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Outline
1. Clustering overview

– Why
– Distance measures
– Types

2. K-Means (in-depth)
– Derivation
– Algorithm, convergence
– Assumptions/limitations
– Complexity/scaling

3. Agglomerative Hierarchical Clustering

4. DBSAN

5. Gaussian Mixture Models

6. Evaluation
– Internal: partitional/hierarchical
– External: classification/similarity

October 19, 2017
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Clustering
Goal: group data into similar classes s.t.

• objects within a group are similar/related
• Maximize intra-cluster similarity

• objects in different groups are 
different/unrelated

• Minimize inter-cluster similarity

October 19, 2017
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Why Cluster?

• Biological taxonomies
• Query understanding

– Movie -> ratings, trailers…
• Diseases

– Subtypes, progression
• Customer segmentation

• Summarize
– Prototypes << N

• Compression
• NN acceleration

October 19, 2017

Cluster Analysis
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Similarity is Task-Specific
• Flags: map vs visual similarity
– http://virostatiq.com/data/countr

ies-by-flag-similarity/

• Emoji: category/search vs use
– https://emojikeyboard.org
– https://engineering.instagram.co

m/emojineering-part-1-machine-
learning-for-emoji-
trendsmachine-learning-for-
emoji-trends-7f5f9cb979ad

October 19, 2017
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Similarity vs Distance

• No formal requirements/agree-
upon definitions

• Generally: bigger=more similar

• Sometimes: normalized, 
inverse distance (e.g. 1-dnorm)

• Proposal: 
https://doi.org/10.1016/ 
j.tcs.2009.02.023

• D(A, B) = D(B, A)
– Symmetric

• D(A, B) ≥ 0
– Non-negative

• D(A, B) = 0 iff A=B
– Positive

• D(A, B) ≤ D(A, B) + D(B, C)
– Obeys Triangle Inequality

October 19, 2017
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Common Distance Measures
Minkowski
- 1=Manhattan
- 2=Euclidean

(usually Euclidean	data)

Cosine

Jaccard

(usually Documents)
Levenshtein (edit)

Hamming

(usually Strings)

#	insert/remove/substitute operations

#	positions	with	different	symbols

October 19, 2017
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Clustering Characteristics
• Hierarchical/nested vs partitional
• Exclusive vs overlapping vs fuzzy
• Complete vs Partial

October 19, 2017
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Hierarchical vs Partitional

October 19, 2017

Cluster Analysis
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Exclusive vs Overlapping vs Fuzzy
• Exclusive
– An object belongs to one cluster
– One-hot: [0,0,1,0,0]

• Overlapping
– An object can belong to more than one cluster
– Binary membership: [1,0,1,0,0]

• Fuzzy
– An object has a membership of [0,1] with each 

cluster (typically sum to 1)
– Proportional membership: [0.8, 0.0, 0.1, 0.1, 0.0]

October 19, 2017
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Complete vs Partial
• Complete
– All objects are assigned to (at least) one 

cluster

• Partial
– Objects may not be assigned to any clusters
– Examples: noise, outliers

October 19, 2017
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Clustering Algorithm Types
• Centroid/prototype-based
• Hierarchical/connectivity-based
• Density-based
• Distribution-based

October 19, 2017
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Centroid/Prototype
e.g. K-means

October 19, 2017
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Hierarchical/Connectivity

October 19, 2017
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Dendogram cut off 
at some depth
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Density
e.g. DBSCAN

October 19, 2017
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Distribution
e.g. Gaussian Mixture Models

October 19, 2017
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The K-Means Problem
• Given a dataset and a fixed parameter K…

• associate each data point with one of K
clusters …

• such that the sum of the squares of the 
distances from each data point to its 
cluster’s mean is minimized

October 19, 2017
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The K-Means Problem Visually

October 19, 2017
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The K-Means Problem Visually

October 19, 2017
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017

Cluster Analysis
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017
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More Formally…
• {xn}: input data points, for n in 1…N
• {μk}: center of the kth cluster, for k in 1…K
• {rnk}: binary indicator variable
– for each of {data point} x {cluster}
– rnk∈ {0,1}
– One-Hot: if data point xn is assigned to cluster k, 

then rnk=1 and rnj=0 for j≠k

October 19, 2017

Cluster Analysis
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Quick Check
• How many partitions could there be?
– N data points
– K clusters

October 19, 2017
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Quick Check
• How many partitions could there be?
– N data points
– K clusters

• Data point 1 can be in cluster {1…K}
• Data point 2 can be in cluster {1…K}
…
• Data point N can be in cluster {1…K}

Independent partitions: KN 😭 (so heuristic!)

October 19, 2017
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Iterative Parameter Estimates
For the K-Means algorithm, we’ll iteratively 
move towards a local minimum:

1. Initialize: choose μk (more later)
2. Loop till convergence (no change in rnk)

a. Hold μk fixed, minimize w.r.t. rnk

b. Hold rnk fixed, minimize w.r.t. μk

Note: this is a special case of a more 
general Expectation Maximization (EM) 
algorithm for parameter estimation

October 19, 2017
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So 3 Questions
1. How to optimize rnk (E-step)
2. How to optimize μk (M-step)
3. Will it converge?

October 19, 2017
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K-Means: E-Step (rnk)

• Observations
– The objective is a linear sum of rnk
– Each term involving a value of n is independent 

(i.e. each data point independent)
– Partial w.r.t. rnk is proportional to the distance 

from the point to a cluster center

October 19, 2017
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K-Means: E-Step (rnk)

• So… for each data point, choose the 
closest cluster center

October 19, 2017
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K-Means: M-Step (μk)

• Observations
– Distance is a quadratic function of μk
– Each term involving a value of k is independent 

(i.e. each cluster is independent)

– Partial w.r.t. μk …

October 19, 2017
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K-Means: M-Step (μk)

• SO …

• Solve for μk : 
– Den=?

October 19, 2017

Cluster Analysis

30

argmin
rnk,µk

NX

n=1

KX

k=1

rnk||xn � µk||2

2
NX

n=1

rnk(xn � µk) = 0

µk =

P
n rnkxnP
n rnk



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

K-Means: M-Step (μk)

• SO …

• Solve for μk : 
– Den=# points

October 19, 2017
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Iterative Parameter Estimates
For the K-Means algorithm, we’ll iteratively 
move towards a local minimum:

1. Initialize: choose μk (more later)
2. Loop till convergence (no change in rnk)

a. Points -> closest cluster
b. Cluster -> avg of associated points

Will it blend converge???

October 19, 2017
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Argument for Convergence
• Observations:
– Finite clusterings (KN)
– Each clustering based only upon the last
– Objective always decreases

• E: each point changes only to a better cluster
• M: mean minimizes total distance given current clustering

– Deterministic movement
• if new clustering is same as old, will never change
• if new clustering is different, lower cost

• SO…
– Converges to a local minimum
– Must happen eventually, usually quickly

October 19, 2017
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K-Means Algorithm

October 19, 2017
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Pending Questions
• Initial centroids?
• Value of K?
• Assumptions/limitations?
• Complexity/scaling?

October 19, 2017
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Good Clustering

October 19, 2017
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Not-So-Good Clustering

October 19, 2017
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K-Means is Sensitive to Initialization

October 19, 2017
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Common Approach
• Uniform random assignment
– Could be data points (Forgy) or in ℝd

• Repeat k times and choose best SSE

• What could possibly go wrong!?

October 19, 2017
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39



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

Good Clustering

October 19, 2017

Cluster Analysis
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Unequal Distribution w.r.t Clusters
Now Think Large k

October 19, 2017
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Initialization Approaches (1)
K-Means++
– Choose 1st at random from x
– For remaining, compute distance of each 

remaining point in x to closest centroid
– Select, weighting probabilistically towards 

farther
– Good: random, separated
– Bad: expensive (help: sampling and/or data 

structures)

October 19, 2017
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Initialization Approaches (2)
Bisecting K-Means -> Initial Points
– Divisive hierarchical clustering, with K-Means 

local to each chosen sub-cluster
– Not locally minimal, so serves as initialization to 

global K-Means

October 19, 2017
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Bisecting K-Means

October 19, 2017

Cluster Analysis
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Picking the Right Value of K
• Ideal: problem-specific context identifies a 

likely value
– Post-processing may be required for fine-

tuning

• But what if we aren’t sure at the start as to 
a reasonable value of K?

October 19, 2017
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Quick Check
• Describe how SSE changes as we 

increase the value of K?
–What is the maximum value?

October 19, 2017
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Quick Check
• Describe how SSE changes as we 

increase the value of K from 1 to N?

October 19, 2017
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The “Elbow” Method
• Identify a criterion w.r.t. SSE or variance
– Harder than it sounds

• Binary parameter search to find range
– 1, 2, 4, 8, 16, 32

• Binary search within to identify elbow
– 24, 20, 22, 21

October 19, 2017
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Others
• X-Means: add a regularization term to 

penalize large values of K, search!
– Commonly Bayesian Information Criterion (BIC), 

others possible

• Information Theoretic: balance error with 
compression

• Internal cluster-quality evaluation criteria 
(e.g. Silhouette; more later)

October 19, 2017
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Examples

October 19, 2017

Cluster Analysis
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Example: Image Compression
• Consider the following (simplistic) method 

of image compression via K-Means
– Cluster distinct colors
– Represent the image pixels as “pointers” to K

color means
• Vector Quantization, where the K are          

Code-Book Vectors

• NOT a good image segmentation/ 
compression approach, but illustrates 
tradeoffs nicely

October 19, 2017
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Change Values of K

October 19, 2017
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Choosing K
• If each of N pixels requires 3 colors, each 

with 8 bits of precision, how many bits for 
the whole image?
– 24N

• How many bits for a “pointer” pixel?
– log2K

• So total transmission: 24K + Nlog2K
– 2~4%; 3~8%; 10~17%

October 19, 2017
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Post Processing
• Given the result of K-Means on an 

initialization/K, it is common to alternate 
splitting/merging clusters to reduce SSE

• Common operations
– Add. points with high SSE
– Split. highest SSE, largest SD of an attribute
– Remove. increases SSE least
–Merge. close or increase SSE least

October 19, 2017
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Core K-Means Assumption
• Look to definition of SSE

• Uniform “spherical” clusters
– Same size/density
• Points/clusters aren’t weighted

– Across dimensions
• Dimensions aren’t weighted

October 19, 2017
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Different Sizes

October 19, 2017
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Different Densities

October 19, 2017
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Non-Spherical Shapes

October 19, 2017
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Quick Check: K=3

October 19, 2017
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Quick Check: K=2

October 19, 2017

Cluster Analysis

60



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

K-Means Complexity (1)

October 19, 2017

Cluster Analysis

61

• What are the parameters of the base 
algorithm?
– K = number of centroids
– N = number of points
– I = number of iterations
– D = number of dimensions || x – μ ||2
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K-Means Complexity (2)
• What are the parameters of the base 

algorithm?
– K = number of centroids
– N = number of points
– I = number of iterations
– D = number of dimensions || x – μ ||2

October 19, 2017

Cluster Analysis

62



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

K-Means Complexity (3)
• Initialization
– KD

• Each iteration
– NKD
– NKD

October 19, 2017
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K-Means Complexity (4)
• Overall complexity: 𝒪(NKDI)
– Typically few iterations (10’s)
– Typically: K, D << N

• Variant: Mini-batch K-Means
– Depends on mini-batch size (M), not (N)
– Relatively good SSE

October 19, 2017
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Hierarchical/Connectivity

October 19, 2017
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Agglomerative Clustering
• Much more common than Divisive

• Basic idea
– Start with all points as individual clusters
– Loop
• Merge two “closest” clusters

– Until only one cluster remains

October 19, 2017
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Algorithm

October 19, 2017
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017
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Example Output Representations

October 19, 2017
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Number of Clusters?

October 19, 2017
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Look to Relative Distance Changes

October 19, 2017
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Outliers?

October 19, 2017
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Look to Isolated Branches

October 19, 2017
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👟 Example

x y
p1 0.40 0.53
p2 0.21 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

October 19, 2017
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👟 Example (1)
Compute Proximity Matrix

p1 p2 p3 p4 p5 p6
p1
p2
p3
p4
p5
p6

October 19, 2017
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👟 Example (2)
Compute Proximity Matrix

p1 p2 p3 p4 p5 p6
p1
p2
p3
p4
p5
p6

October 19, 2017

Cluster Analysis
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👟 Example (3)
Compute Proximity Matrix

p1 p2 p3 p4 p5 p6
p1
p2 .24
p3 .22 .15
p4 .37 .20 .16
p5 .34 .13 .28 .28
p6 .24 .25 .10 .22 .39

October 19, 2017

Cluster Analysis
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👟 Example (4)
Minimize!

p1 p2 p3 p4 p5 p6
p1
p2 .24
p3 .22 .15
p4 .37 .20 .16
p5 .34 .13 .28 .28
p6 .24 .25 .10 .22 .39

October 19, 2017

Cluster Analysis
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👟 Example (5)
What Now?!

October 19, 2017
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Algorithm

October 19, 2017
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Distances Between Clusters??
• Common criteria:

– MIN/Single Link
Closest Point

– MAX/Complete Link
Farthest Point

– AVG/Group
Average of all pairs

• It turns out these and more (e.g. Ward’s) are special 
cases of the Lance William’s Formula (see TSK)

October 19, 2017

Cluster Analysis
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👟 Example (6-MIN)

October 19, 2017
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👟 Example (6-MIN)

p1 p2 p3 p4 p5 p6
p1
p2 .24
p3 .22 .15
p4 .37 .20 .16
p5 .34 .13 .28 .28
p6 .24 .25 .10 .22 .39

October 19, 2017
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x y
p1 0.40 0.53
p2 0.21 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

• d({1},{3,6}) = min( d({1},{3}), d({1},{6}) ) = d({1},{3})
• d({2},{3,6}) = min( d({2},{3}), d({2},{6}) ) = d({2},{3})
• d({4},{3,6}) = min( d({4},{3}), d({4},{6}) ) = d({4},{3})
• d({5},{3,6}) = min( d({5},{3}), d({5},{6}) ) = d({5},{3})
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👟 Example (6-MAX)

October 19, 2017
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👟 Example (6-MAX)

p1 p2 p3 p4 p5 p6
p1
p2 .24
p3 .22 .15
p4 .37 .20 .16
p5 .34 .13 .28 .28
p6 .24 .25 .10 .22 .39

October 19, 2017

Cluster Analysis
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x y
p1 0.40 0.53
p2 0.21 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

• d({1},{3,6}) = max( d({1},{3}), d({1},{6}) ) = d({1},{6})
• d({2},{3,6}) = max( d({2},{3}), d({2},{6}) ) = d({2},{6})
• d({4},{3,6}) = max( d({4},{3}), d({4},{6}) ) = d({4},{6})
• d({5},{3,6}) = max( d({5},{3}), d({5},{6}) ) = d({5},{6})
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👟 Example (6-AVG)

p1 p2 p3 p4 p5 p6
p1
p2 .24
p3 .22 .15
p4 .37 .20 .16
p5 .34 .13 .28 .28
p6 .24 .25 .10 .22 .39

October 19, 2017

Cluster Analysis
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x y
p1 0.40 0.53
p2 0.21 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

• d({1},{3,6}) = avg( d({1},{3}), d({1},{6}) ) ~ 0.23
• d({2},{3,6}) = avg( d({2},{3}), d({2},{6}) ) ~ 0.20
• d({4},{3,6}) = avg( d({4},{3}), d({4},{6}) ) ~ 0.19
• d({5},{3,6}) = avg( d({5},{3}), d({5},{6}) ) ~ 0.34
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Clustering Comparison

October 19, 2017

Cluster Analysis
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Algorithm Evaluation

• No need to specify # 
clusters, initial points

• Hierarchical result may 
map onto intuition

• Local optimum
• Complexity

– Space = 𝒪(n2)
– Time = 𝒪(n2logn)

• Being smart about 
storing/finding distances

• Still may want to decide 
height cutoff (~elbow)

• Interpreting results is 
subjective

October 19, 2017

Cluster Analysis
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DBSCAN: The Promise

October 19, 2017

Cluster Analysis
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Density-Based Clustering
• We first need a concept of 

“density” by which we will 
cluster

• DBSCAN uses a center-
based approach
– How many points are within a 

small distance  (𝜀, or eps) of a 
point (including itself)

– Density of A?

• The eps-neighborhood (N𝜀) is the set of points within this 
radius

October 19, 2017

Cluster Analysis
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N✏(p) = {q 2 D|dist(p, q)  ✏}
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Classifying Points via Density
• Core (the “interior” of a cluster)

|N𝜀(p)| ≥ MinPts

• Border (the “edge” of a cluster)
|N𝜀(q)| < MinPts
q∈N𝜀(p), where p is a core point

• Noise (neither core nor border)

October 19, 2017

Cluster Analysis
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Example: MinPts=7

October 19, 2017

Cluster Analysis
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Direct Reachability
• A point q is directly density-reachable

from point p w.r.t. eps and MinPts if…
q ∈N𝜀(p)
|N𝜀(p)| ≥ MinPts

• Thus, no points are directly reachable
from a non-core point

October 19, 2017

Cluster Analysis
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Example: MinPts=6

October 19, 2017

Cluster Analysis
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Density Reachability
• A point q is density-reachable from a 

point p w.r.t. eps and MinPts if…

– There is a chain p0 (=p), p1, p2, … pn (=q)
– pi+1 is directly density reachable from pi
• i need not include n

October 19, 2017

Cluster Analysis
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Example: MinPts=6

October 19, 2017

Cluster Analysis
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Density Connectivity
• A point p is density-connected to a point 

q w.r.t. eps and MinPts if…

– There is a point v such that p and q are 
density reachable from v

October 19, 2017

Cluster Analysis

98



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

Example: MinPts=6

October 19, 2017

Cluster Analysis
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Cluster (w.r.t. eps/MinPts)
• All points within the cluster are density-

connected

• If a point is density-reachable from any 
point of the cluster, it is part of the cluster 
(maximality)

• All points in a dataset not belonging to 
any cluster are considered noise.

October 19, 2017

Cluster Analysis

100



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

DBSCAN

October 19, 2017

Cluster Analysis
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DBSCAN Pseudocode (Wikipedia)
DBSCAN(DB, dist, eps, minPts) {

C = 0 /* Cluster counter */
for each point P in database DB {

if label(P) ≠ undefined then continue /* Previously processed in inner loop */
Neighbors N = RangeQuery(DB, dist, P, eps) /* Find neighbors */
if |N| < minPts then { /* Density check */

label(P) = Noise /* Label as Noise */
continue

}

C = C + 1 /* next cluster label */
label(P) = C /* Label initial point */
Seed set S = N \ {P} /* Neighbors to expand */
for each point Q in S { /* Process every seed point */

if label(Q) = Noise then label(Q) = C /* Change Noise to border point */
if label(Q) ≠ undefined then continue /* Previously processed */         
label(Q) = C /* Label neighbor */
Neighbors N = RangeQuery(DB, dist, Q, eps) /* Find neighbors */         
if |N| ≥ minPts then { /* Density check */

S = S ∪ N /* Add new neighbors to seed set */
}

}
}

}

October 19, 2017

Cluster Analysis
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Computational Complexity
• Time: 𝒪(N2) naïvely
– O(NlogN) if using a spatial index for neighbor 

queries (works for low dimensions)

• Space: 𝒪(N)

October 19, 2017

Cluster Analysis
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eps/MinPts
• Parameters must be chosen precisely
– RoT: D < MinPts < 2D

October 19, 2017

Cluster Analysis
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Ground Truth MinPts=4, Eps=9.92 MinPts=4, Eps=9.75
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Find the Knee

• Get distance from each point to kth nearest 
neighbor (MaxPts)

• Sort, plot distance vs points, find knee (eps)

October 19, 2017

Cluster Analysis
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Example: Input

October 19, 2017

Cluster Analysis
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Example: 4-NN

October 19, 2017

Cluster Analysis
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MaxPts=4, eps=10

October 19, 2017

Cluster Analysis
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K-Means vs DBSCAN

October 19, 2017

Cluster Analysis
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Animation Time!

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

October 19, 2017

Cluster Analysis
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Mixture Models – Why!?
• If we have a dataset, and can reasonably 

assume its distribution (e.g. Gaussian), easy 
to perform many useful operations…
– Make statements about the data source
– Learn parameters, e.g. mean/(co-)variance
– Generate new points
– Make statements about common/uncommon 

points (possibly part of pipeline, e.g. 
classification)

• But often we aren’t so lucky…

October 19, 2017
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Gaussian Mixture Models (e.g. 1)
• The price of a paperback book is normally 

distributed with mean $10, std $1
• The price of a hardcover has mean $17, std

$1.50
• Price of a book?

October 19, 2017

Cluster Analysis

112



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

Gaussian Mixture Models (e.g. 2)
• The height of a randomly chosen man is normally 

distributed with mean 69.5”, std 2.5”
• The height of a woman is mean 64.5”, std 2.5”
• Height of a person?

October 19, 2017

Cluster Analysis

113



CS6220 – Data Mining Techniques･ ･･ Fall 2017･ ･･Derbinsky

Gaussian Mixture Models (e.g. 3)
• Old Faithful: time till next eruption vs 

eruption time

October 19, 2017

Cluster Analysis
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Not Limited to 2 Distributions (1)

October 19, 2017

Cluster Analysis
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Not Limited to 2 Distributions (2)

October 19, 2017

Cluster Analysis
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So How Do We Model?
• Basic idea: we assume a “mix” of a finite number 

of known distributions (Gaussians for now)

• Each distribution has its own parameters: for 
GMMs, mean (μ) & (co)variance (Σ) as usual

• We ALSO add a “mixing” parameter (𝜋k), per 
distribution, that accounts for the probability of 
drawing from that distribution
– Example: World Bank 2016

• p(Female) = 49.558%
• p(Female|USA) = 50.5%

October 19, 2017
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Gaussian Mixture Model
• So now we can express the probability of 

a point in the superposition of the 
individual distributions

October 19, 2017

Cluster Analysis
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p(x) =
KX

k=1

⇡kN (x|µk,⌃k)

KX

k=1

⇡k = 1 0  ⇡k  1
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Quick Check
• If you knew 𝜋, μ, Σ: could you sample 

from this distribution?

October 19, 2017
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p(x) =
KX

k=1

⇡kN (x|µk,⌃k)
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Quick Check
• If you knew 𝜋, μ, Σ: could you sample 

from this distribution?
• Yes – it’s generative (vs discriminative)
• How? HW2 part 3 :)

October 19, 2017
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p(x) =
KX

k=1

⇡kN (x|µk,⌃k)
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Some Observations
• Given the constraints 

on 𝜋, it can be 
thought of as the 
prior probability of 
selecting a Gaussian

• And the normal is 
simply the likelihood
of drawing the point 
given a Gaussian has 
been chosen

October 19, 2017
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zk is	one-hot
p(zk=1)= 𝜋k

z	is	a	latent variable
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Posterior = Responsibility

October 19, 2017
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�(zk) ⌘ p(zk = 1|x) = p(zk = 1)p(x|zk = 1)
PK

j=1 p(zj = 1)p(x|zj = 1)
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j=1 ⇡jN (x|µj ,⌃j)
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Posterior = Responsibility

October 19, 2017
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Posterior = Responsibility

October 19, 2017

Cluster Analysis
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Now the Core Clustering Question
• Given a set of N 

observations 
{x1, … xN}

• What parameter 
values (𝜋, μ, Σ) best 
explain the data? 

October 19, 2017
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Objective
• Maximize the following function – the 

likelihood of seeing the dataset given the 
selected model parameters

October 19, 2017
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ln p(X|⇡,µ,⌃) =
NX

n=1

ln {
KX

k=1

⇡kN (xn|µk,⌃k)}
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Aside: Why Log-Likelihood?
Often used for practical reasons…

– Within useful ranges of values, relative ordering 
maintained
• p(a) > p(b) => ln(p(a)) > ln(p(b))

– Easier math
• Easy derivative
• Combines well with exponential (e.g. ln(ex)=x)
• Products become sums

– Avoids underflow

October 19, 2017
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017
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Quick Check
• Hierarchical or Partitional?
• Exclusive, Overlapping, Fuzzy?
• Complete or Partial?
• Centroid, Hierarchical, Density, 

Distribution?

October 19, 2017
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Game Plan
• Take the partial w.r.t. each parameter, set 

equal to 0, solve?
– Not going to happen…
– Possibility: gradient ascent
– For now: EM

• EM for Gaussian Mixture Modeling
– Initialize parameters (𝜋, μ, Σ)
– Loop till convergence (??)

• E-Step: fix parameters, evaluate responsibility
• M-Step: fix responsibility, optimize parameters

October 19, 2017
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Parameter Initialization
• 𝜋k = 1/K
• μ = Forgy
• Σ = global variance

Other possibilities exist (e.g. splitting), might 
attempt multiple and use lowest initial log-
likelihood

October 19, 2017
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E-Step (1)
• For each point, evaluate responsibility with 

respect to each Gaussian; normalize
• For example, with 𝜋 = (0.5, 0.5) …

October 19, 2017
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N(x; μ1, Σ1) ~ 0.58
N(x; μ2, Σ2) ~ 0.07

γ(z1) ~ 0.89
γ(z2) ~ 0.11
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E-Step (2)
Evaluate for all (n) data points x (k) models…

October 19, 2017
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�(znk) =
⇡kN (xn|µk,⌃k)PK
j=1 ⇡jN (xn|µj ,⌃j)
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M-Step (1)
• Holding the responsibilities fixed, now maximize 

each of the parameters
– Derivation is quite similar to K-Means, but 𝜋 requires 

introduction of a Langrange multiplier to enforce 
summation to 1

• All terms reference Nk, which can be thought of 
as the effective number of points assigned to a 
cluster

October 19, 2017
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M-Step (2)

October 19, 2017
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Convergence Criterion
• Unlike K-Means, we don’t have crisp 

membership variables that we can 
monitor for discrete changes

• Instead, commonly…
– Compute log-likelihood after each iteration, 

stop when change drops below 𝜀
– Could also have a hold-out set, monitor 

change in log-likelihood

October 19, 2017
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Example Run: Setup

October 19, 2017

Cluster Analysis
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Credit: Michael Picheny et al., Watson Group @ IBM
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Example Run: E-Step

October 19, 2017
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Credit: Michael Picheny et al., Watson Group @ IBM
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Example Run: M-Step

October 19, 2017
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Credit: Michael Picheny et al., Watson Group @ IBM
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Example Run: Results

October 19, 2017

Cluster Analysis

140

Credit: Michael Picheny et al., Watson Group @ IBM
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Example Data

October 19, 2017
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Iteration 1

October 19, 2017
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Iteration 3

October 19, 2017
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Iteration 15

October 19, 2017
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Convergence via Log-Likelihood
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Old Faithful (1)
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Old Faithful (2)

October 19, 2017
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Example (Andrew Moore; 1)

October 19, 2017
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Example (Andrew Moore; 2)
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Example (Andrew Moore; 3)

October 19, 2017
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Example (Andrew Moore; 4)
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Example (Andrew Moore; 5)
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Example (Andrew Moore; 6)
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Example (Andrew Moore; 20)
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Assay Data (Andrew Moore)

October 19, 2017
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Assay Clustering (Andrew Moore)
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Assay Density (Andrew Moore)
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Relationship to K-Means
K-Means is a special case of Gaussian 
Mixture Models in which…

Σ = 𝜎2Ｉ(i.e. spherical, same for all)

𝜋 = 1/K (i.e. equal probability of all)

Assignments are…
“hard” (rn=one-hot) vs “soft” p(z|x)
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EM Notes
• Generally useful technique for finding maximum 

likelihood (MLE) or maximum a posteriori (MAP) 
estimates of parameters in statistical models

• Typically used where the model depends on 
unobserved latent variables

• Converges to a local maximum (may need random-
restarts)

Algorithm
1. Initialize
2. Loop till convergence

i. Maximize observed variables, fixing latent parameters
ii. Maximize parameters, fixing variables
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What Makes for a “Good” Clustering?

October 19, 2017
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Did I Cluster Well?

October 19, 2017
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Key Questions
1. Does non-random structure actually exist in the 

data?

2. What is the correct number of clusters?

3. How well do the results of a cluster analysis fit the 
data?

4. How well do the results of a cluster analysis adhere 
to externally known results?

5. Given two clusterings – which is better?

October 19, 2017
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One of these 
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Key Distinction
• Internal/Unsupervised
– No information, aside from the input data, is 

used during evaluation
– Either you don’t have ground truth, or are 

using this as a method of meta-optimization 
(e.g. how many clusters?)

• External/Supervised
– Supplied ground truth not used during 

clustering, but is used during evaluation

October 19, 2017
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Key Questions
1. Does non-random structure actually exist in the 

data?

2. What is the correct number of clusters?

3. How well do the results of a cluster analysis fit 
the data?

4. How well do the results of a cluster analysis 
adhere to externally known results?

5. Given two clusterings – which is better?

October 19, 2017
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Evaluation Criteria*

Partitional
– Silhouette
– Proximity Matrix Analysis

Hierarchical
– Cophenetic Correlation

Classification
– Purity

Similarity
– Precision/Recall
– F-Measure

October 19, 2017
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Internal External

*There are many measures, we will examine a representative subset
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Silhouette
• Combined measure of…
– Cohesion. How similar an object is to other 

objects in its own cluster
– Separation. How similar an object is to 

objects in other clusters

• Range: [-1, 1]
Larger values = better clustering 

October 19, 2017
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Computing Silhouette

• a(n): the mean distance between an object and all objects in 
the same cluster (i.e. distance to the cluster mean)

• b(n): the mean distance between an object and all other 
objects in the next nearest cluster (i.e. minimum distance to 
other cluster means)

• For a clustering, average for all objects:

October 19, 2017
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s(n) =
b(n)� a(n)

max(a(n), b(n))

SC =
1

N

NX

n=1

s(n)
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Proximity Matrix Analysis
• Given: the proximity matrix for a dataset, 

and an associated clustering

• If we sort the rows by cluster (i.e. rows 
that are in the cluster are nearby), we can 
then evaluate “goodness” in two ways
– Correlation: compare to “ideal” matrix 

(similarity of 1=same, 0=different)
– Visual: look for block diagonal structure
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Proximity Correlation Comparison

October 19, 2017
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Proximity Visual Comparison

October 19, 2017
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Cophenetic Correlation
• A popular evaluation tool for 

agglomerative hierarchical clustering

• Inputs: for each pair of points…
– Distance
– Cophonetic distance: distance when they 

were first put in the same cluster (also known 
as dendogrammatic distance)

• Output: closer to 1 is a better clustering

October 19, 2017
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Example (1; Teknomo)

• {D,F} @ 0.5
• {A,B} @ 0.71
• {{D,F},E} @ 1.00
• {{{D,F},E},C} @ 1.41
• {{{{D,F},E},C},{A,B}} @ 2.5

October 19, 2017
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Example (2; Teknomo)
• For each pair, 

associate distance 
with cophenetic
distance

• Compute…

October 19, 2017
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c =

P
i<j(dij � d̄)(cij � c̄)

q
[
P

i<j(dij � d̄)2][
P

i<j(cij � c̄)2]

c = 0.8639
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Purity
• A measure of the extent to which clusters 

contain a single class

• Calculation…
– For each cluster, count the number of data points 

from the most common class in the cluster
– Sum over all clusters and divide by the total 

number of data points

• Range: [0,1]
Perfect = 1
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Example (Manning et al.)
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Example (Manning et al.)
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5                    +                  4                    +                   3
= 12 / 17
= 0.706
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Quick Check
• What happens to the purity measure as 

the number of clusters increases?

October 19, 2017
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Quick Check
• What happens to the purity measure as 

the number of clusters increases?

• Easy to achieve 1 :)
– Normalized Mutual Information (NMI) is a 

measure that allows you examine the tradeoff 
between number of clusters and cluster 
quality (related to KL divergence)
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Decision Quality
Compute the following four quantities for all 
pairs (N[N-1]/2) of objects in the dataset

October 19, 2017
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True Class

Same Different

Clustering
Same True Positive False Positive

Different False Negative True Negative
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Decision Quality
• Rand Index: accuracy of correct decisions

RI = (TP + TN) / (TP + FP + FN + TN)
– FP/FN weighted equally, not always ideal

• To build up to weighting between FP/FN…
– Precision = TP / (TP + FP)
– Recall = TP / (TP + FN)
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Precision/Recall Visualized

October 19, 2017
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F-Measure
• Allows for weighting between FP/FN error 

types via parameter 𝛽

• Common F1 score (𝛽=1) gives equal 
weighting
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F� =
(�2 + 1) · P ·R
�2 · P +R
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Where We’ve Been
1. Clustering overview

– Why
– Distance measures
– Types

2. K-Means (in-depth)
– Derivation
– Algorithm, convergence
– Assumptions/limitations
– Complexity/scaling

3. Agglomerative Hierarchical Clustering

4. DBSAN

5. Gaussian Mixture Models

6. Evaluation
– Internal: partitional/hierarchical
– External: classification/similarity
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