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Abstract

Two standard algorithms for data clustering are expectation maximiza-
tion (EM) and K-means. We run these algorithms on various data sets
to evaluate how well they work. For high dimensional data we use ran-
dom projection and principal components analysis (PCA) to reduce the
dimensionality.

1 Introduction

The K-Means algorithm finds
�

clusters by choosing
�

data points at random as initial
cluster centers. Each data point is then assigned to the cluster with center that is closest to
that point. Each cluster center is then replaced by the mean of all the data points that have
been assigned to that cluster. This process is iterated until no data point is reassigned to a
different cluster.

EM finds clusters by determining a mixture of Gaussians that fit a given data set. Each
Gaussian has an associated mean and covariance matrix. However, since we use shperical
Gaussians, a variance scalar is used in place of the covariance matrix. The prior probability
for each Gaussian is the fraction of points in the cluster defined by that Gaussian. These
parameters can be initialized by randomly selecting means of the Gaussians, or by using
the output of K-means for initial centers. The algorithm converges on a locally optimal
solution by iteratively updating values for means and variances.

2 Low Dimensional Data Clustering

For the first part of our project, we implemented the EM and K-Means algorithms. Our
implementations were tested on two sets of two-dimensional data: a distribution generated
by two Gaussians and an annulus-shaped distribution.



2.1 K-Means on Two-Dimensional, Two Gaussian Data

The K-Means algorithm works very well on this data set, effectively converging in three or
four iterations (see figure 1).
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Figure 1: The progress of the K-Means algorithm with
�����

and random initialization on
the two-Gaussian data set (note: some data points omitted for clarity).

2.2 EM on Two-Dimensional, Two Gaussian Data

The EM algorithm also performs well, typically converging within 5 iterations (see figure
2).
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Figure 2: The progress of the EM algorithm with
�����

and random initialization on the
two-Gaussian data set (note: some data points omitted for clarity). The radius of the circle
around each Gaussian is set to its variance.

2.3 K-Means on Two-Dimensional, Annulus Data

On the annulus data, K-Means also works well, with the centers converging to points evenly
distributed around the annulus in four or five iterations (see figure 3).

2.4 EM on Two Dimensional, Annulus Data

On the annulus data set, the EM algorithm also performs well, converging within 10 itera-
tions (see figure 4).
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Figure 3: The progress of the K-Means algorithm with
�����

and random initialization on
the annulus data set (note: some data points omitted for clarity).

We verify that our code for EM is progressively finding a better fit for the data by checking
that the negative log likelihood after each iteration never increases. As can be seen in Figure
5, this value decreases after each iteration.

3 High Dimensional Data Clustering

Most real-world data sets are very high-dimensional. However, the performance of cluster-
ing algorithms tends to scale poorly as the dimension of the data grows. For this reason the
dimensionality of data sets is often reduced by various techniques before it is clustered.

Our data set is very high-dimensional, since each data point is a 240 x 292 image with
256 shades of gray. Treating each pixel as a dimension yields a 70080-dimensional data
set, which makes clustering difficult given our computing resources. To reduce the dimen-
sionality of our data set, we experimented with random projections and principal compo-
nent analysis (PCA). Random projections have the desirable property that highly eccentric,
high-dimensional Gaussians become more spherical when projected down to a small ran-
dom basis.

Our data set is a collecton of images of the faces of 14 different people expressing different
emotions. Each person was instructed to make a happy, sad, surprised, afraid, disgusted,
and angry face. Our primary goal is to classify the facial expression of a given image by
clustering our data set into six clusters, one for each emotion, and then calculating which
cluster is most likely to contain that image. We are also interested in clustering our data set



−2 0 2

−2

−1

0

1

2

Iteration  1

−2 0 2
−2

−1

0

1

2
Iteration  2

−2 0 2
−2

−1

0

1

2
Iteration  4

−2 0 2
−2

−1

0

1

2
Iteration  6

−2 0 2
−2

−1

0

1

2
Iteration  7

−2 0 2
−2

−1

0

1

2
Iteration  9

Figure 4: The progress of the EM algorithm with
���	�

and random initialization on the
annulus data set (note: some data points omitted for clarity). The radius of the circle around
each Gaussian is set to its variance.
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Figure 5: The negative log likelihood of the EM algorithm on the annulus data
set with

� � �
and random initialization. This error function is 
 �

�������������� �����������! �"$# % �'&�(�)+*-,.�0/21  3" & � �0/21  4% � # " &65 .

into 14 clusters, one for each person, and conducting the analogous experiment of classi-
fying images by person. We were concerned that clustering images to distinguish between
emotions would find clusters of different people, rather than different facial expressions.



To avoid this, we make use of an image of each person making a “neutral” face. We add
a”difference image,” defined as the difference between each image of a person expressing
an emotion and that person’s neutral face to the data set. This set is used to cluster based
on facial expressions, whereas we use the raw images to classify particular people. Our
intuition was that clustering by person would be more successful than clustering by facial
expression.

We downsample all images by a factor of 64 (8 in the x and y dimensions) to reduce
the effects of noise. Intuitively, the downsampling does not remove information crucial
to clustering since a human can still identify people and their facial expressions at this
resolution.

3.1 Classifying People

Supervised Clustering
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Figure 6: Supervised clustering, 1080-dimensional data (no dimension reduction).

Note about figures 6 and 7: The graphs show how each image was classified, by cluster
number on the vertical axis, and the images on the horizontal axis. These images are
sorted by known category, where each category is seperated by vertical dash-dot lines.
A square indicates a point classified by finding the cluster-center (mean) to which that
point is closest. A dot indicates a point classified by finding the Gaussian with the highest
probability at that point.

As an initial test, we use all the images of a particular person to calculate a maximum-
likelihood mean and variance of that person, and then use these 14 Gaussians to classify
each image in the data set. We use two classification methods, one classifies a data point
by finding the mean to which that point is closest, the other finds the Gaussian with the
highest probability at that point. This supervised clustering test represents an upper bound
on how well we can expect unsupervised clustering algorithms to perform.

Figure 6 is the result of fitting 14 Gaussians to the raw image data and then trying to
classify each image. Evaluating Gaussians on such high-dimensional data causes numerical
precision problems, so we are unable to use the probability method to classify images.
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Figure 7: Supervised clustering, 15-dimensional data (random projection).

Notice that only three (of 110) images are misclassified, indicating that the raw data are
well seperated.

Figure 7 is the same as figure 6, except the data were pojected down to a random 15-
dimensional basis. These low-dimensional data are still well seperated, but there are a
few more misclassifications than in the high-dimensional data. Reducing the number of
dimensions with PCA yields comperable results.

Unsupervised Clustering
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Figure 8: Unsupervised clustering, 1080-dimensional data (no dimension reduction).
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Figure 9: Unsupervised clustering, 15-dimensional data (random projection).
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Figure 10: Unsupervised clustering, 15-dimensional data (PCA projection).

Note about figures 8 through 10: The squares indicate the K-Means results and the dots
indicate the EM results. Some EM results are not present due to numerical precision prob-
lems.

Figure 8 is the result of running K-Means (EM failed due to numerical precision problems)
on the entire high-dimensional data set, looking for 14 clusters, and classifying all the data
points according to the clusters those algorithms found. About ten clusters were found by
K-Means that correlate well to distinct people.

Figure 9 is the same as figure 8 except the data have been projected down to a 20 dimen-



sional random basis and EM results are included. About five clusters were found by both
algorithms that correlated well with distinct people.

Figure 10 shows the clusters found by K-Means and EM on the data set projected down to
15 principal components. EM clusters marginally better than K-Means in this case. It also
appears that the PCA basis worked better than the random basis.

3.2 Classifying Facial Expressions

Supervised Clustering
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Figure 11: Supervised clustering, 1080-dimensional data (no dimension reduction).
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Figure 12: Supervised clustering, 15-dimensional data (random projection).



To see if disjoint clusters of facial expressions exist in our data set, we use all the difference-
images of each facial expression to calculate a maximum-likelihood mean and variance of
that expression, and then use these six Gaussians to classify the images. We use the same
two classification methods as in section 3.1, classifying a data point by finding the mean to
which that point is closest and the other finding the Gaussian with the highest probability
at that point. This supervised clustering test represents an upper bound on how well we can
expect unsupervised clustering algorithms to perform.

Figure 11 shows that most data points can be identified with the correct cluster, indicating
the raw data can be partitioned into distinct clusters of facial expressions.

Figure 12 is the same as figure 11 except the data have been projected down to a 15-
dimensional random basis. About a quarter of the data are misclassified, indicating the
clusters in the projected data are less distinct.

Unsupervised Clustering
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Figure 13: Unsupervised clustering, 1080-dimensional data (no dimension reduction).

Figure 13 is the result of running K-Means (EM failed due to numerical precision problems)
on the entire high-dimensional data set, looking for 6 clusters, and classifying all the data
points according to the clusters found. The only cluster that correlates well with a particular
facial expression is cluster 1 corresponding to the happy expressions.

Figure 14 is the same as figure 13 except the data have been projected down to a 20 dimen-
sional random basis and EM results are included. Again, the only cluster that correlates
well with a particular facial expression is the cluster associated with happy expressions,
but this cluster is not as disjoint (from other clusters) as in the high-dimensional data set,
since there are more false positives and misses.

Figure 15 shows the clusters found by K-Means and EM on the data set projected down
to 20 principal components. As in the previous two figures, only happiness correlates well
with a particular cluster. There are slightly fewer misses than with the high dimensional
data; however, there are many more false positives.



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

image number (lines seperate images of same expression)

clu
ste

r n
um

be
r

Figure 14: Unsupervised clustering, 20-dimensional data (random projection).
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Figure 15: Unsupervised clustering, 20-dimensional data (PCA projection).

4 Conclusion

Down-sampling the images greatly improved clustering in all cases. We suspect this is
because most noise was averaged out.

We tried two techniques to reduce the dimensionality of our data set, projecting it down to a
low-dimensional random basis, and principal component analysis. Both of these techniques
degraded the quality of the clustering, but made the expectation maximization algorithm
feasible. Our observation is that PCA was only marginally better, if at all, than a random
projection despite its computational intensity.



In general, we noticed that K-Means performs comparably to EM; however, EM fails on
high-dimensional data sets due to numerical precision problems. Another problem with
EM is that Gaussians often collapsed to delta functions. Our technique to prevent this was
to reset the variance of collapsed Gaussians to a more reasonable value, and to set the mean
of those Gaussians to random data points.

We would have liked to run our clustering algorithms on our data sets and then validate
the results by classifying novel data, however when we reserved a portion of our data for
validation, the clusters the algorithms found did not correspond at all to the classes we were
trying to find. We strongly suspect this is due to the lack of enough sample points to define
accurate Gaussians.

5 Future Work

The technique we use to convert images to feature vectors is simply to list all of the pixels in
the image. Clearly, this is the a naive approach because it ignores the correlations between
neighboring pixels. Our first attempt was to create feature vectors that were the Gabor
wavelet transforms of each image using 4 scales and 6 rotations. This took a long time
and produced a feature vector that was far too large for our computational reasources.
Future work should explore the potential of this approach by using a more efficient wavelet
transform procedure.

In addition to K-Means and EM, K-Harmonic-Means is another clustering algorithm that
could be used to classify images. For each cluster center, K-Harmonic-Means computes the
harmoic mean of the distance to every data point, and update that cluster center accordingly.
This algorithm is less sensitive to initial cluster centers than K-Means, but does not have the
problem of collapsing Gaussians exhibited by EM. For these reasons, K-Harmonic-Means
might find better clusters in high-dimensional data.

Individual Contributions

Neil Alldrin:
My primary contribution was writing the EM code (most of the em * files). This included
a lot of effort devoted to how to handle collapsing Gaussians and how to prevent divide by
zeros caused by lack of numerical precision (which was only a problem on high dimen-
sional data). I also generated the graphs for the 2-dimensional data and helped write the
latex document you are now reading. I had lots of fun.

Andrew Smith:
I learned Matlab. I wrote the script to load the images (loadFaces.m). I wrote the function to
downsample images. I wrote K-means. I wrote the scripts to generate the high-dimensional
data graphs (section 3) in this paper. I wrote a function to generate a Gabor filter bank,
using code from [2] to evaluate Gabor functions. I experimented with using Gabor wavelet
transforms for feature vectors of images, but it was too slow. I had lots of fun.

Doug Turnbull:
My primary focus in this assignment was to design and implement various experiments for
high dimensional data using kmeans and EM. These tests included implementing random
projection and PCA precompuation algorithms, creating scripts to run tests for various data
sets, and collecting results for analysis. Developing these tests were often a nontrival task
due to a large number of parameters (projection matrices, clustering algorithm, data sets,
etc.) that greatly affect the quality of the results. I had a little bit of fun.
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