y

2
1 + x22y

2
2 + 2x1y1x2y2

The kernel trick: We dont need Φ to calculate k, as we can obtain k directly from the dot product
< x ∗ y >= x1y1 + x2y2 by applying a polynomial (hence the name “polynomial kernel”):

k(x, y) = x21y
2
1 + x22y

2
2 + 2x1y1x2y2 = (x1y1 + x2y2)2 =< x ∗ y >2

polynomial kernel : example 2
input space : x = (x1, x2) (2 attributes)
feature space : Φ(x) = (x21, x

2
2,
√

2x1,
√

2x2,
√

2x1x2, 1) (6 attributes)

2



k(x,y) = 〈Φ2(x) ∗ Φ2(y)〉 = x21y
2
1 + x22y

2
2 + 2x1y1 + 2x2y2 + 2x1y1x2y2 + 1 =

= (x1y1 + x2y2 + 1)2 = (< x ∗ y > +1)2

More broadly, the kernel K(x, y) = (xT y + c)d corresponds to a feature mapping to an (n+d choose
d) feature space, corresponding of all monomials of the d form x1ix

2
i ...x

l
i that are up to order d. However,

despite working in this O(nd)-dimensional space, computing K(x, y) still takes only O(n) time, and hence
we never need to explicitly represent feature vectors in this very high dimensional feature space.

3



3 Use of kernels with SVM

plug a kernel into SVM
the primal problem
minimize 〈w ·w〉
subject to yi(〈w · xi〉+ b) ≥ 1,∀i

the dual problem
maximize P (α) =

∑m
i=1 αi −

1
2

∑m
i,j=1 yiyjαiαj〈xi · xj〉

subject to
∑m
i=1 yiαi = 0, αi ≥ 0,∀i

kernel trick replace the dot product 〈xi · xj〉 with a kernel k(xi,xj):
maximize

P (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjk(xi,xj)

subject to
∑m
i=1 yiαi = 0, αi ≥ 0,∀i

SVM with kernels

the kernel trick
maximize

P (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjk(xi,xj)

subject to
∑m
i=1 yiαi = 0, αi ≥ 0,∀i

• we need only the kernel k ,not Φ - thats good...
• any algorithm that only depends on dot products (rotationally invariant) can be kernelized
• any algorithm that is formulated in terms of positive definite kernel(s) supports a kernel-replace

4



• math was around for long time (1940s Kolgomorov, Aronszajn, Schoenberg) but the practical importance
was underestimated

3.1 Kernel trick

We notice that there are many dot products (xTi xj) in our formula. We can keep the whole SVM-DUAL
setup, and the algorithms for solving these problems, but choose kernel function k(xTi , xj) to replace the
dot products (xTi xj). To qualify as a kernel, informally, the function k(xi, xj) must be a dot product k(xi, xj)
= Φ(xi) ∗Φ(xj), where Φ(x) is a mapping vector from the original feature space {X} into a different feature
space {Φ(X)}.

The essential “trick” is that usually Φ is not needed or known, only k(xi, xj) is computable and used.
To see this for the SVM, it is clear that the dual problem is an optimization written in terms of the dot
products replaceable with a given kernel k(xi, xj).

How about testing? The parameter w =
∑m
i=1 αiyiΦ(xi) is not directly computable if we dont know

explicitly the mapping Φ(), but it turns out we dot need to compute w explicitly; we only need to compute
predictions for test points z:

wΦ(z) + b =
∑m
i=1 αiyiΦ(xi)Φ(z) + b =

∑m
i=1 αiyik(xi, z) + b

This fact has profound implications to the ability of representing data and learning from data: we can
apply SVM to separate data which is not linearly separable! Thats because even if the data is not separable
in the original space {X}, it might be separable in the mapped space {Φ(X)}. The kernel trick is not specific
to SVMs; it works with all algorithms that can be written in terms of dot products xi ∗ xj .

4 valid kernels

• K
(
x, z
)

= K1

(
x, z
)

+K2

(
x, z
)

• K
(
x, z
)

= aK1

(
x, z
)

• K
(
x, z
)

= K1

(
x, z
)
K2

(
x, z
)

• K
(
x, z
)

= f
(
x
)
f
(
z
)

• K
(
x, z
)

= K3

(
φ
(
x
)
, φ
(
z
))

p(x) a polynomial with positive coefficients applied to an existing kernel
• K

(
x, z
)

= p
(
K1

(
x, z
))

p(x) exponential applied to an existing kernel
• K

(
x, z
)

= exp
(
K1

(
x, z
))

The RBF/Gaussian kernel
• K

(
x,x′

)
= exp

(
−||x− x′||2/σ2

)
5 Kernels Theory [optional material]

Characterization theorem, informal: A symmetric matrix K is a kernel if and only if K is positive
semi-definite or αTKα ≥ 0 for any vector α.

Kernel characterization theorem if the Gram matrix Kij = k(xi,xj) is positive definite then
k is a dot product : ∃Φ such that k(x,y) = Φ(x) · Φ(y)

proof K positive definite ⇒ K = SDST (diagonalization)
where S is orthogonal and D is diagonal with non-negative entries

5



then k(xi,xj) = (SDST )ij = 〈Si ·DSj〉 = 〈
√
DSi ·

√
DSj〉

take Φ(xi) =
√
DSi

Kernel characterization theorem (converse) if the kernel k is a dot product ∃Φ, k(x,y) = Φ(x)·Φ(y)
then the Gram matrix Kij = k(xi,xj) is positive definite

proof for any α ∈ Rm

αTKα =

m∑
i,j=1

αiαjKij = 〈
m∑
i=1

αiΦ(xi),

m∑
j=1

αjΦ(xj)〉 = ‖
m∑
i=1

αiΦ(xi)‖2 ≥ 0

so K is positive definite

5.1 Mercer theorem

theorem[Mercer] Let X be a compact subset of Rn. Suppose K is a continuous symmetric function such
that ∫

X

∫
X
K
(
x, z
)
f
(
x
)
f
(
z
)
dxdz ≥ 0

for all f ∈ L2

(
X
)
. Then, K

(
x, z
)

can be expanded in a uniformly convergent series

K
(
x, z
)

=
∑∞
j=1 λjφj

(
x
)
φj
(
z
)

in terms of the eigenfunctions φj ∈ L2

(
X
)

of
(
TKf

)(
·) =

∫
X
K
(
·,x
)
f
(
x
)
dx normalized so that ||φj ||L2

= 1

and positive associated eigenvalues λj ≥ 0.

5.2 Representer Theorem

We have seen that the dual perceptron and the support vector machine (SVM) have identical forms for the

final weight vector i.e., w∗ =
∑N
i=1 αiyixi. We have also seen that both these algorithms can work with

kernels, that allows us to work efficiently in high dimensional spaces enabling us to learn complex non-linear
decision boundaries and use these learning methods to work with other types of data such as strings, trees,
etc. But, is the use of kernels limited to only these algorithms or is it possible to kernelize other learning
methods as well? The answer to this is provided by the Representer theorem, which “roughly” states that:

If a learning algorithm can posed as a minimization problem of the form:

min
w

Loss(y, f(w, x)) + λPenalty(w) (1)

where, w are the model parameters, f(w, x) represents the classifier output, y is the actual label and λ
is a regularization parameter. Then under some “weak” conditions on the loss and penalty functions, the
solution has the form w∗ =

∑
i αiyixi, i.e., a linear combination of the training instances.

This is a very powerful result that allows us to apply the kernel trick to a broader range of learning
algorithms. Representer theorem can be applied to SVMs, ridge regression and Logistic regression, among
other methods. The Theorem shows the dramatic effect of regularizing a problem by including a dependency
in Penalty(w)||w||2 or in the function to optimize. This penalization makes sense because it forces the
solution to be smooth, which is usually a powerful protection against overfitting of the data. The representer
theorem shows that this penalization also has substantial computational advantages: any solution to the
optimization problem is known to belong to a subspace of a dimension at most n, the number of points
in S, even though the optimization is carried out over a possibly infinite-dimensional space. A practical

6



consequence is that the optimization can now be reformulated as an n-dimensional optimization problem,
by substituting w into the objective and optimizing over (1, , n) ∈ Rn. Most kernel methods can be seen
in light of the representer theorem: indeed one can often explicitly write the functional that is minimized,
which involves a norm as regularization penalty. This observation can serve as a guide to choosing a kernel
for practical applications, if one has some prior knowledge about the function the algorithm should output:
it is in fact possible to design a kernel such that a priori desirable functions have a small norm.

6 dot product kernels

k(x,y) = k(〈x,y〉)

theorem
•the function k of the dot product kernel must satisfy
k(t) ≥ 0, k′(t) ≥ 0 and k′(t) + tk”(t) ≥ 0 ∀t ≥ 0
in order to be a positive definite kernel. That may still be insufficient

• if k s a power series expansion

k(t) =

∞∑
n=0

ant
n

then k is a positive definite kernel iff ∀n, an ≥ 0

7



7 Kernel construction. Popular kernels

polynomial kernel
theorem define the map x → Cd(x) where Cd(x) the vector consisting in all possible dth degree ordered
products of the entries of x=(x1, x2, ..., xN ) then 〈Cd(x),Cd(y)〉 = 〈x,y〉d

• polynomial kernel :
k(x,y) = (〈x,y〉+ c)d

• invariant to group of all orthogonal
transformations(rotations, mirroring)

Gaussian (Radial Basis Function ) kernel
k(x,y) = exp(−‖x−y‖

2

2σ2 )

more general k(x,y) = f(d(x,y))
where d is a metric on X and f is a function on R+

0 ; usually d arises from dot product d(x,y) = ‖x− y‖

• invariant on translations k(x,y) = k(x + z,y + z)
• cos( 6 (Φ(x),Φ(y))) = 〈Φ(x),Φ(y)〉 = k(x,y) ≥ 0⇒ enclosed angle between any 2 mapped points is smaller
than π/2

The RBF kernel can still be written as a dot product in a new feature space k(x, x′) = Φ(x) ∗Φ(x′), only
with an infinite number of dimensions. To see this for σ = 1, consider the expansion

8



theorem if X = {x1,x2, ...,xm} all distinct and σ > 0 then the matrix Kij = exp(−‖xi−xj‖
2

2σ2 ) has full
rank ⇒ Φ(x1),Φ(x2), ...,Φ(xm) are linear independent.

Fisher kernel [optional]
• knowledge about objects in form of a generative probability model
• deals with mising/incomplete data, uncertainty, variable length

family of generative models (density functions)
p(x|θ), smoothly parametrized by θ = (θ1, ..., θr) ; l(x, θ) = ln p(x|θ)

score Vθ(x) := (δθ1 l(x, θ), ..., δθr l(x, θ)) = ∇θl(x, θ) = ∇θ ln p(x|θ)
Fisher information matrix I := Ep[Vθ(x)Vθ(x)T ]

Iij = Ep[δθi ln p(x|θ) · δθj ln p(x|θ)], Ep is called Fisher information metric

Fisher kernel
KI(x, y) := Vθ(x)T I−1Vθ(y)
natural kernel M positive definite matrix
Knat
M (x, y) := Vθ(x)TM−1Vθ(y)

[information] diffusion kernel [optional]
- local relationships

the exponential of a suared matrix H is

eβH = limn→∞ (1 + βH
n )n = I + βH + β2

2!H
2 + β3

3!H
3 + ...

exponential kernel Kβ = eβH ,
δKβ
δβ = HKβ(heat eq)

diffusion kernel on graph : consider
Hij = 1 if i j ; −di (degree) if i = j; 0 otherwise
wTHw = −

∑
i,j∈E (wi − wj)2 negative semidefinite

−H=Laplacian of the graph

convolution kernel [optional]
kernel between composite objects building on similarities of resp. parts
kd : Xd ×Xd → R, R-relation. define the R-convolution kernel

(k1 ? k2 ? ... ? kD)(x,y) :=
∑
R

D∏
d=1

kd(xd, yd)

where the sum runs over all possible decompositions of x → (x1, x2, ..., xD) and of y → (y1, y2, ..., yD) s.t.
R(x, x1, x2, ..., xD) and R(y, y1, y2, ..., yD)
• proved valid if R is finite

9



ANOVA kernel [optional](analysis of variance)

if X = SN and k(i) kernel on S × S for i = 1, 2, ..., N ,the ANOVA kernel of order D is

kD(x,y) :=
∑

1≤i1<...<iD≤N

D∏
d=1

kid(xid , yid)

string kernel
- similarities between two documents∑

=alphabet,
∑n

=set of all strings of length n
for a given index sequence i = (1 ≤ i1 < i2 < ... < ir ≤ |s|)
define s(i) := s(i1)s(i2)....s(ir) and ls(i) = ir − i1 + 1 ≥ r
example s = fast food ,i = (2, 3, 9)⇒ s(i) = asd, ls(i) = 9− 2 + 1 = 8

0 < λ ≤ 1 parameter, define [Φn(s)] a map with |
∑n | components

[Φn(s)]u =
∑

i:s(i)=u

λls(i)

example [Φ3(Nasdaq)]asd = λ3 , [Φ3(lass das)]asd = 2λ5

the kernel induced

kn(s, t) =
∑
u∈

∑n

[Φn(s)]u[Φn(t)]u =
∑
u∈

∑n

∑
(i,j):s(i)=t(j)=u

λls(i)λlt(j)

k :=
∑
n cnkn linear combination of kernels on different substring-lengths

tree kernel
• encode a tree as a string by traversing
in preorder and parenthesing

10



• then use a string kernel

• tag can be computed in loglinear time

• substrings correspond to subset trees

11


