
6

Pattern analysis using eigen-decompositions

The previous chapter saw the development of some basic tools for working
in a kernel-defined feature space resulting in some useful algorithms and
techniques. The current chapter will extend the methods in order to under-
stand the spread of the data in the feature space. This will be followed by
examining the problem of identifying correlations between input vectors and
target values. Finally, we discuss the task of identifying covariances between
two different representations of the same object.

All of these important problems in kernel-based pattern analysis can be
reduced to performing an eigen- or generalised eigen-analysis, that is the
problem of finding solutions of the equation Aw = λBw given symmetric
matrices A and B. These problems range from finding a set of k directions
in the embedding space containing the maximum amount of variance in the
data (principal components analysis (PCA)), through finding correlations
between input and output representations (partial least squares (PLS)), to
finding correlations between two different representations of the same data
(canonical correlation analysis (CCA)). Also the Fisher discriminant analysis
from Chapter 5 can be cast as a generalised eigenvalue problem.

The importance of this class of algorithms is that the generalised eigen-
vectors problem provides an efficient way of optimising an important family
of cost functions; it can be studied with simple linear algebra and can be
solved or approximated efficiently using a number of well-known techniques
from computational algebra. Furthermore, we show that the problems can
be solved in a kernel-defined feature space using a dual representation, that
is, they only require information about inner products between datapoints.

140

6.1 Singular value decomposition 141

6.1 Singular value decomposition

We have seen how we can sometimes learn something about the covariance
matrix C by using the kernel matrix K = XX′. For example in the previous
chapter the variances were seen to be given by the covariance matrix, but
could equally be evaluated using the kernel matrix. The close connection
between these two matrices will become more apparent if we consider the
eigen-decomposition of both matrices

�C = X′X = UΛ̃NU′ and K = XX′= VΛ�V′,

where the columns ui of the orthonormal matrix U are the eigenvectors of
�C, and the columns vi of the orthonormal matrix V are the eigenvectors
of K. Now consider an eigenvector–eigenvalue pair v, λ of K. We have

�C(X′v) = X′XX′v = X′Kv = λX′v,

implying that X′v, λ is an eigenvector–eigenvalue pair for �C. Furthermore,
the norm of X′v is given by∥∥X′v

∥∥2 = v′XX′v = λ,

so that the corresponding normalised eigenvector of �C is u = λ−1/2X′v.
There is a symmetry here since we also have that

λ−1/2Xu = λ−1XX′v = v.

We can summarise these relations as follows

u = λ−1/2X′v and v = λ−1/2Xu.

We can deflate both �C and K of the corresponding eigenvalues by making
the following deflation of X:

X �−→ X̃ = X − vv′X = X − λ1/2vu′ = X − Xuu′. (6.1)

This follows from the equalities

X̃X̃
′
=
(
X − vv′X

) (
X − vv′X

)′ = XX′ − λvv′,

and

X̃′X̃ =
(
X − vv′X

)′ (X − vv′X
)

= X′X − X′vv′X = X′X − λuu′.

Hence, the first t = rank(XX′) ≤ min(N, �) columns Ut of U can be chosen
as

Ut = X′VtΛ
−1/2
t , (6.2)

142 Pattern analysis using eigen-decompositions

where we assume the t non-zero eigenvalues of K and �C appear in descend-
ing order. But by the symmetry of �C and K these are the only non-zero
eigenvalues of �C, since we can transform any eigenvector–eigenvalue pair
u, λ of �C to an eigenvector–eigenvalue pair Xu, λ of K. It follows, as we
have already seen, that

t = rank(XX′) = rank(X′X).

By extending Ut to U and Λ1/2
t to an N×� matrix whose additional entries

are all zero, we obtain the singular value decomposition (SVD) of the matrix
X′ defined as a decomposition

X′ = UΣV′,

where Σ is an N × � matrix with all entries 0 except the leading diagonal
which has entries σi =

√
λi satisfying σ1 ≥ σ2 ≥ · · · ≥ σt > 0 for t =

rank(X) ≤min(N, �) with U and V square matrices satisfying

V′V = I so that V′ = V−1 and similarly U′ = U−1,

also known as orthogonal matrices.

Consequences of singular value decomposition There are a number
of interesting consequences. Notice how equation (6.2) implies a dual repre-
sentation for the jth eigenvector uj of �C with the coefficients given by the
corresponding eigenvector vj of K scaled by λ

−1/2
j , that is

uj = λ
−1/2
j

�∑
i=1

(vj)iφ(xi) =
�∑

i=1

αj
iφ(xi), j = 1, . . . , t,

where the dual variables αj for the jth vector uj are given by

αj = λ
−1/2
j vj . (6.3)

and vj , λj are the jth eigenvector–eigenvalue pair of the kernel matrix.
It is important to remark that if we wish to compute the projection of a

new data point φ(x) onto the direction uj in the feature space, this is given
by

Puj (φ(x)) = u′
jφ(x) =

〈
�∑

i=1

αj
iφ(xi),φ(x)

〉
=

�∑
i=1

αj
i 〈φ(xi),φ(x)〉

=
�∑

i=1

αj
iκ(xi,x), (6.4)

6.2 Principal components analysis 143

Hence we will be able to project new data onto the eigenvectors in the feature
space by performing an eigen-decomposition of the kernel matrix. We will
present the details of this algorithm in Section 6.2.1 after introducing primal
principal components analysis in the next section.

Remark 6.1 [Centering not needed] Although the definition of the covari-
ance matrix assumes the data to be centred, none of the derivations given in
this section make use of this fact. Hence, we need not assume that the co-
variance matrix is computed for centred data to obtain dual representations
of the projections.

Remark 6.2 [Notation conventions] We have used the notation uj for the
primal eigenvectors in contrast to our usual wj . This is to maintain con-
sistency with the standard notation for the singular value decomposition
of a matrix. Note that we have used the standard notation for the dual
variables.

6.2 Principal components analysis

In the previous chapter we saw how the variance in any fixed direction in the
feature space could be measured using only the kernel matrix. This made it
possible to find the Fisher discriminant function in a kernel-defined feature
space by appropriate manipulation of the kernel matrix. We now consider
finding a direction that maximises the variance in the feature space.

Maximising variance If we assume that the data has been centred in the
feature space using for example Code Fragment 5.2, then we can compute
the variance of the projection onto a normalised direction w as

1
�

�∑
i=1

(Pw (φ(xi)))
2 = Ê

[
w′φ(x)φ(x)′w

]
= w′

Ê
[
φ(x)φ(x)′

]
w

=
1
�
w′X′Xw = w′Cw,

where we again use Ê [f(x)] to denote the empirical mean of f(x)

Ê [f(x)] =
1
�

�∑
i=1

f(xi),

and C = 1
�X

′X is the covariance matrix of the data sample. Hence, finding
the directions of maximal variance reduces to the following computation.

144 Pattern analysis using eigen-decompositions

Computation 6.3 [Maximising variance] The direction that maximises the
variance can be found by solving the following problem

maxw w′Cw,
subject to ‖w‖2 = 1.

(6.5)

Eigenvectors for maximising variance Consider the quotient

ρ(w) =
w′Cw
w′w

.

Since rescaling w has a quadratic effect on ρ(w), the solution of (6.5) is the
direction that maximises ρ(w). Observe that this is the optimisation of the
Raleigh quotient given in (3.2) , where it was observed that the solution is
given by the eigenvector corresponding to the largest eigenvalue with the
value of ρ(w) given by the eigenvalue. We can search for the direction
of second largest variance in the orthogonal subspace, by looking for the
largest eigenvector in the matrix obtained by deflating the matrix C with
respect to w. This gives the eigenvector of C corresponding to the second-
largest eigenvalue. Repeating this step shows that the mutually orthogonal
directions of maximum variance in order of decreasing size are given by the
eigenvectors of C.

Remark 6.4 [Explaining variance] We have seen that the size of the eigen-
value is equal to the variance in the chosen direction. Hence, if we project
into a number of orthogonal directions the total variance is equal to the sum
of the corresponding eigenvalues, making it possible to say what percentage
of the overall variance has been captured, where the overall variance is given
by the sum of all the eigenvalues, which equals the trace of the kernel matrix
or the sum of the squared norms of the data.

Since rescaling a matrix does not alter the eigenvectors, but simply rescales
the corresponding eigenvalues, we can equally search for the directions of
maximum variance by analysing the matrix �C = X′X. Hence, the first
eigenvalue of the matrix �C equals the sum of the squares of the projections
of the data into the first eigenvector in the feature space. A similar conclu-
sion can be reached using the Courant–Fisher Theorem 3.6 applied to the
first eigenvalue λ1. By the above observations and equation (5.9) we have

λ1(�C) = λ1(X′X) = max
dim(T)=1

min
0 �=u∈T

u′X′Xu
u′u

6.2 Principal components analysis 145

= max
0 �=u

u′X′Xu
u′u

= max
0 �=u

‖Xu‖2

‖u‖2 = max
0 �=u

�∑
i=1

Pu (φ(xi))
2

=
�∑

i=1

‖φ(xi)‖2 − min
0 �=u

�∑
i=1

∥∥∥P⊥
u (φ(xi))

∥∥∥2
,

where P⊥
u (φ(x)) is the projection of φ(x) into the space orthogonal to u.

The last equality follows from Pythagoras’s theorem since the vectors are
the sum of two orthogonal projections. Furthermore, the unit vector that
realises the max and min is the first column u1 of the matrix U of the
eigen-decomposition

X′X = UΛU′

of X′X.
A similar application of the Courant–Fisher Theorem 3.6 to the ith eigen-

value of the matrix �C gives

λi(�C) = λi(X′X) = max
dim(T)=i

min
0 �=u∈T

u′X′Xu
u′u

= max
dim(T)=i

min
0 �=u∈T

�∑
j=1

Pu (φ(xi))
2 =

�∑
j=1

Pui (φ(xi))
2 ,

that is, the sum of the squares of the projections of the data in the direction
of the ith eigenvector ui in the feature space. If we consider projecting into
the space Uk spanned by the first k eigenvectors, we have

k∑
i=1

λi =
k∑

i=1

�∑
j=1

Pui (φ(xi))
2 =

�∑
j=1

k∑
i=1

Pui (φ(xi))
2 =

�∑
j=1

‖PUk
(φ(xi))‖2 ,

where we have used PUk
(φ(x)) to denote the orthogonal projection of φ(x)

into the subspace Uk. Furthermore, notice that if we consider k = N the
projection becomes the identity and we have

N∑
i=1

λi =
�∑

j=1

‖PUN
(φ(xi))‖2 =

�∑
j=1

‖φ(xi)‖2 , (6.6)

something that also follows from the fact that the expressions are the traces
of two similar matrices �C and Λ.

Definition 6.5 [Principal components analysis] Principal components anal-
ysis (PCA) takes an initial subset of the principal axes of the training data
and projects the data (both training and test) into the space spanned by

146 Pattern analysis using eigen-decompositions

this set of eigenvectors. We effectively preprocess a set of data by project-
ing it into the subspace spanned by the first k eigenvectors of the covariance
matrix of the training set for some k < �. The new coordinates are known as
the principal coordinates with the eigenvectors referred to as the principal
axes.

Algorithm 6.6 [Primal principal components analysis] The primal principal
components analysis algorithm performs the following computation:

input Data S = {x1, . . . ,x�} ⊂ R
n, dimension k.

process µ = 1
�

∑�
i=1 xi

C = 1
�

∑�
i=1 (xi − µ) (xi − µ)′

[U,Λ] = eig (�C)
x̃i = U′

kx�, i = 1, . . . , �.
output Transformed data S̃ = {x̃1, . . . , x̃�}.

Remark 6.7 [Data lying in a subspace] Suppose that we have a data ma-
trix in which one column is exactly constant for all examples. Clearly, this
feature carries no information and will be set to zero by the centering op-
eration. Hence, we can remove it by projecting onto the other dimensions
without losing any information about the data. Data may in fact lie in a
lower-dimensional subspace even if no individual feature is constant. This
corresponds to the subspace not being aligned with any of the axes. The
principal components analysis is nonetheless able to detect such a subspace.
For example if the data has rank r then only the first r eigenvalues are non-
zero and so the corresponding eigenvectors span the subspace containing the
data. Therefore, projection into the first r principal axes exactly captures
the training data.

Remark 6.8 [Denoising] More generally if the eigenvalues beyond the kth
are small we can think of the data as being approximately k-dimensional,
the features beyond the kth being approximately constant the data has little
variance in these directions. In such cases it can make sense to project the
data into the space spanned by the first k eigenvectors. It is possible that
the variance in the dimensions we have removed is actually the result of
noise, so that their removal can in some cases improve the representation of
the data. Hence, performing principal components analysis can be regarded
as an example of denoising .

6.2 Principal components analysis 147

Remark 6.9 [Applications to document analysis] We will also see in Chap-
ter 10 how principal components analysis has a semantic focussing effect
when applied in document analysis, with the eigenvectors representing con-
cepts or themes inferred from the statistics of the data. The representation
of an input in the principal coordinates can then be seen as an indication of
how much it is related to these different themes.

Remark 6.10 [PCA for visualisation] In Chapter 8 we will also see how a
low-dimensional PCA projection can be used as a visualisation tool. In the
case of non-numeric datasets this is particularly powerful since the data itself
does not have a natural geometric structure, but only a high-dimensional
implicit representation implied by the choice of kernel. Hence, in this case
kernel PCA can be seen as a way of inferring a low-dimensional explicit
geometric feature space that best captures the structure of the data.

PCA explaining variance The eigenvectors of the covariance matrix or-
dered by decreasing eigenvalue correspond to directions of decreasing vari-
ance in the data, with the eigenvalue giving the amount of variance captured
by its eigenvector. The larger the dimension k of the subspace Uk the greater
percentage of the variance that is captured. These approximation proper-
ties are explored further in the alternative characterisation given below. We
can view identification of a low-dimensional subspace capturing a high pro-
portion of the variance as a pattern identified in the training data. This
of course raises the question of whether the pattern is stable, that is, if the
subspace we have identified will also capture the variance of new data arising
from the same distribution. We will examine this statistical question once
we have introduced a dual version of the algorithm.

Remark 6.11 [Centering not needed] The above derivation does not make
use of the fact that the data is centred. It therefore follows that if we define

C =
1
�
X′X

with X not centred, the same derivation holds as does the proposition given
below. Centering the data has the advantage of reducing the overall sum of
the eigenvalues, hence removing irrelevant variance arising from a shift of the
centre of mass, but we can use principal components analysis on uncentred
data.

Alternative characterisations An alternative characterisation of the prin-
cipal components (or principal axes) of a dataset will be important for the

148 Pattern analysis using eigen-decompositions

analysis of kernel PCA in later sections. We first introduce some additional
notation. We have used PU (φ(x)) to denote the orthogonal projection of an
embedded point φ(x) into the subspace U . We have seen above that we are
also interested in the error resulting from using the projection rather than
the actual vector φ(x). This difference

P⊥
U (φ(x)) = φ(x) − PU (φ(x))

is the projection into the orthogonal subspace and will be referred to as the
residual . We can compute its norm from the norms of φ(x) and PU (φ(x))
using Pythagoras’s theorem. We will typically assess the quality of a pro-
jection by the average of the squared norms of the residuals of the training
data

1
�

�∑
i=1

∥∥∥P⊥
U (φ(xi))

∥∥∥2
=

1
�
‖ξ‖2 , where ξi =

∥∥∥P⊥
U (φ(xi))

∥∥∥ .

The next proposition shows that using the space spanned by the first k

principal components of the covariance matrix minimises this quantity.

Proposition 6.12 Given a training set S with covariance matrix C, the
orthogonal projection PUk

(φ(x)) into the subspace Uk spanned by the first
k eigenvectors of C is the k-dimensional orthogonal projection minimising
the average squared distance between each training point and its image, in
other words Uk solves the optimisation problem

minU J⊥(U) =
∑�

i=1

∥∥P⊥
U (φ(xi))

∥∥2

2
subject to dimU = k.

(6.7)

Furthermore, the value of J⊥(U) at the optimum is given by

J⊥(U) =
N∑

i=k+1

λi, (6.8)

where λ1, . . . , λN are the eigenvalues of the matrix �C in decreasing order.

Proof A demonstration of this fact will also illuminate various features of
the principal coordinates. Since, PU (φ(xi)) is an orthogonal projection it
follows from Pythagoras’s theorem that

J⊥(U) =
�∑

i=1

∥∥∥P⊥
U (φ(xi))

∥∥∥2

2
=

�∑
i=1

‖φ(xi) − PU (φ(xi))‖2
2

6.2 Principal components analysis 149

=
�∑

i=1

‖φ(xi)‖2 −
�∑

i=1

‖PU (φ(xi))‖2
2 . (6.9)

Hence, the optimisation (6.7) has the same solution as the optimisation
problem

maxU J(U) =
∑�

i=1 ‖PU (φ(xi))‖2
2

subject to dimU = k.
(6.10)

Let w1, . . . ,wk be a basis for a general space U expressed in the principal
axes. We can then evaluate J(U) as follows

J(U) =
�∑

i=1

‖PU (φ(xi))‖2
2 =

�∑
i=1

k∑
j=1

Pwj (φ(xi))2

=
k∑

j=1

�∑
i=1

Pwj (φ(xi))2 =
k∑

j=1

�∑
s=1

(
wj

s

)2 �∑
i=1

Pus(φ(xi))2

=
k∑

j=1

�∑
s=1

(
wj

s

)2
λs =

�∑
s=1

λs

k∑
j=1

(
wj

s

)2 .

Since, the wj are orthogonal we must have

as =
k∑

j=1

(
wj

s

)2 ≤ 1,

for all s (consider extending to an orthonormal basis

W =
[
w1 · · ·wkwk+1 · · ·w�

]
and observing that

(
WW′)

ss
=

�∑
j=1

(
wj

s

)2 = 1

for all s), while

�∑
s=1

as =
�∑

s=1

k∑
j=1

(
wj

s

)2 =
k∑

j=1

�∑
s=1

(
wj

s

)2 = k.

Therefore we have

J(U) =
�∑

s=1

λsas ≤
k∑

s=1

λs = J(Uk), (6.11)

150 Pattern analysis using eigen-decompositions

showing that Uk does indeed optimise both (6.7) and (6.10). The value of
the optimum follows from (6.9), (6.11) and (6.6).

Principal axes capturing variance If we take k = � nothing is lost in
the projection and so summing all the eigenvalues gives us the sum of the
norms of the feature vectors

�∑
i=1

‖φ(xi)‖2 =
�∑

i=1

λi,

a fact that also follows from the invariance of the trace to the orthogonal
transformation

�C �−→ �U′CU = Λ�.

The individual eigenvalues say how much of the sum of the norms squared
lies in the space spanned by the ith eigenvector. By the above discussion
the eigenvectors of the matrix X′X give the directions of maximal variance
of the data in descending order with the corresponding eigenvalues giving
the size of the variance in that direction multiplied by �. It is the fact that
projection into the space Uk minimises the resulting average squared residual
that motivates the use of these eigenvectors as a coordinate system.

We now consider how this analysis can be undertaken using only inner
product information and hence exploiting a dual representation and kernels.

6.2.1 Kernel principal components analysis

Kernel PCA is the application of PCA in a kernel-defined feature space
making use of the dual representation. Section 6.1 has demonstrated how
projections onto the feature space eigenvectors can be computed through a
dual representation computed from the eigenvectors and eigenvalues of the
kernel matrix.

We now present the details of the kernel PCA algorithm before providing
a stability analysis assessing when the resulting projection captures a stable
pattern of the data. We continue to use Uk to denote the subspace spanned
by the first k eigenvectors in the feature space. Using equation (6.4) we can
compute the k-dimensional vector projection of new data into this subspace
as

PUk
(φ(x)) =

(
u′
jφ(x)

)k
j=1

=

(
�∑

i=1

αj
iκ(xi,x)

)k

j=1

, (6.12)

6.2 Principal components analysis 151

where

αj = λ
−1/2
j vj

is given in terms of the corresponding eigenvector and eigenvalue of the
kernel matrix. Equation (6.12) forms the basis of kernel PCA.

Algorithm 6.13 [Kernel PCA] The kernel PCA algorithm performs the
following computation:

input Data S = {x1, . . . ,x�} , dimension k.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2
(j′Kj) jj′,

[V,Λ] = eig (K)
αj = 1√

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 α
j
iκ(xi,x)

)k
j=1

output Transformed data S̃ = {x̃1, . . . , x̃�}.
The Matlab code for this computation is given in Code Fragment 6.1.

Figure 6.1 shows the first principal direction as a shading level for the sam-
ple data shown using primal PCA. Figure 6.2 shows the same data analysed
using kernel PCA with a nonlinear kernel.

6.2.2 Stability of principal components analysis

The critical question for assessing the performance of kernel PCA is the
extent to which the projection captures new data drawn according to the
same distribution as the training data. The last line of the Matlab code
in Code Fragment 6.1 computes the average residual of the test data. We
would like to ensure that this is not much larger than the average residual of
the training data given by the expression in the comment eight lines earlier.
Hence, we assess the stability of kernel PCA through the pattern function

f(x) =
∥∥∥P⊥

Uk
(φ(x))

∥∥∥2
= ‖φ(x) − PUk

(φ(x))‖2

= ‖φ(x)‖2 − ‖PUk
(φ(x))‖2 ,

that is, the squared norm of the orthogonal (residual) projection for the
subspace Uk spanned by the first k eigenvectors. As always we wish the
expected value of the pattern function to be small

Ex [f(x)] = Ex

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≈ 0.

152 Pattern analysis using eigen-decompositions

% K is the kernel matrix of the training points
% inner products between ell training and t test points
% are stored in matrix Ktest of dimension (ell + 1) x t
% last entry in each column is inner product with self
% k gives dimension of projection space
% V is ell x k matrix storing the first k eigenvectors
% L is k x k diagonal matrix with eigenvalues

ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
J = ones(ell,1) * D;
K = K - J - J’ + E * ones(ell, ell);
[V, L] = eigs(K, k, ’LM’);
invL = diag(1./diag(L)); % inverse of L
sqrtL = diag(sqrt(diag(L))); % sqrt of eigenvalues
invsqrtL = diag(1./diag(sqrtL)); % inverse of sqrtL
TestFeat = invsqrtL * V’ * Ktest(1:20,:);
TrainFeat = sqrtL * V’; % = invsqrtL * V’ * K;
% Note that norm(TrainFeat, ’fro’) = sum-squares of
% norms of projections = sum(diag(L)).
% Hence, average squared norm not captured (residual) =
% (sum(diag(K)) - sum(diag(L)))/ell
% If we need the new inner product information:
Knew = V * L * V’; % = TrainFeat’ * TrainFeat;
% between training and test
Ktestnew = V * V’ * Ktest(1:20,:);
% and between test and test
Ktestvstest = Ktest(1:20,:)’*V*invL*V’*Ktest(1:20,:);
% The average sum-squared residual of the test points is
(sum(Ktest(ell + 1,:) - diag(Ktestvstest)’)/t

Code Fragment 6.1. Matlab code for kernel PCA algorithm.

Our aim is to relate the empirical value of the residual given by the pattern
function f(x) to its expected value. Since the eigenvalues of �C and the
kernel matrix K are the same, it follows from equation (6.8) that � times the
empirical average of the pattern function is just the sum of those eigenvalues
from k + 1 to �. We introduce the notation λ>t(S) =

∑�
i=t+1 λi for these

sums. Hence, the critical question is how much larger than the empirical
expectation

Ê

[
‖P⊥

Uk
(φ(x))‖2

]
=

1
�
λ>t(S)

is the true expectation

E

[∥∥∥P⊥
Ut

(φ(x))
∥∥∥2
]

.

6.2 Principal components analysis 153

Fig. 6.1. The shading shows the value of the projection on to the first principal
direction for linear PCA.

Fig. 6.2. The shading shows the the value of the projection on to the first principal
direction for nonlinear PCA.

It is worth noting that if we can bound the difference between these for some
value of t, for k > t we have

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≤ E

[∥∥∥P⊥
Ut

(φ(x))
∥∥∥2
]

,

154 Pattern analysis using eigen-decompositions

so that the bound for t also applies to k-dimensional projections. This
observation explains the min in the theorem below giving a bound on the
difference between the two expectations.

Theorem 6.14 If we perform PCA in the feature space defined by a kernel
κ then with probability greater than 1 − δ, for any 1 ≤ k ≤ �, if we project
new data onto the space Uk spanned by the first k eigenvectors in the feature
space, the expected squared residual is bounded by

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]

≤ min
1≤t≤k

1
�
λ>t(S) +

8
�

√√√√(t + 1)
�∑

i=1

κ(xi,xi)2

+3R2

√
ln(2�/δ)

2�
,

where the support of the distribution is in a ball of radius R in the feature
space.

Remark 6.15 [The case of a Gaussian kernel] Reading of the theorem is
simplified if we consider the case of a normalised kernel such as the Gaussian.
In this case both R and κ(xi,xi) are equal to 1 resulting in the bound

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≤ min

1≤t≤k

[
1
�
λ>t(S) + 8

√
(t + 1)

�

]
+ 3

√
ln(2�/δ)

2�
.

Hence, Theorem 6.14 indicates that the expected squared residual of a test
point will be small provided the residual eigenvalues are small for some value
t ≤ k, which is modest compared to �. Hence, we should only use kernel
PCA when the eigenvalues become small at an early stage in the spectrum.
Provided we project into a space whose dimension exceeds the index of this
stage, we will with high probability capture most of the variance of unseen
data.

The overall message is that capturing a high proportion of the variance of
the data in a number of dimensions significantly smaller than the samples
size indicates that a reliable pattern has been detected and that the same
subspace will, with high probability, capture most of the variance of the test
data. We can therefore view the theorem as stating that the percentage of
variance captured by low-dimensional eigenspaces is concentrated and hence
reliably estimated from the training sample.

A proof of this theorem appears in Appendix A.2. The basis for the
statistical analysis are the Rademacher complexity results of Chapter 4. The

6.3 Directions of maximum covariance 155

difficulty in applying the method is that the function class does not appear
to be linear, but interestingly it can be viewed as linear in the feature space
defined by the quadratic kernel

κ̂(x, z) = κ(x, z)2.

Hence, the use of kernels not only defines a feature space and provides the
algorithmic tool to compute in that space, but also resurfaces as a proof tech-
nique for analysing the stability of principal components analysis. Though
this provides an interesting and distinctive use of kernels we have preferred
not to distract the reader from the main development of this chapter and
have moved the proof details to an appendix.

Whitening PCA computed the directions of maximal variance and used
them as the basis for dimensionality reduction. The resulting covariance
matrix of the projected data retains the same eigenvalues corresponding
to the eigenvectors used to define the projection space, but has a diagonal
structure. This follows from the observation that given a centred data matrix
X, the projected data XUk has covariance matrix

1
�
U′

kX
′XUk =

1
�
U′

kUΛU′Uk =
1
�
Λk.

Whitening is a technique that transforms the projected data to make the
resulting covariance matrix equal to the identity by rescaling the projection
directions by Λ−1/2

k to obtain XUkΛ
−1/2
k , so that the covariance becomes

1
�
Λ−1/2

k U′
kX

′XUkΛ
−1/2
k =

1
�
Λ−1/2

k U′
kUΛU′UkΛ

−1/2
k =

1
�
Λ−1/2

k ΛkΛ
−1/2
k

=
1
�
I.

This is motivated by the desire to make the different directions have equal
weight, though we will see a further motivation for this in Chapter 12. The
transformation can be implemented as a variant of kernel PCA.

Algorithm 6.16 [Whitening] The whitening algorithm is given in Code
Fragment 6.2.

6.3 Directions of maximum covariance

Principal components analysis measures the variance in the data by identify-
ing the so-called principal axes that give the directions of maximal variance
in decreasing importance. PCA sets a threshold and discards the principal
directions for which the variance is below that threshold.

156 Pattern analysis using eigen-decompositions

input Data S = {x1, . . . ,x�} , dimension k.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2 (j′Kj) jj′,
[V,Λ] = eig (K)
αj = 1

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 α
j
iκ(xi,x)

)k
j=1

output Transformed data S̃ = {x̃1, . . . , x̃�}.

Code Fragment 6.2. Pseudocode for the whitening algorithm.

Consider for a moment that we are tackling a regression problem. Per-
forming PCA as a precursor to finding a linear regressor is referred to as
principal components regression (PCR) and is motivated mainly through its
potential for denoising and hence reducing the variance of the resulting re-
gression error. There is, however, a danger inherent in this approach in that
what is important for the regression estimation is not the size of the variance
of the data, but how well it can be used to predict the output. It might be
that the high variance directions identified by PCA are uncorrelated with
the target, while a direction with relatively low variance nonetheless has
high predictive potential.

In this section we will begin to examine methods for measuring when
directions carry information useful for prediction. This will allow us again
to isolate directions that optimise the derived criterion. The key is to look
for relationships between two random variables.

In Section 5.3 we defined the covariance of two zero-mean univariate ran-
dom variables x and y as E[xy]. This is in contrast to the correlation coef-
ficient which normalises with respect to the variances of the two variables.
We now consider extending our consideration to multidimensional random
vectors.

Consider two multivariate random vectors giving rise to a dataset S con-
taining pairs (x,y) from two different spaces X and Y . We call such a
dataset paired in the sense that the process generating the data generates
items in pairs, one from X and one from Y .

Example 6.17 For example, if we have a set of labelled examples for
a supervised learning task, we can view it as a paired dataset by letting
the input space be X and the output space be Y . If the labels are binary
this makes examples from Y a Bernoulli sequence, but more generally for

6.3 Directions of maximum covariance 157

regression Y = R, and of course we can consider the case where Y = R
n or

indeed has a more complex structure.

We are interested in studying the covariance between the two parts of
a paired dataset even though those two parts live in different spaces. We
achieve this by using an approach similar to that adopted to study the
variance of random vectors. There we projected the data onto a direction
vector w to create a univariate random variable, whose mean and standard
deviation could subsequently be computed. Here we project the two parts
onto two separate directions specified by unit vectors wx and wy, to obtain
two random variables w′

xx and w′
yy that are again univariate and hence

whose covariance can be computed. In this way we can assess the relation
between x and y. Note that for the purposes of this exposition we are
assuming that the input space is the feature space. When we come to apply
this analysis in Section 6.7.1, we will introduce a kernel-defined feature space
for the first component only. We give a definition of a paired dataset in which
the two components correspond to distinct kernel mappings in Section 6.5.

Again following the analogy with the unsupervised case, given two di-
rections wx and wy, we can measure the covariance of the corresponding
random variables as

Ê
[
w′

xxw′
yy
]

= Ê
[
w′

xxy′wy

]
= w′

xÊ
[
xy′]wy = w′

xCxywy,

where we have used Cxy to denote the sample covariance matrix Ê [xy′]
between X and Y . If we consider two matrices X and Y whose ith rows are
the feature vectors of corresponding examples xi and yi, we can write

Cxy = Ê
[
xy′] =

1
�

�∑
i=1

xiy′
i =

1
�
X′Y.

Now that we are able to measure the covariance for a particular choice of
directions, it is natural to ask if we can choose the directions to maximise
this quantity. Hence, we would like to solve the following optimisation.

Computation 6.18 [Maximising Covariance] The directions wx, wy of
maximal covariance can be found as follows

maxwx,wy C(wx,wy) = w′
xCxywy = 1

�w
′
xX

′Ywy,
subject to ‖wx‖2 = ‖wy‖2 = 1.

(6.13)

We can again convert this to maximising a quotient by introducing an in-

158 Pattern analysis using eigen-decompositions

variance to scaling

max
wx,wy

C(wx,wy)
‖wx‖ ‖wy‖

= max
wx,wy

w′
xCxywy

‖wx‖ ‖wy‖
. (6.14)

Remark 6.19 [Relation to Rayleigh quotient] Note the similarity to the
Rayleigh quotient considered above, but in this case Cxy is not a square
matrix since its row dimension is equal to the dimension of X, while its
column dimension is given by the dimension of Y . Furthermore, even if
these dimensions were equal, Cxy would not be symmetric and here we are
optimising over two vectors.

Proposition 6.20 The directions that solve the maximal covariance opti-
misation (6.13) are the first singular vectors wx = u1 and wy = v1 of the
singular value decomposition of Cxy

Cxy = UΣV′;

the value of the covariance is given by the corresponding singular value σ1.

Proof Using the singular value decomposition of Cxy and taking into account
that U and V are orthornormal matrices so that, for example, ‖Vw‖ = ‖w‖
and any wx can be expressed as Uux for some ux, the solution to problem
(6.13) becomes

max
wx,wy :‖wx‖2=‖wy‖2=1

C(wx,wy) = max
ux,vy :‖Uux‖2=‖Vvy‖2=1

(Uux)
′ CxyVvy

= max
ux,vy :‖ux‖2=‖vy‖2=1

u′
xU

′UΣV′Vvy

= max
ux,vy :‖ux‖2=‖vy‖2=1

u′
xΣvy.

The last line clearly has a maximum of the largest singular value σ1, when
we take ux = e1 and vy = e1 the first unit vector (albeit of different dimen-
sions). Hence, the original problem is solved by taking wx = u1 = Ue1 and
wy = v1 = Ve1, the first columns of U and V respectively.

Proposition 6.20 shows how to compute the directions that maximise the
covariance. If we wish to identify more than one direction, as we did for
example with the principal components, we must apply the same strategy
of projecting the data onto the orthogonal complement by deflation. From
equation (5.8), this corresponds to the operations

X ←− X
(
I − u1u′

1

)
and Y ←− Y

(
I − v1v′

1

)
.

6.3 Directions of maximum covariance 159

The resulting covariance matrix is therefore

1
�

(
I − u1u′

1

)
X′Y

(
I − v1v′

1

)
=

(
I − u1u′

1

)
UΣV′ (I − v1v′

1

)
= UΣV′ − σ1u1v′

1

= Cxy − σ1u1v′
1,

implying that this corresponds to the deflation procedure for singular value
decomposition given in equation (6.1). The next two directions of maximal
covariance will now be given by the second singular vectors u2 and v2 with
the value of the covariance given by σ2. Proceeding in similar fashion we
see that the singular vectors give the orthogonal directions of maximal co-
variance in descending order. This provides a series of directions in X and
in Y that have the property of being maximally covariant resulting in the
singular value decomposition of Cxy

Cxy =
�∑

i=1

σiuiv′
i.

Computation and dual form If we wish to avoid performing a singular
value decomposition of Cxy, for example when working in a kernel-defined
feature space, we can find the singular vectors through an eigenanalysis of
the matrix CxyC′

xy, to obtain U, and of C′
xyCxy, to obtain V. Incidentally,

this also reminds us that the singular directions are orthogonal, since they
are the eigenvectors of a symmetric matrix. Now observe that

C′
xyCxy =

1
�2

Y′XX′Y =
1
�2

Y′KxY,

where Kx is the kernel matrix associated with the space X. The dimension
of this system will be Ny, the same as that of the Y space. It follows from
a direct comparison with PCA that

uj =
1
σj

Cxyvj .

Hence, the projection of a new point φ (x) onto uj is given by

u′
jφ (x) =

1
�σj

v′
jY

′Xφ (x) =
�∑

i=1

αj
iκ (xi,x) ,

where

αj =
1
�σj

Yvj .

160 Pattern analysis using eigen-decompositions

Remark 6.21 [On stability analysis] We do not provide a stability analysis
for the features selected by maximising the covariance, though it is clear that
we can view them as eigenvectors of a corresponding eigen-decomposition
based on a sample estimation of covariances. Hence, similar techniques to
those used in Appendix A.2 could be used to show that provided the number
of features extracted is small compared to the size of the sample, we can
expect the test example performance to mimic closely that of the training
sample.

Alternative characterisation There is another characterisation of the
largest singular vectors that motivates their use in choosing a prediction
function from X to Y in the case of a supervised learning problem with
Y = R

n. We will discuss multi-variate regression in more detail at the
end of the chapter, but present the characterisation here to complement the
covariance approach presented above. The approach focuses on the choice
of the orthogonal matrices of the singular value decomposition.

Suppose that we seek orthogonal matrices Û and V̂ such that the columns
of S = XÛ and T = YV̂ are as similar as possible. By this we mean that
we seek to minimise a simple discrepancy D between S and T defined as

D(Û, V̂) =
m∑
i=1

|si − ti|2 +
n∑

i=m+1

|si|2 , (6.15)

where we have assumed that S has more columns than T. If we let T̄ =
[T,0], or in other words T is padded with 0s to the size of S, we have

D(Û, V̂) =
∥∥S − T̄

∥∥2

F
=
〈
S − T̄,S − T̄

〉
F

= 〈S,S〉F − 2
〈
S, T̄

〉
F

+
〈
T̄, T̄

〉
F

= trS′S − 2 trS′T + trT′T

= tr Û′X′XÛ − 2 tr Û′X′YV̂ + tr V̂′Y′YV̂

= trX′X + trY′Y − 2 tr Û′X′YV̂.

Hence, the maximum of D is obtained when tr Û′X′YV̂ is minimised. But
we have

tr Û′X′YV̂ = � tr Û′UΣV′V̂ = � tr ṼŨ
′
Σ,

for appropriately sized orthogonal matrices Ṽ and Ũ. Since multiplying
by an orthogonal matrix from the left will not change the two-norm of the
columns, the value of the expression is clearly maximised when ṼŨ

′
= I,

6.4 The generalised eigenvector problem 161

the identity matrix. Hence, the choice of Û and V̂ that minimises D(Û, V̂)
is the orthogonal matrices of the singular value decomposition.

Before we continue our exploration of patterns that can be identified using
eigen-decompositions, we must consider a more expanded class of techniques
that solve the so-called generalised eigenvector problem.

6.4 The generalised eigenvector problem

A number of problems in kernel-based pattern analysis can be reduced to
solving a generalised eigenvalue problem, a standard problem in multivariate
statistics

Aw = λBw

with A, B symmetric matrices, B positive definite. Hence, the normal
eigenvalue problem is a special case obtained by taking B = I, the iden-
tity matrix. The problem arises as the solution of the maximisation of a
generalised Rayleigh quotient

ρ (w) =
w′Aw
w′Bw

,

which has a positive quadratic form rather than a simple norm squared in
the denominator. Since the ratio is invariant to rescaling of the vector w,
we can maximise the ratio by constraining the denominator to have value
1. Hence, the maximum quotient problem can be cast as the optimization
problem

max w′Aw
subject to w′Bw = 1.

(6.16)

Applying the Lagrange multiplier technique and differentiating with respect
to w we arrive at the generalised eigenvalue problem

Aw − λBw = 0. (6.17)

Since by assumption B is positive definite we can convert to a standard
eigenvalue problem by premultiplying by B−1 to obtain

B−1Aw = λw.

But note that although both A and B are assumed to be symmetric, B−1A
need not be. Hence we cannot make use of the main results of Section
3.1. In particular the eigenvectors will not in general be orthogonal. There
is, however, a related symmetric eigenvalue problem that reveals something

162 Pattern analysis using eigen-decompositions

about the structure of the eigenvectors of (6.16). Since B is positive definite
it possesses a symmetric square root B1/2 with the property that

B1/2B1/2 = B.

Consider premultiplying (6.17) by B1/2 and reparametrise the solution vec-
tor w as B−1/2v. We obtain the standard eigenvalue problem

B−1/2AB−1/2v = λv, (6.18)

where now the matrix B−1/2AB−1/2 = (B−1/2AB−1/2)′ is symmetric. Ap-
plying the results of Chapter 3, we can find a set of orthonormal eigenvector
solutions of (6.18) λi, vi. Hence, the solutions of (6.17) have the form

wi = B−1/2vi,

where v1, . . . ,v� are the orthonormal eigenvectors of (6.18) with the associ-
ated eigenvalues being the same. Since B1/2 is a bijection of the space R

�

we can write

ρ =
w′Aw
w′Bw

=

(
B1/2w

)′
B−1/2AB−1/2

(
B1/2w

)
∥∥B1/2w

∥∥2

the generalised Rayleigh quotient is given by the associated Rayleigh quo-
tient for the standard eigenvalue problem (6.18) after the bijection B1/2 has
been applied. We can therefore see the generalised eigenvalue problem as
an eigenvalue problem in a transformed space. The following propositions
are simple consequences of these observations.

Proposition 6.22 Any vector v can be written as a linear combination
of the eigenvectors wi, i = 1, . . . , �. The generalised eigenvectors of the
problem Aw = λBw have the following generalised orthogonality properties:
if the eigenvalues are distinct, then in the metrics defined by A and B, the
eigenvectors are orthonormal

w′
iBwj = δij

w′
iAwj = δijλi.

Proof For i �= j we have (assuming without loss of generality that λj �= 0)

0 = v′
ivj = w′

iB
1/2B1/2wj = w′

iBwj =
1
λj

w′
iAwj ,

which gives the result for i �= j. Now consider

λi = λiv′
ivi = λiw′

iB
1/2B1/2wi = λiw′

iBwi = w′
iAwi,

6.4 The generalised eigenvector problem 163

which covers the case of i = j.

Definition 6.23 [Conjugate vectors] The first property

w′
iBwj = δij , for i, j = 1, . . . , �,

is also referred to as conjugacy with respect to B, or equivalently that the
vectors wi are conjugate.

Proposition 6.24 There is a global maximum and minimum of the gener-
alised Rayleigh quotient. The quotient is bounded by the smallest and the
largest eigenvalue

ρ� ≤ ρ ≤ ρ1,

so that the global maximum ρ1 is attained by the associated eigenvector.

Remark 6.25 [Second derivatives] We can also study the stationary points,
by examining the second derivative or Hessian at the eigenvectors

H =
∂2ρ

∂w2
|w=wi =

2
w′

iBwi
(A − ρiB).

For all 1 < i < �, H has positive and negative eigenvalues, since(
B−1/2v1

)′
(A − ρiB)B−1/2v1 = w′

1Aw1 − ρi = ρ1 − ρi > 0,

while (
B−1/2v�

)′
(A − ρiB)B−1/2

v� = w′
�Aw� − ρi = ρ� − ρi < 0.

It follows that all the eigensolutions besides the largest and smallest are
saddle points.

Proposition 6.26 If λi, wi are the eigenvalues and eigenvectors of the
generalised eigenvalue problem

Aw = λBw,

then the matrix A can be decomposed as

A =
�∑

i=1

λiBwi (Bwi)
′ .

164 Pattern analysis using eigen-decompositions

Proof We can decompose

B−1/2AB−1/2 =
�∑

i=1

λiviv′
i,

implying that

A =
�∑

i=1

λiB1/2vi

(
B1/2vi

)′
=

�∑
i=1

λiBwi (Bwi)
′ ,

as required.

Definition 6.27 [Generalised deflation] The final proposition suggests how
we can deflate the matrix A in an iterative direct solution of the generalised
eigenvalue problem

Aw = λBw.

After finding a non-zero eigenvalue–eigenvector pair λ, w we deflate A by

A ←− A−λBw (Bw)′ = A−λBww′B′,

leaving B unchanged.

6.5 Canonical correlation analysis

We have looked at two ways of detecting stable patterns through the use of
eigen-decompositions firstly to optimise variance of the training data in ker-
nel PCA and secondly to maximise the covariance between two views of the
data typically input and output vectors. We now again consider the case in
which we have two views of the data which are paired in the sense that each
example as a pair of representations. This situation is sometimes referred
to as a paired dataset. We will show how to find correlations between the
two views.

An extreme case would be where the second view is simply the labels
of the examples. In general we are interested here in cases where we have
a more complex ‘output’ that amounts to a different representation of the
same object.

Example 6.28 A set of documents containing each document in two dif-
ferent languages is a paired dataset. The two versions give different views of
the same underlying object, in this case the semantic content of the docu-
ment. Such a dataset is known as a parallel corpus. By seeking correlations
between the two views, we might hope to extract features that bring out

6.5 Canonical correlation analysis 165

the underlying semantic content. The fact that a pattern has been found
in both views suggests that it is not related to the irrelevant representation
specific aspects of one or other view, but rather to the common underlying
semantic content. This example will be explored further in Chapter 10.

This section will develop the methodology for finding these common pat-
terns in different views through seeking correlations between projection val-
ues from the two views. Using an appropriate regularisation technique, the
methods are extended to kernel-defined feature spaces.

Recall that in Section 5.3 we defined the correlation between two zero-
mean univariate random variables x and y to be

ρ = corr (x, y) =
E [xy]√

E [xx] E [yy]
=

cov(x, y)√
var(x)

√
var(y)

.

Definition 6.29 [Paired dataset] A paired dataset is created when each
object x ∈ X can be viewed through two distinct projections into two feature
spaces

φa : x −→ Fa and φb : x −→ Fb,

where Fa is the feature space associated with one representation and Fb the
feature space for the other. Figure 6.3 illustrates this configuration. The
corresponding kernel functions are denoted κa and κb. Hence, we have a
multivariate random vector (φa (x) ,φb (x)). Assume we are given a training
set

S = {(φa (x1) ,φb (x1)) , . . . , (φa (x�) ,φb (x�))}

drawn independently at random according to the underlying distribution.
We will refer to such a set as a paired or aligned dataset in the feature space
defined by the kernels κa and κb.

We now seek to maximise the empirical correlation between xa = w′
aφa (x)

and xb = w′
bφb (x) over the projection directions wa and wb

max ρ =
Ê [xaxb]√

Ê [xaxa] Ê [xbxb]

=
Ê
[
w′

aφa (x)φb (x)′ wb

]
√

Ê
[
w′

aφa (x)φa (x)′ wa

]
Ê
[
w′

bφb (x)φb (x)′ wb

]

166 Pattern analysis using eigen-decompositions

Fig. 6.3. The two embeddings of a paired dataset.

=
w′

aCabwb√
w′

aCaawaw′
bCbbwb

, (6.19)

where we have decomposed the empirical covariance matrix as follows

C =
1
�

�∑
i=1

(φa (x) ,φb (x)) (φa (x) ,φb (x))′

=

(
1
�

∑�
i=1 φa (x)φa (x)′ 1

�

∑�
i=1 φb (x)φa (x)′

1
�

∑�
i=1 φa (x)φb (x)′ 1

�

∑�
i=1 φb (x)φb (x)′

)

=
(
Caa Cba

Cab Cbb

)
.

This optimisation is very similar to that given in (6.14). The only differ-
ence is that here the denominator of the quotient measures the norm of the
projection vectors differently from the covariance case. In the current opti-
misation the vectors wa and wb are again only determined up to direction
since rescaling wa by λa and wb by λb results in the quotient

λaλbw′
aCabwb√

λ2
aw′

aCaawaλ
2
bw

′
bCbbwb

=
λaλbw′

aCabwb

λaλb

√
w′

aCaawaw′
bCbbwb

=
w′

aCabwb√
w′

aCaawaw′
bCbbwb

.

This implies that we can constrain the two terms in the denominator to
individually have value 1. Hence, the problem is solved by the following
optimisation problem.

Computation 6.30 [CCA] Given a paired dataset with covariance matrix

6.5 Canonical correlation analysis 167

Cab, canonical correlation analysis finds the directions wa,wb that maximise
the correlation of corresponding projections by solving

maxwa,wb
w′

aCabwb

subject to w′
aCaawa = 1 and w′

bCbbwb = 1.
(6.20)

Solving CCA Applying the Lagrange multiplier technique to the optimi-
sation (6.20) gives

max w′
aCabwb −

λa

2
(
w′

aCaawa − 1
)
− λy

2
(
w′

bCbbwb − 1
)
.

Taking derivatives with respect to wa and wb we obtain the equations

Cabwb − λaCaawa = 0 and Cbawa − λbCbbwb = 0. (6.21)

Subtracting w′
a times the first from w′

b times the second we have

λaw′
aCaawa − λbw′

bCbbwb = 0,

which, taking into account the two constraints, implies λa = λb. Using λ

to denote this value we obtain the following algorithm for computing the
correlations.

Algorithm 6.31 [Primal CCA] The following method finds the directions
of maximal correlation:

Input covariance matrices Caa, Cbb, Cba and Cab

Process solve the generalised eigenvalue problem:(
0 Cab

Cba 0

)(
wa

wb

)
= λ

(
Caa 0
0 Cbb

)(
wa

wb

)
Output eigenvectors and eigenvalues wj

a, wj
b and λj > 0, j = 1, . . . , �.

(6.22)

This is an example of a generalised eigenvalue problem described in the
last section. Note that the value of the eigenvalue for a particular eigenvector
gives the size of the correlation since w′

a times the top portion of (6.22) gives

ρ = w′
aCabwb = λaw′

aCaawa = λ.

Hence, we have all eigenvalues lying in the interval [−1,+1], with each λi

and eigenvector (
wa

wb

)

168 Pattern analysis using eigen-decompositions

paired with an eigenvalue −λi with eigenvector(
wa

−wb

)
.

We are therefore only interested in half the spectrum which we can take to
be the positive eigenvalues. The eigenvectors corresponding to the largest
eigenvalues are those that identify the strongest correlations. Note that in
this case by Proposition 6.22 the eigenvectors will be conjugate with respect
to the matrix (

Caa 0
0 Cbb

)
,

so that for i �= j we have

0 =

(
wj

a

wj
b

)′(
Caa 0
0 Cbb

)(
wi

a

wi
b

)
=
(
wj

a

)′
Caawi

a +
(
wj

b

)′
Cbbwi

b

and

0 =

(
wj

a

wj
b

)′(
Caa 0
0 Cbb

)(
wi

a

−wi
b

)
=
(
wj

a

)′
Caawi

a −
(
wj

b

)′
Cbbwi

b

yielding (
wj

a

)′
Caawi

a = 0 =
(
wj

b

)′
Cbbwi

b.

This implies that, as with PCA, we obtain a diagonal covariance matrix if
we project the data into the coordinate system defined by the eigenvectors,
whether we project each view independently or simply the sum of the pro-
jections of the two views in the common space. The directions themselves
will not, however, be orthogonal in the standard inner product of the feature
space.

Dual form of CCA Naturally we wish to solve the problem in the dual
formulation. Hence, we consider expressing wa and wb in terms of their
respective parts of the training sample by creating a matrix Xa whose rows
are the vectors φa (xi), i = 1, . . . , � and the matrix Xb with rows φb (xi)

wa = X′
aαa and wb = X′

bαb.

Substituting into (6.20) gives

max α′
aXaX′

aXbX′
bαb

subject to α′
aXaX′

aXaX′
aαa = 1 and α′

bXbX′
bXbX′

bαb = 1,

6.5 Canonical correlation analysis 169

or equivalently the following optimisation problem.

Computation 6.32 [Kernel CCA] Given a paised dataset with respect to
kernels κa and κb, kernel canonical correlation analysis finds the directions
of maximal correlation by solving

maxαa,αb
α′

aKaKbαb

subject to α′
aK

2
aαa = 1 and α′

bK
2
bαb = 1,

where Ka and Kb are the kernel matrices for the two representations.

Figure 6.4 shows the two feature spaces with the projections of 7 points.
The shading corresponds to the value of the projection on the first correlation
direction using a Gaussian kernel in each feature space.

Overfitting in CCA Again applying the Lagrangian techniques this leads
to the equations

KaKbαb − λK2
aαa = 0 and KbKaαa − λK2

bαb = 0.

These equations highlight the potential problem of overfitting that arises in
high-dimensional feature spaces. If the dimension Na of the feature space
Fa satisfies Na � �, it is likely that the data will be linearly independent
in the feature space. For example this is always true for a Gaussian kernel.
But if the data are linearly independent in Fa the matrix Ka will be full
rank and hence invertible. This gives

αa =
1
λ
K−1

a Kbαb (6.23)

and so

K2
bαb − λ2K2

bαb = 0.

This equation will hold for all vectors αb with λ = 1. Hence, we are able to
find perfect correlations between arbitrary projections in Fb and an appro-
priate choice of the projection in Fa. Clearly these correlations are failing to
distinguish spurious features from those capturing the underlying semantics.
This is perhaps most clearly demonstrated if we consider a random permu-
tation σ of the examples for the second projections to create the vectors(

φa (xi) ,φb

(
xσ(i)

))
, i = 1, . . . , �.

The kernel matrix Ka will be unchanged and hence still invertible. We are
therefore still able to find perfect correlations even though the underlying
semantics are no longer correlated in the two representations.

170 Pattern analysis using eigen-decompositions

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Fig. 6.4. Two feature spaces for a paired dataset with shading indicating the value
of the projection onto the first correlation direction.

These observations show that the class of pattern functions we have se-
lected are too flexible. We must introduce some regularisation to control the
flexibility. We must, therefore, investigate the statistical stability of CCA,
if we are to ensure that meaningful patterns are found.

6.5 Canonical correlation analysis 171

Stability analysis of CCA Maximising correlation corresponds to min-
imising the empirical expectation of the pattern function

gwa,wb
(x) =

∥∥w′
aφa (x) − w′

bφb (x)
∥∥2 ,

subject to the same conditions, since

Ê

[∥∥w′
aφa (x) − w′

bφb (x)
∥∥2
]

= Ê

[∥∥w′
aφa (x)

∥∥2
]

+ Ê

[∥∥w′
bφb (x)

∥∥2
]
−

2Ê
[〈

w′
aφa (x) ,w′

bφb (x)
〉]

= 2
(
1 − w′

aCabwb

)
.

The function gwa,wb
(x) ≈ 0 captures the property of the pattern that we

are seeking. It assures us that the feature w′
aφa (x) that can be obtained

from one view of the data is almost identical to w′
bφb (x) computable from

the second view. Such pairs of features are therefore able to capture un-
derlying properties of the data that are present in both views. If our as-
sumption is correct, that what is essential is common to both views, then
these features must be capturing some important properties. We can ob-
tain a stability analysis of the function by simply viewing gwa,wb

(x) as a
regression function, albeit with special structure, attempting to learn the
constant 0 function. Applying the standard Rademacher bound, observe
that the empirical expected value of gwa,wb

(x) is simply 2 (1 − w′
aCabwb).

Furthermore, we can use the same technique as that described in Theorem
A.3 of Appendix A.2 to represent the function as a linear function in the
feature space determined by the quadratic kernel

κ̂ (x, z) = (κa (x, z) + κa (x, z))2 ,

with norm-squared

2
∥∥waw′

b

∥∥2

F
= 2 tr

(
wbw′

awaw′
b

)
= ‖wa‖2 ‖wb‖2 .

This gives the following theorem.

Theorem 6.33 Fix A and B in R
+. If we obtain a feature given by the

pattern function gwa,wb
(x) with ‖wa‖ ≤ A and ‖wb‖ ≤ B, on a paired

training set S of size � in the feature space defined by the kernels κa and κb
drawn i.i.d. according to a distribution D, then with probability greater than
1− δ over the generation of S, the expected value of gwa,wb

(x) on new data
is bounded by

ED [gwa,wb
(x)] ≤ 2

(
1 − w′

aCabwb

)
+

172 Pattern analysis using eigen-decompositions

AB

√√√√2
�

�∑
i=1

(κa(xi,xi) + κb(xi,xi))
2 + 3R2

√
ln(2/δ)

2�
,

where

R2 = max
x∈ supp(D)

(κa(x,x) + κb(x,x)) .

The theorem indicates that the empirical value of the pattern function
will be close to its expectation, provided that the norms of the two direc-
tion vectors are controlled. Hence, we must trade-off between finding good
correlations while not allowing the norms to become too large.

Regularisation of CCA Theorem 6.33 shows that the quality of the gen-
eralisation of the associated pattern function is controlled by the product
of the norms of the weight vectors wa and wb. We therefore introduce a
penalty on the norms of these weight vectors. This gives rise to the primal
optimisation problem.

Computation 6.34 [Regularised CCA] The regularised version of CCA is
solved by the optimisation:

max
wa,wb

ρ (wa,wb) (6.24)

=
w′

aCabwb√(
(1 − τa)w′

aCaawa + τa ‖wa‖2
)(

(1 − τ b)w′
bCbbwb + τ b ‖wb‖2

) ,

where the two regularisation parameters τa and τ b control the flexibility in
the two feature spaces.

Notice that τa, τ b interpolate smoothly between the maximisation of the
correlation and the maximisation of the covariance described in Section 6.3.
Dualising we arrive at the following optimisation problem.

Computation 6.35 [Kernel regularised CCA] The dual regularised CCA
is solved by the optimisation

maxαa,αb
α′

aKaKbαb

subject to (1 − τa)α′
aK

2
aαa + τaα

′
aKaαa = 1

and (1 − τ b)α′
bK

2
bαb + τ bα

′
bKbαb = 1.

6.5 Canonical correlation analysis 173

Note that as with ridge regression we regularised by penalising the norms
of the weight vectors. Nonetheless, the resulting form of the equations ob-
tained does not in this case correspond to a simple addition to the diagonal
of the kernel matrix, the so-called ridge of ridge regression.

Solving dual regularised CCA Using the Lagrangian technique, we can
now obtain the equations

KaKbαb − λ (1 − τa)K2
aαa − λτaKaαa = 0

and KbKaαa − λ (1 − τ b)K2
bαb − λτ bKbαb = 0,

hence forming the generalised eigenvalue problem(
0 KaKb

KbKa 0

)(
wa

wb

)

= λ

(
(1 − τa)K2

a + τaKa 0
0 (1 − τ b)K2

b + τ bKb

)(
αa

αb

)
.

One difficulty with this approach can be the size of the resulting generalised
eigenvalue problem, since it will be twice the size of the training set. A
method of tackling this is to use the partial Gram–Schmidt orthonormali-
sation of the data in the feature space to form a lower-dimensional approx-
imation to the feature representation of the data. As described in Section
5.2 this is equivalent to performing an incomplete Cholesky decomposition
of the kernel matrices

Ka = R′
aRa and Kb = R′

bRb,

with the columns of Ra and Rb being the new feature vectors of the train-
ing points in the orthonormal basis created by the Gram–Schmidt process.
Performing an incomplete Cholesky decomposition ensures that Ra ∈ R

na×�

has linearly independent rows so that RaR′
a is invertible. The same holds

for RbR′
b with Rb ∈ R

nb×�.
We can now view our problem as a primal canonical correlation analysis

with the feature vectors given by the columns of Ra and Rb. This leads to
the equations

RaR′
bwb − λ (1 − τa)RaR′

awa − λτawa = 0 (6.25)

and RbR′
awa − λ (1 − τ b)RbR′

bwb − λτ bwb = 0.

From the first equation, we can now express wa as

wa =
1
λ

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bwb,

174 Pattern analysis using eigen-decompositions

which on substitution in the second gives the normal (albeit non-symmetric)
eigenvalue problem(
(1 − τ b)RbR′

b + τ bI
)−1 RbR′

a

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bwb = λ2wb

of dimension nb × nb. After performing a full Cholesky decomposition

R′R =
(
(1 − τ b)RbR′

b + τ bI
)

of the non-singular matrix on the right hand side, we then take

ub = Rwb,

which using the fact that the transpose and inversion operations commute
leads to the equivalent symmetric eigenvalue problem(

R′)−1 RbR′
a

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bR
−1ub = λ2ub.

By symmetry we could have created an eigenvalue problem of dimension
na × na. Hence, the size of the eigenvalue problem can be reduced to the
smaller of the two partial Gram–Schmidt dimensions.

We can of course recover the full unapproximated kernel canonical cor-
relation analysis if we simply choose na = rank (Ka) and nb = rank (Kb).
Even in this case we have avoided the need to solve a generalised eigenvalue
problem, while at the same time reducing the dimension of the problem by
at least a factor of two since min (na, nb) ≤ �. The overall algorithm is as
follows.

Algorithm 6.36 [Kernel CCA] Kernel canonical correlation analysis can
be solved as shown in Code Fragment 6.3.

This means that we can have two views of an object that together create
a paired dataset S through two different representations or kernels. We
use this procedure to compute correlations between the two sets that are
stable in the sense that they capture properties of the underlying distribution
rather than of the particular training set or view.

Remark 6.37 [Bilingual corpora] Example 6.28 has already mentioned as
examples of paired datasets so-called parallel corpora in which each docu-
ment appears with its translation to a second language. We can apply the
kernel canonical correlation analysis to such a corpus using kernels for text
that will be discussed in Chapter 10. This will provide a means of projecting
documents from either language into a common semantic space.

6.5 Canonical correlation analysis 175

Input kernel matrices Ka and Kb with parameters τa and τ b

Process Perform (incomplete) Cholesky decompositions:
Ka = R′

aRa and Kb = R′
bRb of dimensions na and nb;

perform a complete Cholesky decomposition:
(1 − τ b)RbR′

b + τ bI = R′R
solve the eigenvalue problem:
(R′)−1 RbR′

a ((1 − τa)RaR′
a + τaI)

−1 RaR′
bR

−1ub = λ2ub

to give each λj , uj
b

compute wj
b = R−1ub, wj

b = wj
b/‖w

j
b‖

wj
a = 1

λj
((1 − τa)RaR′

a + τaI)
−1 RaR′

bw
j
b

wj
a = wj

a/‖wj
a‖

Output eigenvectors and values wj
a, wj

b and λj > 0,.
j = 1, . . . ,min (na, nb)

.

Code Fragment 6.3. Pseudocode for the kernel CCA algorithm.

Remark 6.38 [More than 2 representations] Notice that a simple manipu-
lation of equation (6.22) gives the alternative formulation(

Caa Cab

Cba Cbb

)(
wa

wb

)
= (1 + λ)

(
Caa 0
0 Cbb

)(
wa

wb

)

which suggests a natural generalisation, namely seeking correlations between
three or more views. Given k multivariate random variables, it reduces to
the generalised eigenvalue problem

C11 C12 · · · C1k

C21 C22 · · · ...
...

...
. . .

...
Ck1 · · · · · · Ckk

w1
...
...
wk

= ρ

C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...
0 0 · · · Ckk

w1
...
...
wk

 ,

where we use Cij to denote the covariance matrix between the ith and jth
views. Note that for k > 2 there is no obvious way of reducing such a
generalised eigenvalue problem to a lower-dimensional eigenvalue problem
as was possible using the Cholesky decomposition in the case k = 2.

176 Pattern analysis using eigen-decompositions

6.6 Fisher discriminant analysis II

We considered the Fisher discriminant in Section 5.4, arriving at a dual
formulation that could be solved by solving a set of linear equations. We
revisit it here to highlight the fact that it can also be viewed as the solution
of a generalised eigenvalue problem and so is closely related to the correla-
tion and covariance analysis we have been studying in this chapter. Recall
that Computation 5.14 characterised the regularised Fisher discriminant as
choosing its discriminant vector to maximise the quotient

(µ+
w − µ−

w)2(
σ+

w

)2 +
(
σ−

w

)2 + λ ‖w‖2
.

This can be expressed using the notation of Section 5.4 as

max
w

w′X′yy′Xw
λw′w + �

2�+�−w′X′BXw
= max

w

w′Ew
w′Fw

,

where

E = X′yy′X and F = λI +
�

2�+�−
X′BX.

Hence, the solution is the eigenvector corresponding to the largest eigenvalue
of the generalised eigenvalue problem

Ew = µFw,

as outlined in Section 6.4. Note that the matrix E has rank 1 since it can
be decomposed as

E =
(
X′y

) (
y′X

)
,

where X′y has just one column. This implies that only the first eigenvector
contains useful information and that it can be found by the matrix inversion
procedure described in Section 5.4.

6.7 Methods for linear regression

The previous section showed how the Fisher discriminant is equivalent to
choosing a feature by solving a generalised eigenvalue problem and then
defining a threshold in that one-dimensional space. This section will return
to the problem of regression and consider how the feature spaces derived
from solving eigenvalue problems might be used to enhance regression accu-
racy.

We first met regression in Chapter 2 when we considered simple linear

6.7 Methods for linear regression 177

regression subsequently augmented with a regularisation of the regression
vector w to create so-called ridge regression defined in Computation 7.21.
In this section we consider performing linear regression using a new set
of coordinates that has been extracted from the data with the methods
presented above. This will lead to an easier understanding of some popular
regression algorithms.

First recall the optimisation of least squares regression. We seek a vector
w that solves

min
w

‖Xw − y‖2
2 ,

where as usual the rows of X contain the feature vectors of the examples
and the desired outputs are stored in the vector y. If we wish to consider
a more general multivariate regression both w and y become matrices W
and Y and the norm is taken as the Frobenius matrix norm

min
W

‖XW − Y‖2
F ,

since this is equivalent to summing the squared norms of the individual
errors.

Principal components regression Perhaps the simplest method to con-
sider is the use of the features returned by PCA. If we were to use the first
k eigenvectors of X′X as our features and leave Y unchanged, this would
correspond to performing PCA and regressing in the feature space given by
the first k principal axes, so the data matrix now becomes XUk, where Uk

contains the first k columns of the matrix U from the singular value decom-
position X′ = UΣV′. Using the fact that premultiplying by an orthogonal
matrix does not affect the norm, we obtain

min
B

‖XUkB − Y‖2
F = min

B

∥∥V′VΣ′U′UkB − V′Y
∥∥2

F

= min
B

∥∥Σ′
kB − V′Y

∥∥2

F
,

where Σk is the matrix obtained by taking the first k rows of Σ. Letting
Σ−1

k denote the matrix obtained from Σk by inverting its diagonal elements,
we have Σ−1

k Σ′
k = Ik, so the solution B with minimal norm is given by

B = Σ−1
k V′Y = Σ̄−1

k V′
kY,

where Vk contains the first k columns of V and Σ̄−1
k is the square matrix

containing the first k columns of Σ−1
k . It follows from the singular value

decomposition that

V′
k = Σ̄−1

k U′
kX

′, (6.26)

178 Pattern analysis using eigen-decompositions

so we can also write

B = Σ̄−2
k U′

kX
′Y.

This gives the primal form emphasising that the components are computed
by an inner product between the corresponding feature vectors uj that form
the columns of U and the data matrix X′Y weighted by the inverse of the
corresponding eigenvalue.

If we recall that V contains the eigenvectors vj of the kernel matrix and
that kernel PCA identifies the dual variables of the directions uj as

1
σj

vj ,

it follows from equation (6.26) that the regression coefficient for the jth
principal component is given by the inner product between its dual rep-
resentation and the target outputs again with an appropriate weighting of
the inverse of the corresponding singular value. We can therefore write the
resulting regression function for the univariate case in the dual form as

f (x) =
k∑

j=1

1
σj

�∑
s=1

vjsys

�∑
i=1

1
σj

vjiκ (xi,x) ,

where vjs denotes the sth component of the jth eigenvector vj . Hence

f (x) =
�∑

i=1

αiκ (xi,x)

where

α =
k∑

j=1

1
λj

(
v′
jy
)
vj .

The form of the solution has an intuitive feel in that we work out the covari-
ances with the target values of the different eigenvectors and weight their
contribution to α proportionately. This also implies that we can continue
to add additional dimensions without recomputing the previous coefficients
in the primal space but by simply adding in a vector to α in the dual resp-
resentation. This is summarised in Algorithm 6.39.

Algorithm 6.39 [Principal components regression] The dual principal com-
ponents regression (PCR) algorithm is given in Code Fragment 6.4.

6.7 Methods for linear regression 179

input Data S = {x1, . . . ,x�} , dimension k and
target output vectors ys, s = 1, . . . ,m.

process Kij = κ (xi,xj), i, j = 1, . . . , �
K = K − 1

� jj
′K − 1

�Kjj′ + 1
�2 (j′Kj) jj′,

[V,Λ] = eig (K)
αs =

∑k
j=1

1
λj

(
v′
jy

s
)
vj , s = 1, . . . ,m.

output Regression functions fs (x) =
∑�

i=1 α
s
iκ (xi,x), s = 1, . . . ,m.

Code Fragment 6.4. Pseudocode for dual principal components regression.

Regression features from maximal covariance We can see from the
previous example that the critical measure for the different coordinates is
their covariance with the matrix X′Y, since the regression coefficient is pro-
portional to this quantity. This suggests that rather than using PCA to
choose the features, we should select directions that maximise the covari-
ance. Proposition 6.20 showed that the directions that maximise the co-
variance are given by the singular vectors of the matrix X′Y. Furthermore,
the characterisation of the minimisers of equation (6.15) as the orthogonal
matrices of the singular value decomposition of X′Y suggests that they may
provide a useful set of features when solving a regression problem from an
input space X = R

n to an output space Y = R
m. There is an implicit re-

striction as there are only m non-zero singular values of the matrix X′Y. We
must therefore consider performing regression of the variables Y in terms of
XUk, where Uk is the matrix formed of the first k ≤ m columns of U. We
seek a k ×m matrix of coefficients B that solves the optimisation

min
B

‖XUkB − Y‖2
F = min

B
〈XUkB − Y,XUkB − Y〉F

= min
B

(
tr(B′U′

kX
′XUkB) − 2 tr(B′U′

kX
′Y)

+ tr(Y′Y)
)

= min
B

(
tr(B′U′

kX
′XUkB) − 2 tr(B′U′

kX
′Y)

)
.

The final regression coefficients are given by UkB. We seek the minimum by
computing the gradient with respect to B and setting to zero. This results
in the equation

U′
kX

′XUkB = U′
kX

′Y = U′
kUΣV′ = ΣkV′

k.

180 Pattern analysis using eigen-decompositions

The solution for B can be computed using, for example, a Cholesky decom-
position of U′

kX
′XUk, though for the case where k = 1, it is given by

B =
σ1

u′
1X′Xu1

v′
1.

If we wish to compute the dual representation of this regression coefficient,
we must express

u1B =
σ1

u′
1X′Xu1

u1v′
1 = X′α,

for some α. By observing that u1 = 1
σ1

X′Yv1 we obtain

α =
1

u′
1X′Xu1

Yv1v′
1.

Note that the 1
σ1

Yv1 are the dual variables of u1, so that we again see
the dual variables of the feature playing a role in determining the dual
representation of the regression coefficients. For k > 1, there is no avoiding
solving a system of linear equations.

When we compare PCR and the use of maximal covariance features, PCR
has two advantages. Firstly, the coefficients can be obtained by simple inner
products rather than solving linear equations, and secondly, the restriction
to take k ≤ m does not apply. The disadvantage of PCR is that the choice of
features does not take into account the output vectors Y so that the features
are unable to align with the maximal covariance directions. As discussed
above the features that carry the regression information may be of relatively
low variance and so could potentially be removed by the PCA phase of the
algorithm.

The next section will describe an algorithm known as partial least squares
that combines the advantages of both methods while further improving the
covariance obtained and providing a simple method for iteratively computing
the feature directions.

6.7.1 Partial least squares

When developing a regression algorithm, it appears that it may not be the
variance of the inputs, but their covariance with the target that is more
important. The partial least squares approach uses the covariance to guide
the selection of features before performing least-squares regression in the
derived feature space. It is very popular in the field of chemometrics, where
high-dimensional and correlated representations are commonplace. This sit-
uation will also arise if we use kernels to project the data into spaces where

6.7 Methods for linear regression 181

the new coordinates are far from uncorrelated and where the dimension of
the space is much higher than the sample size. The combination of PLS
with kernels produces a powerful algorithm that we will describe in the next
subsection after first deriving the primal version here.

Our first goal is to find the directions of maximum covariance. Since we
have already described in Section 6.3 that these are computed by the singular
value decomposition of X′Y and have further discussed the difficulties of
using the resulting features at the end of the previous section, it seems a
contradiction that we should be able to further improve the covariance. This
is certainly true of the first direction and indeed the first direction that is
chosen by the partial least squares algorithm is that given by the singular
vector corresponding to the largest singular value. Consider now performing
regression using only this first direction. The regression coefficient is the one
for the case k = 1 given in the previous subsection as bv′

1, where

b =
σ1

u′
1X′Xu1

,

while the approximation of Y will be given by

bXu1v′
1.

Hence, the values across the training set of the hidden feature that has been
used are given in the vector Xu1. This suggests that rather than deflate X′Y
by σ1u1v′

1 as required for the singular value decomposition, we deflate X
by projecting its columns into the space orthogonal to Xu1. Using equation
(5.8) which gives the projection matrix for a normalised vector w as(

I − ww′) ,

we obtain the deflation of X = X1 as

X2 =
(
I − X1u1u′

1X
′
1

u′
1X

′
1X1u1

)
X1 = X1−

X1u1u′
1X

′
1X1

u′
1X

′
1X1u1

= X1

(
I − u1u′

1X
′
1X1

u′
1X

′
1X1u1

)
.

(6.27)
If we now recursively choose a new direction, the result will be that the
vector of values of the next hidden feature will necessarily be orthogonal
to Xu1 since it will be a linear combination of the columns of the deflated
matrix all of which are othogonal to that vector.

Remark 6.40 [Conjugacy] It is important to distinguish between the or-
thogonality between the values of a feature across the training examples,
and the orthogonality of the feature vectors. Vectors that satisfy the or-
thogonality considered here are referred to as conjugate. Furthermore, this

182 Pattern analysis using eigen-decompositions

will imply that the coefficients can be computed iteratively at each stage
since there can be no interaction between a set of conjugate features.

Remark 6.41 [Conjugacy of eigenvectors] It may seem surprising that de-
flating using Xu1 leads to orthogonal features when, for an eigenvalue de-
composition, we deflate by the equivalent of u1; that is, the first eigenvector.
The reason that the eigenvalue deflation leads to conjugate features is that
for the eigenvalue case Xu1 = σ1v1 is the first eigenvector of the kernel ma-
trix. Hence, using the eigenvectors results in features that are automatically
conjugate.

Since we have removed precisely the direction that contributed to the
maximal covariance, namely Xu1, the maximal covariance of the deflated
matrix must be at least as large as σ2, the second singular value of the
original matrix. In general, the covariance of the deflated matrix will be
larger than σ2. Furthermore, this also means that the restriction to k ≤ m

no longer applies since we do not need to deflate Y at all. We summarise
the PLS feature extraction in Algorithm 6.42.

Algorithm 6.42 [PLS feature extraction] The PLS feature extraction al-
gorithm is given in Code Fragment 6.5.

input Data matrix X ∈ R
�×N , dimension k, target vectors Y ∈ R

�×m.
process X1 = X

for j = 1, . . . , k
let uj ,vj , σj be the first singular vector/value of X′

jY,

Xj+1 =
(
I − Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)
Xj

end
output Feature directions uj , j = 1, . . . , k.

Code Fragment 6.5. Pseudocode for PLS feature extraction.

Remark 6.43 [Deflating Y] We can if we wish use a similar deflation strat-
egy for Y giving, for example

Y2 =
(
I − X1u1u′

1X
′
1

u′
1X

′
1X1u1

)
Y.

Surprisingly even if we do, the fact that we are only removing the explained
covariance means it will have no effect on the extraction of subsequent fea-
tures. An alternative way of seeing this is that we are projecting into the

6.7 Methods for linear regression 183

space spanned by the columns of X2 and so are only removing components
parallel to X1u1. This also ensures that we can continue to extract hidden
features as long as there continues to be explainable variance in Y, typically
for values of k > m. Deflating Y will, however, be needed for dual partial
least squares.

Remark 6.44 [Relation to Gram–Schmidt orthonormalisation] For one-
dimensional outputs the PLS feature extraction can be viewed as a Gram–
Schmidt orthonormalisation of the so-called Krylov space of vectors

X′y,
(
X′X

)1X′y, . . . ,
(
X′X

)k−1 X′y

with respect to the inner product

〈a,b〉 = a′(X′X
)
b.

It is also closely related to the conjugate gradient method as applied to
minimising the expression

1
2
u′(X′X

)
u − yX′u.

Orthogonality and conjugacy of PLS features There are some nice
properties of the intermediate quantities computed in the algorithm. For
example the vectors ui are not only conjugate but also orthogonal as vectors,
as the following derivation demonstrates. Suppose i < j, then we can write

Xj = Z
(
Xi −

Xiuiu′
iX

′
iXi

u′
iX

′
iXiui

)
,

for some matrix Z. Hence

Xjui = Z
(
Xi −

Xiuiu′
iX

′
iXi

u′
iX

′
iXiui

)
ui = 0. (6.28)

Note that uj is in the span of the rows of Xj , that is uj = X′
jα, for some

α. It follows that

u′
jui = α′Xjui = 0.

Furthermore, if we let

pj =
X′

jXjuj

u′
jX

′
jXjuj

,

184 Pattern analysis using eigen-decompositions

we have u′
ipj = 0 for i < j. This follows from

u′
ipj =

u′
iX

′
jXjuj

u′
jX

′
jXjuj

= 0, (6.29)

again from equation (6.28). Furthermore, we clearly have u′
jpj = 1. The

projection of Xj can also now be expressed as

Xj+1 = Xj

(
I −

uju′
jX

′
jXj

u′
jX

′
jXjuj

)
= Xj

(
I − ujp′

j

)
. (6.30)

Computing the regression coefficients If we consider a test point with
feature vector φ (x) the transformations that we perform at each step should
also be applied to φ1 (x) = φ (x) to create a series of feature vectors

φj+1 (x)′ = φj (x)′
(
I − ujp′

j

)
.

This is the same operation that is performed on the rows of Xj in equation
(6.30). We can now write

φ (x)′ = φk+1 (x)′ +
k∑

j=1

φj (x)′ ujp′
j .

The feature vector that we need for the regression φ̂ (x) has components

φ̂ (x) =
(
φj (x)′ uj

)k
j=1

,

since these are the projections of the residual vector at stage j onto the next
feature vector uj . Rather than compute φj (x)′ iteratively, consider using
the inner products between the original φ (x)′ and the feature vectors uj

stored as the columns of the matrix U

φ (x)′ U = φk+1 (x)′ U +
k∑

j=1

φj (x)′ ujp′
jU

= φk+1 (x)′ U + φ̂ (x)′ P′U,

where P is the matrix whose columns are pj , j = 1, . . . , k. Finally, since for
s > j, (I − usp′

s)uj = uj , we can write

φk+1 (x)′ uj = φk (x)′
(
I − ukp′

k

)
uj = 0, for j = 1, . . . , k.

It follows that the new feature vector can be expressed as

φ̂ (x)′ = φ (x)′ U
(
P′U

)−1 .

6.7 Methods for linear regression 185

As observed above the regression coefficients for the jth dimension of the
new feature vector is

σj

u′
jX

′
jXjuj

v′
j ,

where vj is the complementary singular vector associated with uj so that

σjvi = Y′Xiui

It follows that the overall regression coefficients can be computed as

W = U
(
P′U

)−1 C′, (6.31)

where C is the matrix with columns

cj =
Y′Xjuj

u′
jX

′
jXjuj

.

This appears to need a matrix inversion, but equation (6.29) implies that
the matrix P′U is upper triangular with constant diagonal 1 so that the
computation of (

P′U
)−1 C′

only involves the solution of m sets of k linear equations in k unknowns with
an upper triangular matrix.

Iterative computation of singular vectors The final promised ingredi-
ent of the new algorithm is an iterative method for computing the maximal
singular value and associated singular vectors. The technique is known as
the iterative power method and can also be used to find the largest eigen-
value of a matrix. It simply involves repeatedly multiplying a random initial
vector by the matrix and then renormalising. Supposing that ZΛZ′ is the
eigen-decomposition of a matrix A, then the computation

Asx =
(
ZΛZ′)s x = ZΛsZ′x ≈ z1λ

s
1z

′
1x

shows that the vector converges to the largest eigenvector and the renormal-
isation coefficient to the largest eigenvalue provided z′1x �= 0.

In general this is not very efficient, but in the case of low-rank matrices
such as Cxy when the output dimension m is small, it proves very effective.
Indeed for the case when m = 1 a single iteration is sufficient to find the
exact solution. Hence, for solving a standard regression problem this is more
efficient than performing an SVD of X′Y.

186 Pattern analysis using eigen-decompositions

Algorithm 6.45 [Primal PLS] The primal PLS algorithm is given in Code
Fragment 6.6. The repeat loop computes the first singular value by the

input Data matrix X ∈ R
�×N , dimension k, target outputs Y ∈ R

�×m.
process µ = 1

�X
′j computes the means of components

X1 = X − jµ′ centering the data
Ŷ = 0
for j = 1, . . . , k
uj=first column of X′

jY
uj= uj/ ‖uj‖
repeat
uj = X′

jYY′Xjuj

uj= uj/ ‖uj‖
until convergence
pj = X′

jXjuj

u′
jX

′
jXjuj

cj = Y′Xjuj

u′
jX

′
jXjuj

Ŷ = Ŷ + Xjujc′j
Xj+1 = Xj

(
I − ujp′

j

)
end
W = U (P′U)−1 C′

output Mean vector µ, training outputs Ŷ, regression coefficients W

Code Fragment 6.6. Pseudocode for the primal PLS algorithm.

iterative method. This results in uj converging to the first right singular
vector Y′Xj . Following the loop we compute pj and cj , followed by the
deflation of Xj given by

X → X − Xujp′
j .

as required. We can deflate Y to its residual but it does not affect the
correlations discovered since the deflation removes components in the space
spanned by Xjuj , to which Xj+1 has now become orthogonal. From our
observations above it is clear that the vectors Xjuj generated at each stage
are orthogonal to each other.

We must now allow the algorithm to classify new data. The regression
coefficients W are given in equation (6.31).

Code Fragment 6.7 gives Matlab code for the complete PLS algorithm in
primal form. Note that it begins by centering the data since covariances are
computed on centred data.

We would now like to show how this selection can be mimicked in the dual
space.

6.7 Methods for linear regression 187

% X is an ell x n matrix whose rows are the training inputs
% Y is ell x m containing the corresponding output vectors
% T gives the number of iterations to be performed
mux = mean(X); muy = mean(Y); jj = ones(size(X,1),1);
X = X - jj*mux; Y = Y - jj*muy;
for i=1:T
YX = Y’*X;
u(:,i) = YX(1,:)’/norm(YX(1,:));
if size(Y,2) > 1, % only loop if dimension greater than 1
uold = u(:,i) + 1;
while norm(u(:,i) - uold) > 0.001,
uold = u(:,i);
tu = YX’*YX*u(:,i);
u(:,i) = tu/norm(tu);

end
end
t = X*u(:,i);
c(:,i) = Y’*t/(t’*t);
p(:,i) = X’*t/(t’*t);
trainY = trainY + t*c(:,i)’;
trainerror = norm(Y - trainY,’fro’)/sqrt(ell)
X = X - t*p(:,i)’;
% compute residual Y = Y - t*c(:,i)’;

end
% Regression coefficients for new data
W = u * ((p’*u)\c’);
% Xtest gives new data inputs as rows, Ytest true outputs
elltest = size(Xtest,1); jj = ones(elltest,1);
testY = (Xtest - jj*mux) * W + jj*muy;
testerror = norm(Ytest - testY,’fro’)/sqrt(elltest)

Code Fragment 6.7. Matlab code for the primal PLS algorithm.

6.7.2 Kernel partial least squares

The projection direction in the feature space at each stage is given by the
vector uj . This vector is in the primal space while we must work in the dual
space. We therefore express a multiple of uj as

ajuj = X′
jβj ,

which is clearly consistent with the derivation of uj in the primal PLS algo-
rithm. For the dual PLS algorithm we must implement the deflation of Y.
This redundant step for the primal will be needed to get the required dual
representations. We use the notation Yj to denote the jth deflation. This
leads to the following recursion for β

β = YjY′
jXjX′

jβ = YjY
′
jKjβ

188 Pattern analysis using eigen-decompositions

with the normalisation β =
β

‖β‖ .

This converges to a dual representation βj of a scaled version ajuj of uj ,
where note that we have moved to a kernel matrix Kj . Now we need to
compute a rescaled τ j = ajXjuj and cj from βj . We have

τ j = ajXjuj = XjX′
jβj = Kjβj ,

while we work with a rescaled version ĉj of cj

ĉj =
Y′

jτ j

τ ′
jτ j

=
Y′

jXjuj

aju′
jX

′
jXjuj

=
1
aj

cj ,

so that we can consider τ j as a rescaled dual representation of the output
vector cj . However, when we compute the contribution to the training
output values

τ j ĉ′j = Xjuj

(
Y′

jXjuj

u′
jX

′
jXjuj

)′

,

the rescalings cancel to give the correct result. Again with an automatic
correction for the rescaling, Algorithm 6.42 gives the deflation of Xj as

Xj+1 =

(
I −

τ jτ
′
j

τ ′
jτ j

)
Xj ,

with an equivalent deflation of the kernel matrix given by

Kj+1 = Xj+1X′
j+1

=

(
I −

τ jτ
′
j

τ ′
jτ j

)
XjX′

j

(
I −

τ jτ
′
j

τ ′
jτ j

)

=

(
I −

τ jτ
′
j

τ ′
jτ j

)
Kj

(
I −

τ jτ
′
j

τ ′
jτ j

)
,

all computable without explicit feature vectors. We also need to consider
the vectors pj

pj =
X′

jXjuj

u′
jX

′
jXjuj

= aj
X′

jτ j

τ ′
jτ j

.

6.7 Methods for linear regression 189

Properties of the dual computations We now consider the properties
of these new quantities. First observe that the τ j are orthogonal since for
j > i

τ ′
jτ i = ajaiu′

jX
′
jXiui = 0,

as the columns of Xj are all orthogonal to Xiui. This furthermore means
that for i < j (

I − τ iτ
′
i

τ ′
iτ i

)
τ j = τ j ,

implying

X′
jτ j = X′τ j ,

so that

pj = aj
X′τ j

τ ′
jτ j

.

Note βj can be written as Yjxj for xj = bjY′
jKjβj , for some scaling bj .

This implies that provided we deflate Y using

Yj+1 =

(
I −

τ jτ
′
j

τ ′
jτ j

)
Yj ,

so the columns of Yj are also orthogonal to Xiui for i < j, it follows that

β′
jτ i = x′

jY
′
jXiui = 0.

From this we have (
I − τ iτ

′
i

τ ′
iτ i

)
βj = βj ,

for i < j, so that

X′
jβj = X′βj

Computing the regression coefficients All that remains to be computed
are the regression coefficients. These again must be computed in dual form,
that is we require

W = X′α,

so that a new input φ (x) can be processed using

φ (x)′ W = φ (x)′ X′α = k′α,

190 Pattern analysis using eigen-decompositions

where k is the vector of inner products between the test point and the
training inputs. From the analysis of the primal PLS in equation (6.31) we
have

W = U
(
P′U

)−1 C′.

Using B to denote the matrix with columns βj and diag (a) for the diagonal
matrix with entries diag (a)ii = ai, we can write

U = X′Bdiag (a)−1 .

Similarly using T to denote the matrix with columns τ j

P′U = diag (a) diag
(
τ ′
iτ i

)−1 T′XX′Bdiag (a)−1

= diag (a) diag
(
τ ′
iτ i

)−1 T′KB diag (a)−1 .

Here diag (τ ′
iτ i) is the diagonal matrix with entries diag (τ ′

iτ i)ii = τ ′
iτ i.

Finally, again using the orthogonality of Xjuj to τ i, for i < j, we obtain

cj =
Y′

jXjuj

u′
jX

′
jXjuj

=
Y′Xjuj

u′
jX

′
jXjuj

= aj
Y′τ j

τ ′
jτ j

,

making

C = Y′Tdiag
(
τ ′
iτ i

)−1 diag (a) .

Putting the pieces together we can compute the dual regression variables as

α = B
(
T′KB

)−1 T′Y.

Finally, the dual solution is given component-wise by

fj(x) =
�∑

i=1

αj
iκ (xi,x) , j = 1, . . . ,m.

Remark 6.46 [Rescaling matrices] Observe that

T′KB = diag
(
τ ′
iτ i

)
diag (a)−1 P

′
Udiag (a)

and so is also upper triangular, but with rows and columns rescaled. The
rescaling caused by diag (τ ′

iτ i) could be removed since we can easily compute
this matrix. This might be advantageous to increase the numerical stability,
since P′U was optimally stable with diagonal entries 1, so the smaller the
rescalings the better. The matrix diag (a) on the other hand is not readily
accessible.

6.7 Methods for linear regression 191

Remark 6.47 [Notation] The following table summarises the notation used
in the above derivations:

uj primal projection directions βj dual projection directions
U matrix with columns uj B matrix with columns βj

cj primal output vector τ j dual of scaled output vector
C matrix with columns cj T matrix with columns τ j

W primal regression coefficients α dual regression coefficients
P matrix with columns pj K kernel matrix

Algorithm 6.48 [Kernel PLS] The kernel PLS algorithm is given in Code
Fragment 6.8. Code Fragment 6.9 gives Matlab code for the complete PLS

input Data S = {x1, . . . ,x�}, dimension k, target outputs Y ∈ R
�×m.

process Kij = κ (xi,xj), i, j = 1, . . . , �
K1 = K
Ŷ = Y
for j = 1, . . . , k
βj=first column of Ŷ
βj= βj/

∥∥βj

∥∥
repeat
βj = ŶŶ

′
Kjβj

βj= βj/
∥∥βj

∥∥
until convergence
τ j = Kjβj

cj = Ŷ′τ j/ ‖τ j‖2

Ŷ = Ŷ − τ jc′j
Kj+1 =

(
I − τ jτ

′
j/ ‖τ j‖2

)
Kj

(
I − τ jτ

′
j/ ‖τ j‖2

)
end
B = [β1, . . . ,βk] T = [τ 1, . . . , τ k]
α = B (T′KB)−1 T′Y

output Training outputs Y − Ŷ and dual regression coefficients α

Code Fragment 6.8. Pseudocode for the kernel PLS algorithm.

algorithm in dual form. Note that it should also begin by centering the data
but we have for brevity omitted this step (see Code Fragment 5.2 for Matlab
code for centering).

192 Pattern analysis using eigen-decompositions

% K is an ell x ell kernel matrix
% Y is ell x m containing the corresponding output vectors
% T gives the number of iterations to be performed
KK = K; YY = Y;
for i=1:T
YYK = YY*YY’*KK;
beta(:,i) = YY(:,1)/norm(YY(:,1));
if size(YY,2) > 1, % only loop if dimension greater than 1
bold = beta(:,i) + 1;
while norm(beta(:,i) - bold) > 0.001,
bold = beta(:,i);
tbeta = YYK*beta(:,i);
beta(:,i) = tbeta/norm(tbeta);

end
end
tau(:,i) = KK*beta(:,i);
val = tau(:,i)’*t(:,i);
c(:,i) = YY’*tau(:,i)/val;
trainY = trainY + tau(:,i)*c(:,i)’;
trainerror = norm(Y - trainY,’fro’)/sqrt(ell)
w = KK*tau(:,i)/val;
KK = KK - tau(:,i)*w’ - w*tau(:,i)’

+ tau(:,i)*tau(:,i)’*(tau(:,i)’*w)/val;
YY = YY - tau(:,i)*c(:,i)’;
end
% Regression coefficients for new data
alpha = beta * ((tau’*K*beta)\tau’)*Y;
% Ktest gives new data inner products as rows, Ytest true outputs
elltest = size(Xtest,1);
testY = Ktest * alpha;
testerror = norm(Ytest - testY,’fro’)/sqrt(elltest)

Code Fragment 6.9. Matlab code for the dual PLS algorithm.

6.8 Summary

• Eigenanalysis can be used to detect patterns within sets of vectors.
• Principal components analysis finds directions based on the variance of

the data.
• The singular value decomposition of a covariance matrix finds directions

of maximal covariance.
• Canonical correlation analysis finds directions of maximum correlation.
• Fisher discriminant analysis can also be derived as the solution of a gen-

eralised eigenvalue problem.
• The methods can be implemented in kernel-defined feature spaces.
• The patterns detected can also be used as feature selection methods for

subsequent analysis, as for example principal components regression.

6.9 Further reading and advanced topics 193

• The iterative use of directions of maximal covariance in regression gives
the state-of-the-art partial least squares regression procedure, again im-
plementable in kernel-defined feature spaces.

6.9 Further reading and advanced topics

The use of eigenproblems to solve statistical problems dates back to the
1930s. In 1936 Sir Ronald Fisher, the English statistician who pioneered
modern data analysis, published ‘The use of multiple measurements in tax-
onomic problems’, where his linear discriminant algorithm is described [44].
The basic ideas behind principal components analysis (PCA) date back to
Karl Pearson in 1901, but the general procedure as described in this book
was developed by Harold Hotelling, whose pioneering paper ‘Analysis of
a Complex of Statistical Variables with Principal Component’ appeared in
1933 [59]. A few years later in 1936, Hotelling [60] further introduced canon-
ical correlation analysis (CCA), with the article ‘Relations between two sets
of variables’.

So in very few years much of multivariate statistics had been introduced,
although it was not until the advent of modern computers that it could show
its full power. All of these algorithms were linear and were not regularised.
Classically they were justified under the assumption that the data was gen-
erated according to a Gaussian distribution, but the main computational
steps are the same as the ones described and generalised in this chapter.
For an introduction to classical multivariate statistics see [156]. The statis-
tical analysis of PCA is based on the papers [125] and [124]. Many of these
methods suffer from overfitting when directly applied to high-dimensional
data. The need for regularisation was, for example, recognised by Vinod in
[149]. A nice unified survey of eigenproblems in pattern recognition can be
found in [15].

The development of the related algorithm of partial least squares has in
contrast been rather different. It was introduced by Wold [159] in 1966 and
developed in [161], [160], see also Höskuldsson [58] and Wold [162] for a full
account. It has mostly been developed and applied in the field of chemomet-
rics, where it is common to have very high-dimensional data. Based on ideas
motivated by conjugate gradient methods in least squares problems (see for
example conjugate gradient in [49]), it has been used in applications for
many years. Background material on SVD and generalised eigenproblems
can be found in many linear algebra books, for example [96].

The enhancement of these classical methods with the use of kernels has
been a recurring theme over the last few years in the development of kernel

194 Pattern analysis using eigen-decompositions

methods. Schölkopf et al. introduced it with kernel PCA [119]. Later
several groups produced versions of kernel CCA [7], [81], [2], and of kernel
FDA [98], [11]. Kernel PLS was introduced by Rosipal and Trejo [110].

Applications of kernel CCA in cross-lingual information retrieval are de-
scribed in [149] while applications in bioinformatics are covered in [165],
[147]. Kernel CCA is also described in the book [129].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net

