Recitation — Soft k-means clustering



Review of lecture material

Phylogenetic trees

Exploring
population . Classification problem
structure (k-nearest neighbor)
May apply PCA first

Clustering
(k-means clustering)



K-means clustering — Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively perform the following steps:

* Centers to Clusters: Assign each data point to the
cluster corresponding to its nearest center (ties
are broken arbitrarily).

* Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.




K-means clustering— Lloyd Algorithm

Observation: Centers and clusters are both hidden and we try
to infer them in stages ... just like EM/Gibbs!



Admixture - From hard to soft

Hard choices: points are
colored red or blue depending
on their cluster membership.

Soft choices: points are assigned
“red” and “blue” responsibilities
Iblue and I'red (rblue * Ited =1)




From hard to soft

Select k arbitrary data points as Centers and then
iteratively perform the following steps:

» Centers to Clusters: Assign each data point to the
ol ; ; "
Z)’Fesponsibility’ value for each cluster

* Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.




Soft k-means clustering

Centers to Soft Clusters (E-step): After centers have been
selected, assign each data point a “responsibility” value for
each cluster, where higher values correspond to stronger
cluster membership.

Soft Clusters to Centers (M-step): After data points have
been assigned to soft clusters, compute new centers.




Centers to soft clusters

Calculate HiddenMatrix

Input: Given k centers Centers = (x;, ..., X;) and n
points Data = (Data,, ..., Data,)

Output: Construct a k x n responsibility
matrix HiddenMatrix for which HiddenMatrix; ; is the
pull of center i on data point .




Centers to soft clusters

Think about centers as stars and data points as planets

By Newtonian inverse-square law of gravitation:

1/d(Data;, x;)?
zall centers x; I/d(Dataj’ xf)z |

HiddenMatrix; ; =

In practice this works better:

B is a parameter

¢~ P-d(Dataj, x;) reflecting the amount of
flexibility in our soft
assignment and called
the stiffness parameter.

HiddenMatrix; j = g —
Jj» Xt

Zall centers x;




Centers to soft clusters
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Soft clusters to centers

M-step: Update weighed center of gravity
X; ; - J-th coordinate of center

_ HiddenMatrix; - Data’

—

HiddenMatrix; - 1

x,-,j




Soft clusters to centers
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