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Feature selection is an important problem in Machine learning. There are many
feature selection methods available such as mutual information, information
gain, and chi square test. In this post, I will use simple examples to describe how
to conduct feature selection using chi square test. I will show that it is easy to
use Spark or MapReduce to conduct chi square test based feature selection on
large scale data set. 

Problem Statement

Suppose there are N instances, and two classes: positive and negative.  Given a
feature X, we can use Chi Square Test to evaluate its importance to distinguish
the class. 

By calculating the Chi square scores for all the features, we can rank the features
by the chi square scores, then choose the top ranked features for model training. 

This method can be easily applied for text mining, where terms or words or N-
grams are features. After applying chi square test, we can select the top ranked
terms as the features to build a text mining model. 

Understand Chi Square Test

Chi Square Test is used in statistics to test the independence of two events.
 Given dataset about two events, we can get the observed count O and the
expected count E.  Chi Square Score measures how much the expected counts E
and observed Count O derivate from each other.

In feature selection, the two events are occurrence of the feature and occurrence
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of the class.

In other words, we want to test whether the occurrence of a specific feature and
the occurrence of a specific class are independent. 

If the two events are dependent, we can use the occurrence of the feature to
predict the occurrence of the class. We aim to select the features, of which the
occurrence is highly dependent on the occurrence of the class. 

When the two events are independent,  the observed count is close to the
expected count, thus a small chi square score. So a high value of  indicates that
the hypothesis of independence is incorrect. In other words, the higher value of
the  score, the more likelihood the feature is correlated with the class, thus it
should be selected for model training.

How to use Chi Square test for feature selection

Suppose we have a set of training instances that belonging to positive and
negative classes. To calculate the  score of a feature X, we can build the
following table, in which there are four numbers:

A: the number of positive instances that contain feature X

B: the number of negative instances that contain feature X

C: the number of positive instances that do not contain feature X

D: the number of negative instances that do not contain feature X

Positive class Negative class  total
feature X occurs A B A+B = M

feature X not occurs C D C+D = N – M
total A+C = P B+D = N – P      N

Conf table 266
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We also define N, M, P, which are describe blow:

N: denote the total number of instances

M = A + B: the number of instances that contain feature X

C + D = N – M: the number of instances that do not contain feature X

A + C = P: the number of positive instances

B + D = N – P: the number of negative instances

Let A, B, C, D denotes the observed value, and , , ,  denote the
expected value,

How to calculate the expected value

Based on the null hypothesis that the two events are independent, we can
calculate the expected value  using the following formula:

So

The basic idea is that if the two events are independent, the probability that
feature X occurs in the Positive class instances should be equal to the probability
that feature X occurs in all the instances of the two classes. 

Using the similar idea, we can calculate  , , .

Using Chi Square Test for feature selection

-
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Using the formula of Chi Square test:

   

We have 

   

After some simple calculation we have:

   

Given

B = M – A

C = P – A

D = N – M – ( P – A)

We have:

   

How to implement the Chi Square Test Algorithm
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Given a dataset, we can easily obtain:

A: the total number of positive instances that contain feature X,

M: the total number of instances that contain feature X

P: the total number of positive instance,

N: the total number of instance

Apparently,  N, P, are constant for all the features, 

For each feature, we only need to count A, and M. It is straightforward to
implement the algorithm in python or Java for a small dataset. 

If we have a large data set with millions of features, we can also easily
implement the algorithm using Spark or MapReduce.

Please refer to this article on using chi square test for feature selection on large
scale dataset. 
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Abstract In this work we present a review of the state of the art of in-
formation theoretic feature selection methods. The concepts of feature rele-
vance, redundance and complementarity (synergy) are clearly defined, as well
as Markov blanket. The problem of optimal feature selection is defined. A uni-
fying theoretical framework is described, which can retrofit successful heuristic
criteria, indicating the approximations made by each method. A number of
open problems in the field are presented.
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1 Introduction

Feature selection has been widely investigated and used by the machine learn-
ing and data mining community. In this context, a feature, also called attribute
or variable, represents a property of a process or system than has been mea-
sured, or constructed from the original input variables. The goal of feature
selection is to select the smallest feature subset given a certain generalization
error, or alternatively finding the best feature subset with k features, that
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yields the minimum generalization error. Additional objectives of feature se-
lection are: (i) improve the generalization performance with respect to the
model built using the whole set of features, (ii) provide a more robust gen-
eralization and a faster response with unseen data, and (iii) achieve a better
and simpler understanding of the process that generates the data [31, 23].
We will assume that the feature selection method is used either as a prepro-
cessing step or in conjunction with a learning machine for classification or
regression purposes. Feature selection methods are usually classified in three
main groups: wrapper, embedded and filter methods [23]. Wrappers [31] use
the induction learning algorithm as part of the function evaluating feature
subsets. The performance is usually measured in terms of the classification
rate obtained on a testing set, i.e., the classifier is used as a black box for
assessing feature subsets. Although these techniques may achieve a good gen-
eralization, the computational cost of training the classifier a combinatorial
number of times becomes prohibitive for high dimensional datasets. In ad-
dition, many classifiers are prone to over-learning and show sensitiveness to
initialization. Embedded methods [38], incorporate knowledge about the spe-
cific structure of the class of functions used by a certain learning machine,
e.g. bounds on the leave-one-out error of SVMs [64]. Although usually less
computationally expensive than wrappers, embedded methods still are much
slower than filter approaches, and the features selected are dependent on the
learning machine. Filter methods [17] assume complete independence between
the learning machine and the data, and therefore use a metric independent
of the induction learning algorithm to assess feature subsets. Filter methods
are relatively robust against overfitting, but may fail to select the best feature
subset for classification or regression. In the literature, several criteria have
been proposed to evaluate single features or feature subsets, among them: in-
consistency rate [28], inference correlation [44], classification error [18], fractal
dimension [45], distance measure [50, 8], etc. Mutual information (MI) is a
measure of statistical independence, that has two main properties. First, it
can measure any kind of relation between random variables, including non-
linear relationships [14]. Second, MI is invariant under transformations in the
feature space that are invertible and differentiable, e.g. translations, rotations
and any transformation preserving the order of the original elements of the
feature vectors [35, 36]. Many advances in the field have been reported in the
last 20 years since the pioneer work of Battiti [4]. Battiti defined the problem
of feature selection as the process of selecting the k most relevant variables
from an original feature set of m variables, k < m. Battiti proposed the greedy
selection of a single feature at a time, as an alternative to evaluate the com-
binatorial explosion of all feature subsets belonging to the original set. The
main assumptions of Battiti’s work were the following: (a) features are clas-
sified as relevant and redundant; (b) an heuristic functional is used to select
features, which allows controlling the tradeoff between relevancy and redun-
dancy; c) a greedy search strategy is used; and d) the selected feature subset
is assumed optimal. These four assumptions will be revisited in this work to
include recent work on a) new definitions on relevant features and other types
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of features, b) new information-theoretic functional derived from first princi-
ples, c) new search strategies, and d) new definitions of optimal feature subset.
In this work, we present a review of filtering feature selection methods based
on mutual information, under a unified theoretical framework. We show the
evolution of feature selection methods on the last 20 years, describing advan-
tages and drawbacks. The remainder of this work is organized as follows. In
section 2 a background on MI is presented. In section 3, the concepts of rel-
evant, redundant and complementary features are defined. In section 4, the
problem of optimal feature selection is defined. In section 5, a unified theoret-
ical framework is presented, which allows us to show the evolution of different
MI feature selection methods, as well as their advantages and drawbacks. In
section 6, a number of open problems in the field are presented. Finally, in
section 7, we present the conclusions of this work.

2 Background on MI

2.1 Notation

In this work we will use only discrete random variables, because in practice the
variables used in most feature selection problems are either discrete by nature
or by quantization. Let F be a feature set and C an output vector representing
the classes of a real process. Let’s assume that F is the realization of a random
sampling of an unknown distribution, where fi is the i-th variable of F and
fi(j) is the j-th sample of vector fi. Likewise, ci is the i-th component of C
and ci(j) is the j-th sample of vector ci. Uppercase letters denote random sets
of variables, and lowercase letters denote individual variables from these sets.

Other notations and terminologies used in this work are the following:

S Subset of current selected variables.
fi Candidate feature to be added to or deleted from the subset of

selected features S.
{fi, fj} Subset composed of the variables fi and fj .
¬fi All variables in F except fi. ¬fi = F \ fi.
{fi, S} Subset composed of variable fi and subset S.
¬{fi, S} All variables in F except the subset {fi, S}. ¬{fi, S} = F\{fi, S}
p(fi, C) Joint mass probability between variables fi and C.
| · | Absolute value / cardinality of a set.

The sets mentioned above are related as follows: F = fi ∪ S ∪ ¬{fi, S},
∅ = fi ∩ S ∩ ¬{fi, S}. The number of samples in F is n and the total number
of variables in F is m.

2.2 Basic Definitions

Entropy, divergence and mutual information are basic concepts defined within
information theory [14]. In its origin, information theory was used within the

→IhtutoInforaakonTheory_#
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context of communication theory, to find answers about data compression and
transmission rate [52]. Since then, information theory principles have been
largely incorporated into machine learning, see for example Principe [47].

2.2.1 Entropy

Entropy (H) is a measure of uncertainty of a random variable. The uncertainty
is related to the probability of occurrence of an event. Intuitively, high entropy
means that each event has about the same probability of occurrence, while
low entropy means that each event has a different probability of occurrence.
Formally, the entropy of a discrete random variable x, with mass probability
p(x(i)) = Pr{x = x(i)}, x(i) ∈ x is defined as:

H(x) = −
n
∑

i=1

p(x(i)) log2(p(x(i))). (1)

Entropy is interpreted as the expected value of the negative of the logarithm
of mass probability. Let x and y be two random discrete variables. The joint
entropy of x and y, with joint mass probability p(x(i), y(j)), is the sum of the
uncertainty contained by the two variables. Formally, joint entropy is defined
as follows:

H({x, y}) = −
n
∑

i=1

n
∑

j=1

p(x(i), y(j)) · log2(p(x(i), y(j))). (2)

The joint entropy has values in the range,

max (H(x), H(y)) ≤ H({x, y}) ≤ H(x) +H(y). (3)

The maximum value in inequality (3), happens when x and y are completely
independent. The minimum value occurs when x is completely dependent on
y. The conditional entropy measures the remaining uncertainty of the random
variable x when the value of the random variable y is known. The minimum
value of the conditional entropy is zero, and it happens when x is statisti-
cally dependent on y, i.e., there is no uncertainty in x if we know y. The
maximum value happens when x and y are statistically independent, i.e., the
variable y does not add information to reduce the uncertainty of x. Formally,
the conditional entropy is defined as:

H(x|y) =
n
∑

j=1

p(y(j)) ·H(x|y = y(j)) (4)

where,
0 < H(x|y) < H(x), (5)

and H(x|y = y(j)) is the entropy of all x(i), which are associated with y = y(j).
Another way of representing the conditional entropy is:

H(x|y) = H({x, y})−H(y). (6)
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2.2.2 Mutual Information

The mutual information (MI) is a measure of the amount of information that
one random variable has about another variable [14]. This definition is useful
within the context of feature selection because it gives a way to quantify the
relevance of a feature subset with respect to the output vector C. Formally,
the MI is defined as follows:

I(x; y) =
n
∑

i=1

n
∑

j=1

p(x(i), y(j)) · log

(

p(x(i), y(j))

p(x(i)) · p(y(j))

)

, (7)

where MI is zero when x and y are statistically independent, i.e., p(x(i), y(j)) =
p(x(i))·p(y(j)). The MI is related linearly to entropies of the variables through
the following equations:

I(x; y) =











H(x)−H(x|y)

H(y)−H(y|x)

H(x) +H(y)−H(x, y).

(8)

Fig. 1 shows a Venn diagram with the relationships described in (8).

Let z be a discrete random variable. Its interaction with the other two
variables {x, y} can be measured by the conditional MI, which is defined as
follows:

I(x; y|z) =
n
∑

i=1

p(z(i))I (x; y|z = z(i)) , (9)

where I (x; y|z = z(i)) is the MI between x and y in the context of z = z(i).
The conditional MI allows measuring the information of two variables in the
context of a third one, but it does not measure the information among the
three variables. Multi-information is an interesting extension of MI, proposed
by McGill [42], which allows measuring the interaction among more than two
variables. For the case of three variables, the multi-information is defined as
follows:

I(x; y; z) =

{

I({x, y}; z)− I(x; z)− I(y; z)

I(y; z|x)− I(y; z).
(10)

The multi-information is symmetrical, i.e., I(x; y; z) = I(x; z; y) = I(z; y;x)
= I(y;x; z) = ... The multi-information has not been widely used in the lit-
erature, due to its difficult interpretation, e.g. the multi-information can take
negative values, among other reasons. However, there are some interesting pa-
pers about the interaction among variables that use this concept [42, 68, 30, 5].
The multi-information can be understood as the amount of information com-
mon to all variables (or set of variables), but that is not present in any subset of
these variables. To better understand the concept of multi-information within
the context of feature selection, let us consider the following example.

-
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Fig. 1 Venn diagram showing the relations between MI and entropies

Example 1 Let x1, x2, x3 be independent binary random variables. The output
of a given system is built through the function C = x1+(x2 ⊕ x3), and x4 = x1,
where + stands for the OR logic function and ⊕ represents the XOR logic
function.

x1 x2 x3 x4 x2 ⊕ x3 C

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
1 1 0 1 1 1
0 0 1 0 1 1
1 0 1 1 1 1
0 1 1 0 0 0
1 1 1 1 0 1

Using eq. (10) to measure the multi-information among x2, x3 and C gives:
I(x2;x3;C) = I({x2, x3};C)−I(x2;C)−I(x3;C). Notice that the relevance of
single features x2 and x3 with respect to C is null, since I(x2;C) = I(x3;C) =
0, but the joint information of {x2, x3} with respect to C is greater than zero,
I({x2, x3};C) > 0. In this case, x2 and x3 interact positively to predict C, and

"÷.
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this yields a positive value of the multi-information among these variables. The
multi-information among the variables x1, x4 and C is given by: I(x1;x4;C) =
I({x1, x4};C)−I(x1;C)−I(x4;C). The relevance of individual features x1 and
x4 is the same, i.e., I(x1;C) = I(x4;C) > 0. In this case the joint information
provided by x1 and x4 with respect to C is the same as that of each variable
acting separately, i.e., I({x1, x4};C) = I(x1;C) = I(x4;C). This yields a
negative value of the multi-information among these variables. We can deduce
that the interaction between x1 and x4 does not provide any new information
about C. Let us consider now the multi-information among x1, x2 and C,
which is zero: I(x1;x2;C) = I({x1, x2};C) − I(x1;C) − I(x2;C) = 0. Since
feature x2 only provides information about C when interacting with x3, then
I({x1, x2};C) = I(x1;C). In this case, features x1 and x2 do not interact in
the knowledge of C.

From the viewpoint of feature selection, the value of the multi-information
(positive, negative or zero) gives rich information about the kind of interaction
there is among the variables. Let us consider the case where we have a set of
already selected features S and a candidate feature fi, and we measure the
multi-information of these variables with the class variable C, I(fi;S;C) =
I(S;C|fi) − I(S;C). When the multi-information is positive, it means that
feature fi and S are complementary. On the other hand, when the multi-
information is negative, it means that by adding fi we are diminishing the
dependence between S and C, because fi and S are redundant. Finally, when
the multi-information is zero, it means that fi is irrelevant with respect to the
dependency between S and C.

The mutual information between a set of m features and the class variable
C can be expressed compactly in terms of multi-information as follows:

I({x1, x2, ..., xm} ;C) =
m
∑

k=1

∑

∀S ⊆ {x1, ..., xm}
|S| = k

I([S ∪C]), (11)

where I([S ∪C]) = I(s1; s2; · · · ; sk;C). Note that the sum on the right side of
eq. (11), is taken over all subsets S of size k drawn from the set {x1, ..., xm}.

3 Relevance, Redundancy and Complementarity

The filter approach to feature selection is based on the idea of relevance, which
we will explore in more detail in this section. Basically the problem is to find
the feature subset of minimum cardinality that preserves the information con-
tained in the whole set of features with respect to C. This problem is usually
solved by finding the relevant features and discarding redundant and irrele-
vant features. In this section, we review the different definitions of relevance,
redundancy and complementarity found in the literature.
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3.1 Relevance

Intuitively, a given feature is relevant when either individually or together with
other variables, it provides information about C. In the literature there are
many definitions of relevance, including different levels of relevance [6, 4, 23,
31, 67, 46, 2, 1, 10, 15]. Kohavi and John [31] used a probabilistic framework
to define three levels of relevance: strongly relevant, weakly relevant, and irrel-
evant features, as shown in Table 1. Strongly relevant features provide unique
information about C, i.e., they cannot be replaced by other features. Weakly
relevant features provide information about C, but they can be replaced by
other features without losing information about C. Irrelevant features do not
provide information about C, and they can be discarded without losing infor-
mation. A drawback of the probabilistic approach is the need of testing the
conditional independence for all possible feature subsets, and estimating the
probability density functions (pdfs) [48].

An alternative definition of relevance is given under the framework of mu-
tual information [53, 6, 32, 33, 67, 37, 21, 55]. An advantage of this approach
is that there are several good methods for estimating MI. The last column of
Table 1 shows how the three levels of individual relevance are defined in terms
of MI.

Table 1 Levels of relevance for candidate feature fi, according to probabilistic framework
[31] and mutual information framework [43]

Relevance
Level

Condition Probabilistic Approach
Mutual Information

Approach

Strongly
Relevant

! p(C|fi,¬fi) != p(C|¬fi) I(fi;C|¬fi) > 0

Weakly
Relevant

∃S ⊂ ¬fi

p(C|fi,¬fi) = p(C|¬fi)
∧

p(C|fi, S) != p(C|S)

I(fi;C|¬fi) = 0
∧

I(fi;C|S) > 0
Irrelevant ∀S ⊆ ¬fi p(C|fi, S) = p(C|S) I(fi;C|S) = 0

The definitions shown in Table 1 give rise to several drawbacks, which are
summarized as follows:

1. To classify a given feature fi, as irrelevant, it is necessary to assess all
possible subsets S of ¬fi. Therefore this procedure is subject to the curse
of dimensionality [7, 57].

2. The definition of strongly relevant features is too restrictive. If two fea-
tures provides information about the class but are redundant, then both
features will be discarded by this criterion. For example, let {x1, x2, x3}
be a set of 3 variables, where x1 = x2, and x3 is noise, and the output
class is defined as C = x1. Following the strong relevance criterion we have
I(x1;C|{x2, x3}) =I(x2;C|{x1, x3}) =I(x3;C|{x1, x2}) = 0.
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3. The definition of weak relevance is not enough for deciding whether to dis-
card a feature from the optimal feature set. It is necessary to discriminate
between redundant and non-redundant features.

3.2 Redundancy

Yu and Liu [67] proposed a finer classification of features into weakly rele-
vant but redundant and weakly relevant but non-redundant. Moreover, the
authors defined the set of optimal features as the one composed by strongly
relevant features and weakly relevant but non-redundant features. The con-
cept of redundancy is associated with the level of dependency among two or
more features. In principle we can measure the dependency of a given feature
fi with respect to a feature subset S ⊆ ¬fi, by simply using the MI, I(fi;S).
This information theoretic measure of redundancy satisfies the following prop-
erties: it is symmetric, non-linear, non-negative, and does not diminish when
adding new features [43]. However, using this measure it is not possible to de-
termine concretely with which features of S is fi redundant. This calls for more
elaborated criteria of redundancy, such as the Markov blanket [33, 67], and
total correlation [62]. The Markov blanket is a strong condition for conditional
independence, and is defined as follows.

Definition 1 (Markov blanket) Given a feature fi, the subset M ⊆ ¬fi is
a Markov blanket of fi iff [33, 67]:

p({F\{fi ,M}, C} |{fi ,M}) = p({F\{fi ,M}, C} |M). (12)

This condition requires that M subsumes all the information that fi has
about C, but also about all other features {F\{fi ,M}}. It can be proved that
strongly relevant features do not have a Markov blanket [67].

The Markov blanket condition given by Eq. (12) can be rewritten in the
context of information theory as follows [43]:

I(fi; {C,¬fi,M}|M) = 0. (13)

An alternative measure of redundancy is the total correlation or multi-
variate correlation [62]. Given a set of features F = {f1, ..., fm}, the total
correlation is defined as follows:

C(f1; ...; fm) =
m
∑

i=1

H(fi)−H(f1, ..., fm). (14)

Total correlation measures the common information (redundancy) among
all the variables in F . If we want to measure the redundancy between a given
variable fi and any feature subset S ⊆ ¬fi, then we can use the total correla-
tion as:

C(fi;S) = H(fi) +H(S)−H(fi, S), (15)

however this corresponds to the classic definition of MI, i.e., C(fi;S) = I(fi;S).

%
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3.3 Complementarity

The concept of complementarity has been re-discovered several times [43, 9,
10, 61, 12]. Recently, it has become more relevant because of the development
of more efficient techniques to estimate MI in high-dimensional spaces [34, 27].
Complementarity, also known as synergy, measures the degree of interaction
between an individual feature fi and feature subset S given C, through the
following expression (I(fi;S|C)). To illustrate the concept of complementarity,
we will start expanding the multi-information among fi, C and S. Decompos-
ing the multi-information in its three possible expressions we have:

I(fi;S;C) =











I(fi;S|C)− I(fi;S)

I(fi;C|S)− I(fi;C)

I(S;C|fi)− I(S;C).

(16)

According to eq. (16), the first row shows that the multi-information can be
expressed as the difference between complementarity (I(fi;S|C)) and redun-
dancy (I(fi;S)). A positive value of the multi-information entails a dominance
of complementarity over redundancy. Analyzing the second row of eq. (16), we
observe that this expression becomes positive when the information that fi
has about C is greater when it interacts with subset S with respect to the
case when it does not. This effect is called complementarity. The third row of
eq. (16), gives us another viewpoint of the complementarity effect. The multi-
information is positive when the information that S has about C is greater
when it interacts with feature fi compared to the case when it does not inter-
act. Assuming that the complementarity effect is dominant over redundancy,
Fig. 2 illustrates a Venn diagram with the relationships among complemen-
tarity, redundancy and relevancy.

4 Optimal Feature Subset

In this section we review the different definitions of the optimal feature sub-
set, Sopt, given in the literature, as well as the search strategies used for ob-
taining this optimal set. According to [58], in practice the feature selection
problem must include a classifier or an ensemble of classifiers, and a perfor-
mance metric. The optimal feature subset is defined as the one that maximizes
the performance metric having minimum cardinality. However, filter methods
are independent of both the learning machine and the performance metric.
Any filter method corresponds to a definition of relevance that employs only
the data distribution [58]. Yu and Liu [67] defined the optimal feature set as
composed of all strongly relevant features and the weakly relevant but not
redundant features. In this section we review the definitions of the optimal
feature subset from the viewpoint of filter methods, in particular MI feature
selection methods. The key notion is conditional independence, which allows
defining the sufficient feature subset as follows [6, 24]:
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Fig. 2 Venn diagram showing the relationships among complementarity, redundancy and
relevancy, assuming that the multi-information among fi, S and C is positive.

Definition 2 S ⊆ F is a sufficient feature subset iff

p(C|F ) = p(C|S). (17)

This definition implies that C and ¬S are conditionally independent, i.e.,
¬S provides no additional information about C in the context of S. However,
we still need a search strategy to select the feature subset S, and an exhaustive
search using this criterion is impractical due to the curse of dimensionality.

In probability the measure of sufficient feature subset can be expressed
as the expected value over p(F ) of the Kullback-Leibler divergence between
p(C|F ) and p(C|S) [33]. According to Guyon et al. [24], this can be expressed
in terms of MI as follows:

DMI(S) = I(F ;C)− I(S;C). (18)

Guyon et al. [24] proposed solving the following optimization problem:

min
S⊆F

|S|+ λ ·DMI(S), (19)
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where λ > 0 represents the Lagrange multiplier. If S is a sufficient feature
subset, then DMI(S) = 0, and eq. (19) is reduced to minS⊆F |S|. Since I(F ;C)
is constant, eq. (19) is equivalent to:

min
S⊆F

|S|− λ · I(S;C). (20)

The feature selection problem corresponds to finding the smallest feature
subset that maximizes I(S;C). Since the term minS⊆F |S| is discrete, the
optimization of (20) is difficult. Tishby et al. [55] proposed replacing the term
minS⊆F |S| with I(F ;S).

An alternative approach to optimal feature subset selection is using the
concept of the Markov blanket (MB). Remember that the Markov blanket,
M , of a target variable C, is the smallest subset of F such that C is inde-
pendent of the rest of the variables F\M . Koller and Sahami [33] proposed
using MBs as the basis for feature elimination. They proved that features
eliminated sequentially based on this criterion remain unnecessary. However,
the time needed for inducing an MB grows exponentially with the size of this
set, when considering full dependencies. Therefore most MB algorithms imple-
ment approximations based on heuristics, e.g. finding the set of k features that
are strongly correlated with a given feature [33]. Fast MB discovery algorithms
have been developed for the case of distributions that are faithful to a Bayesian
Network [58, 59]. However, these algorithms require that the optimal feature
subset does not contain multivariate associations among variables, which are
individually irrelevant but become relevant in the context of others [11]. In
practice, this means for example that current MB discovery algorithms cannot
solve Example 1 due to the XOR function.

An important caveat is that both feature selection approaches, sufficient
feature subset and MBs, are based on estimating the probability distribution of
C given the data. Estimating posterior probabilities is a harder problem than
classification, e.g. in using a 0\1-loss function only the most probable classifi-
cation is needed. Therefore, this effect may render some features contained in
sufficient feature subset or in the MB of C unnecessary [58, 56, 24].

4.1 Relation between MI and Bayes error classification

There are some interesting results relating the MI between a random discrete
variable f and a random discrete target variable C, with the minimum error
obtained by maximum a posteriori classifier (Bayer classification error) [26, 14,
20]. The Bayes error is bounded above and below according to the following
expression:

1−
I(f ;C) + log(2)

log(|C|)
≤ ebayes(f) !

1

2
(H(C)− I(f ;C)) . (21)

Interestingly, Eq. (21) shows that both limits are minimized when the MI,
I(f ;C), is maximized.
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4.2 Search strategies

According to Guyon et al. [24], a feature selection method has three compo-
nents: 1) Evaluation criterion definition, e.g. relevance for filter methods, 2)
evaluation criterion estimation, e.g. sufficient feature selection or MB for filter
methods, and 3) search strategies for feature subset generation. In this sec-
tion, we briefly review the main search strategies used by MI feature selection
methods. Given a feature set F of cardinality m, there are 2m possible subsets,
therefore an exhaustive search is impractical for high-dimensional datasets.

There are two basic search strategies: optimal methods and sub-optimal
methods [63]. Optimal search strategies include exhaustive search and accel-
erated methods based on the monotonic property of a feature selection cri-
terion, such as branch and bound. But optimal methods are impractical for
high-dimensional datasets, therefore sub-optimal strategies must be used.

Most popular search methods are sequential forward selection (SFS) [65]
and sequential backward elimination (SBE) [41]. Sequential forward selection
is a bottom-up search, which starts with an empty set, and adds new features
one at a time. Formally, it adds the candidate feature fi that maximizes I(S;C)
to the subset of selected features S, i.e.,

S = S ∪ {arg max
fi∈F\S

(I({S, fi};C))}. (22)

Sequential backward elimination is a top-down approach, which starts with
the whole set of features, and deletes one feature at a time. Formally, it starts
with S = F , and proceeds deleting the less informative features one at a time,
i.e,

S = S\{arg min
fi∈S

(I({S\fi};C)}. (23)

Usually backward elimination is computationally more expensive than for-
ward selection, e.g. when searching for a small subset of features. However,
backward elimination can usually find better feature subsets, because most
forward selection methods do not take into account the relevance of variables
in the context of features not yet included in the subset of selected features
[23]. Both kinds of searching methods suffer from the nested effect, meaning
that in forward selection a variable cannot be deleted from the feature set
once it has been added, and in backward selection a variable cannot be rein-
corporated once it has been deleted. Instead of adding a single feature at a
time, some generalized forward selection variants add several features, to take
into account the statistical relationship between variables [63]. Likewise, the
generalized backward elimination deletes several variables at a time. An en-
hancement may be obtained by combining forward and backward selection,
avoiding the nested effect. The strategy “plus-l-take-away-r” [54] adds to S l
features and then removes the worst r features if l > r, or deletes r features
and then adds l features if r < l.

-
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HAAR-like features for 
images



Images

• digit images are 
scanned hand written 
digits



Digit scan dataset

• 60,000 scans 
• 10 classes : 0,1,2,…,9 
- roughly uniform distributed 

• each scanned image 28x28 pixels square  
• comes split into (train, test) 
- no cross validation 

• very learnable: most algorithms score 5% or 
less error 

• http://yann.lecun.com/exdb/mnist/



Rectangle black level

• rectangle ABCD can act like 
an image “mask” : it 
selects/cuts that rectangle 
out of an image 
- or of any image 
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Rectangle black level

• a given set S of rectangles 
cuts S different masks for 
an imageBA
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¥

¥,



Rectangle black level

!

• for each rectangle r=ABCD 
on image X we can 
compute a “black value” 
- blackr(X) = number of 

black pixels in the mask cut 
by r in image X 
!

• we can compute 
blackr(X)efficiently, if we 
compute in the right order! 
- dynamic programing 

O

BA
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Vertical, horizontal features for a rectangle

!

• horizontal feature 
Δhr(X) = blackr-left() - blackr-right(X) 
= blackAMCN(X) - blackMBND(X) 

!
!

• vertical feature 
Δhv(X) = blackr-top() - blackr-bottom(X) 
= blackABUV(X) - blackUVCD(X) 
!
!

• |S| rectangles, 2 features each ⇒ 2|S| 
features extracted (from each image)  
- if we also store the blackr(X) value, thats 3 

features/rectangle (blackr(X), Δhr(X), Δhv(X)) for  
3|S| features extracted. 
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How to compute blackr(X)*e!ciently

• first compute it for all 
rectangles cornered in O 
(A=O) fix image corner.  
- That is compute blackr(X)*

for each pixel D 
!

• then every rectangle 
r=ABCD can be computed 
in constant time from O-
cornered rectangles 

• black(rectangle ABCD) = 
black(OTYD) - black(OTXB) - 
black(OZYC) + black(OZXA)
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O-corner rectangles computation

• r=OBCD determined by D 
• naively one can compute 

all blackr(X) = blackD(X) 
for all rectangles as 

•for i=1:n!
•for j=1:n!
-D=Dij pixel!
-blackDij(X) = count of 

black pixels in OBCD!
!

• total O(n4) running time 
- n = size of the square 

image
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O-corner rectangles : dynamic programing

• r=OBCD determined by D 
• dynamic programing computes a 

rectangle from the rectangle 
computed already 
!

•for i=1:n!
•for j=1:n!
-D=Dij pixel!

    black_Dij(X)   =  
   black_Di,j-1(X) + 
   black_Di-1,j(X) - 
   black_Di-1,j-1(X)+ 
   black(pixel_Dij ,X) 

!

• total O(n2) running time 
- much better

BO

C Di,jDi,j-1

Di-1,jDi-1,j-1
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5 A Unified Framework for Mutual Information Feature Selection

Many MI feature selection methods have been proposed in the last 20 years.
Most methods define heuristic functionals to assess feature subsets combining
definitions of relevant and redundant features. Brown et al. [10] proposed a
unifying framework for information theoretic feature selection methods. The
authors posed the feature selection problem as a conditional likelihood of the
class labels, given features. Under the filter assumption [10], conditional like-
lihood is equivalent to conditional mutual information (CMI), i.e., the feature
selection problem can be posed as follows:

min
S⊆F

|S| (24)

subject to : min
S⊆F

I(¬S;C|S).

This corresponds to the smallest feature subset such that the CMI is minimal.
Starting from this objective function, the authors used MI properties to deduce
some common heuristic criteria used for MI feature selection. Several criteria
can be unified under the proposed framework. In particular, they showed that
common heuristics based on linear combinations of information terms, such
as Battiti’s MIFS [4], conditional infomax feature extraction (CIFE) [40, 22],
minimum-redundancy maximum relevance (mRMR) [46], and joint mutual
information (JMI) [66], are all low-order approximations to the conditional
likelihood optimization problem. However, the unifying framework proposed
by Brown et al. [10] fell short of deriving (explaining) non-linear criteria using
min or max operators such as Conditional Mutual Information Maximization
(CMIM) [21], Informative Fragments [61], and ICAP [29].

Let us start with the assumption that I(F ;C) measures all the information
about the target variable contained in the set of features. This assumption is
based on the additivity property of MI [14, 32], which states that the infor-
mation about a given system is maximal when all features (F ) are used to
estimate the target variable (C). Using the chain rule, I(F ;C) can be decom-
posed as follows:

I(F ;C) = I(S;C) + I(¬S;C|S). (25)

As I(F ;C) is constant, maximizing I(S;C) is equivalent to minimizing
I(¬S;C|S). Many MI feature selection methods maximize the first term on the
right side of (25). This is known as the criterion of maximal dependency (MD)
[46]. On the other hand, other criteria are based on the idea of minimizing the
CMI, i.e. the second term on the right hand side of eq. (25).

In the following we describe the approach of Brown et al. [10] for deriving
sequential forward selection and sequential backward elimination algorithms,
which are based on minimizing the CMI. For the convenience of the reader,
we present the equivalent procedure in parallel when maximizing dependency
(MD). In practice, a search strategy is needed to find the best feature subset.
As we saw in section 4.2, the most popular methods are sequential forward
selection and sequential backward elimination. Before proceeding we need to
define some notation.
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Table 2 Parallel between MD and CMI approaches for sequential forward selection

MD CMI

max
fi∈¬St

I(St+1;C)= min
fi∈¬St

I(¬St+1;C|St+1)

max
fi∈¬St

I({St, fi};C)= min
fi∈¬St

I(¬St\fi;C|{St, fi})

max
fi∈¬St

I(St;C)a + max
fi∈¬St

I(fi;C|St) min
fi∈¬St

I(¬St;C|St)b+ min
fi∈¬St

(

−I(fi;C|St)
)

⇓ ⇓
max

fi∈¬St
I(fi;C|St) max

fi∈¬St
I(fi;C|St)

a This term is independent of fi.
b This term has the same value ∀fi.

St Subset of selected variables at time t.
fi Candidate feature to be added to or eliminated from feature subset

St at time t.
fi = arg max

fi∈¬St

I(fi;C|St) in forward selection.

fi = arg min
fi∈St

I(fi;C|St\fi) in backward elimination.

sj A given feature in St.
¬sj The complement set of feature sj with set St, i.e., ¬sj = St\sj
St+1 Subset of selected variables at time t+1.

St+1 ← {St, fi} in forward selection.
St+1 ← St\fi in backward elimination.

¬St+1 Complement of feature subset St+1, i.e. F = {St+1,¬St+1}.
¬St+1 ← {¬St\fi} in forward selection.
¬St+1 ← {¬St, fi} in backward elimination.

Table 2 shows that for the case of sequential forward selection, we achieve
the same result when using the MD or CMI approach: the SFS algorithm
consists of maximizing I(fi;C|St). Analogously, Table 3 shows that for the
case of sequential backward elimination, again we achieve the same result
when using MD or CMI approaches: the SBE algorithm consists of minimizing
I(fi;C|St\fi).

For space limitations, we will develop here only the case of forward feature
selection, but the procedure is analogous for the case of backward feature
elimination. The expression I(fi;C|St) can be expanded as follows [12]:

I(fi;C|St) = I(fi;C)− I(fi;S
t) + I(fi;S

t|C). (26)

The first term on the right hand side of (26) measures the individual rel-
evance of the candidate feature fi with respect to output C; the second term
measures the redundance of the candidate feature with the feature subset of
previously selected features St; and the third term measures the complemen-
tarity between St and fi in the context of C. However, from the practical point
of view, eq. (26) presents the difficulty of estimating MI in high-dimensional
spaces, due to the presence of the set St in the second and third terms.
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Table 3 Parallel between MD and CMI approaches for sequential backward elimination

MD CMI

max
fi∈St

I(St+1;C)= min
fi∈St

I(¬St+1;C|St+1)

max
fi∈St

I(St\f ;C)= min
fi∈St

I({¬St, fi}\fi;C|St\fi)

max
fi∈St

I(St;C) a+ max
fi∈St

(

−I(fi;C|St\fi)
)

min
fi∈St

I(¬St;C|St) b+ min
fi∈St

(

I(fi;C|St\fi)
)

⇓ ⇓
min
fi∈St

I(fi;C|St\fi) min
fi∈St

I(fi;C|St\fi)

a This term is independent of fi.
b This term has the same value ∀fi.

In what follows, we take a detour from the derivation of Brown et al.
[10], using our own alternative approach. To avoid the previously mentioned
problem, I(fi;St) with |St| = p can be calculated by averaging all expansions
over every single feature in S, by using the chain rule as follows:

I(fi;S
t) = I(fi; s1) + I(fi;¬s1|s1)

I(fi;S
t) = I(fi; s2) + I(fi;¬s2|s2)

... =
...

...

I(fi;S
t) = I(fi; sp) + I(fi;¬sp|sp)

I(fi;S
t) =

1

|St|

∑

sj∈St

I(fi; sj) +
1

|St|

∑

sj∈St

I(fi;¬sj |sj). (27)

Analogously, we can obtain the following expansion for the conditional mutual
information, I(fi;St|C):

I(fi;S
t|C) =

1

|St|

∑

sj∈St

I(fi; sj|C) +
1

|St|

∑

sj∈St

I(fi;¬sj |{C, sj}). (28)

Substituting (27) and (28) into eq. (26) yields:

I(fi;C|St) = I(fi;C)−





1

|St|

∑

sj∈St

I(fi; sj) +
1

|St|

∑

sj∈St

I(fi;¬sj |sj)





+





1

|S|

∑

sj∈S

I(fi; sj |C) +
1

|S|

∑

sj∈S

I(fi;¬sj |{C, sj})



 .

(29)

Eq. (29), can be approximated by considering assumptions of lower-order de-
pendencies between features [3]. Features sj ∈ St are assumed to have only
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one-to-one dependencies with fi or C. Formally, assuming statistical indepen-
dence:

p(fi|S
t) =

∏

sj∈St

p(fi|sj)

p(fi|{S
t, C}) =

∏

sj∈St

p(fi|{sj, C}), (30)

we obtain the following low-order approximation:

I(fi;C|St) ≈ I(fi;C)−
1

|St|

∑

sj∈St

I(fi; sj) +
1

|St|

∑

sj∈St

I(fi; sj |C). (31)

Notice that eq. (31) is an approximation of the multidimensional MI expressed
by eq. (26). Interestingly, Brown et al. [10] deduced a similar formula but with
coefficients 1/|St| replaced by unity constants.

Eq. (31) allows deriving some well-known heuristic feature selection meth-
ods. When only the first two terms of Eq. (31) are taken into account, it
corresponds exactly to the minimal redundance maximal relevance (mRMR)
criterion proposed in [46]. Moreover, if the term 1/|S| is replaced by a user
defined parameter β, then we obtain the MIFS criterion (Mutual Information
Feature Selection) proposed by Battiti [4]. When considering only the first
term in eq. (31), we obtain the MIM criterion [39].

Eq. (31) with its three terms corresponds exactly to the Joint Mutual
Information (JMI) [66, 10]. Also it corresponds with the Conditional Infomax
Feature Extraction (CIFE) criterion proposed in [40], when the coefficient
|St| = 1, ∀t. Moreover, the Conditional Mutual Information based Feature
Selection (CMIFS) criterion proposed in [12] is an approximation of eq. (29),
where only 0, 1 or 2 out of t summation terms are considered in each term.
The CMIFS criterion is the following:

Jcmifs(fi) = I(fi;C)− I(fi; st) +
∑

sj∈S;j∈{1,t}

I(fi; sj|C)− I(fi; st|s1). (32)

The previously mentioned methods do not take into account the terms
containing ¬sj in eq. (29). This entails the assumption that fi and ¬sj are in-
dependent, therefore (I(fi;¬sj) = I(fi;¬sj |C) = 0). This approximation can
generate errors in the sequential selection or backward elimination of variables.
In order to somehow take into account the missing terms, let us consider the
following alternative approximation of I(fi;C|St):

I(fi;C|St) = I(fi;C) + I(fi;S
t;C) =

I(fi;C) + I(fi; {sj,¬sj};C) =

I(fi;C) + I(fi; sj;C) + I(fi;¬sj ;C|sj) =

I(fi;C|sj) + I(fi;¬sj ;C|sj). (33)
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Averaging this decomposition over every single feature sj ∈ St we have:

I(fi;C|St) =
1

|St|

∑

sj∈St

I(fi;C|sj) +
1

|St|

∑

sj∈St

I(fi;¬sj ;C|sj). (34)

The Interaction Capping (ICAP) [29] criterion approximates eq. (33) by
the following expression:

Jicap(fi) = I(fi;C) +
∑

sj∈S

min(0, I(fi; sj ;C))). (35)

In ICAP [29], the information of variable fi is penalized when the interac-
tion between fi, sj and C becomes redundant (I(fi; sj;C) < 0), but the com-
plementarity relationship among variables is neglected when I(fi; sj ;C) > 0.
The authors considered a Naive Bayes classifier, which assumes independence
between variables.

Eq. (34) allows deriving the Conditional Mutual Information Maximiza-
tion (CMIM) criterion [21], when we consider only the first term on the right
hand side of this equation and replace the mean operator with a minimum
operator. CMIM discards the second term on the right hand side of eq.(34)
completely, taking into account only one-to-one relationships among variables
and neglecting the multi-information among fi,¬sj and C in the context of
sj ∀j. On the other hand, CMIM-2 [60] criterion corresponds exactly to the
first term on the right hand side of eq. (34). These methods are able to detect
pairs of relevant variables that act complementarily in predicting the class.
In general CMIM-2 outperformed CMIM in experiments using artificial and
benchmark datasets [60].

So far we have reviewed feature selection approaches that avoid estimating
MI in high-dimensional spaces. Bonev et al. [9] proposed an extension of the
MD criterion, called Max-min-Dependence (MmD), which is defined as follows:

JMmD(fi) = I({fi, S};C)− I(¬{fi, S};C). (36)

The procedure starts with the empty set S = ∅ and sequentially generates
St+1 as:

St+1 = St ∪ max
fi∈F\S

(JMmD(fi)) . (37)

The MmD criterion is heuristic, and is not derived from a principled approach.
However, Bonev et al. [9] were one of the first in selecting variables estimating
MI in high-dimensional spaces [27], which allows using set of variables instead
of individual variables. Chow and Huang [13] proposed combining a pruned
Parzen window estimator with quadratic mutual information [47], using Renyi
entropies, to estimate directly the MI between the feature subset St and the
classes C, I(St;C), in an effective and efficient way.
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6 Open Problems

In this section we present some open problems and challenges in the field of
feature selection, in particular from the point of view of information theo-
retic methods. Here can be found a non-exhaustive list of open problems or
challenges.

1. Further developing a unifying framework for information theo-
retic feature selection. As we reviewed in section 5, a unifying framework
able to explain the advantages and limitations of successful heuristics has
been proposed. This theoretical framework should be further developed
in order to derive new efficient feature selection algorithms that include
in their functional terms information related to the three types of fea-
tures: relevant, redundant and complementary. Also a stronger connection
between this framework and the Markov blanket is needed. Developing hy-
brid methods that combine maximal dependency with minimal conditional
mutual information is another possibility.

2. Further improving the efficacy and efficiency of information the-
oretic feature selection methods in high-dimensional spaces. The
computational time depends on the search strategy and the evaluation cri-
terion [24]. As we enter the era of Big Data, there is an urgent need for
developing very fast feature selection methods able to work with millions
of features and billions of samples. An important challenge is develop-
ing more efficient methods for estimating MI in high-dimensional spaces.
Automatically determining the optimal size of the feature subset is also
of interest, many feature selection methods do not have a stop criterion.
Developing new search strategies that go beyond greedy optimization is
another interesting possibility.

3. Further investigating the relationship between mutual informa-
tion and Bayes error classification. So far lower and upper bounds for
error classification have been found for the case of one random variable
and the target class. Extending these results to the case of mutual infor-
mation between feature subsets and the target class is an interesting open
problem.

4. Further investigating the effect of a finite sample over the statisti-
cal criteria employed and in MI estimation. Guyon et al. [24] argued
that feature subsets that are not sufficient may render better performance
than sufficient feature subsets. For example, in the bio-informatics domain,
it is common to have very large input dimensionality and small sample size
[49].

5. Further developing a framework for studying the relation be-
tween feature selection and causal discovery. Guyon et al. [25] inves-
tigated causal feature selection. The authors argued that the knowledge of
causal relationships can benefit feature selection and viceversa. A challenge
is to develop efficient Markov blanket induction algorithms for non-faithful
distributions.
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6. Developing new criteria of statistical dependence beyond corre-
lation and MI. Seth and Principe [51] revised the postulates of measuring
dependence according to Renyi, in the context of feature selection. An im-
portant topic is normalization, because a measure of dependence defined
on different kinds of random variables should be comparable. There is no
standard theory about MI normalization [19, 16]. Another problem is that
estimators of measures of dependence should be good enough, even when
using a few realizations, in the sense of following the desired properties of
these measures. Seth and Principe [51] argued that this property is not
satisfied by MI estimators, because they do not reach the maximum value
under strict dependence, and are not invariant to one-to-one transforma-
tions.

7 Conclusions

We have presented a review of the state-of-the-art in information theoretic
feature selection methods. We showed that modern feature selection methods
must go beyond the concepts of relevance and redundance to include comple-
mentarity (synergy). In particular, new feature selection methods that assess
features in context are necessary. Recently, a unifying framework has been
proposed, which is able to retrofit successful heuristic criteria. In this work,
we have further developed this framework, presenting some new results and
derivations. The unifying theoretical framework allows us to indicate the ap-
proximations made by each method, and therefore their limitations. A number
of open problems in the field are suggested as challenges for the avid reader.
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