Clustering

Shantanu Jain

12 -
11 -
o

10

S () (o)) ~ oo ©
]]] | |

Clustering

» Unsupervised learning (no labels for training)

12 5
¢ 11
®e
°
‘.. .. PY 10 1
° O 3 °
°
Q...‘.. X .. [J 9 _
® 8 ...‘ﬂ. ‘..~.“.
(X) ° % : o g —
..“0
%3,
° ® [
() [) o) ° o ®
S | 'f. 6
&{s * .
o0 . 5 |
T T T T T T T T T T 4 11 T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

* (Group data into similar classes that

e Maximize similar

ity within clusters

e Minimize similarr

v between clusters

What is Similarity”?

: h
- .
- \.
\
o -

) " :
- 4 4 ' L
vy ‘ ‘1‘.' - "

Can be hard to define, but we know it when we see it.

What is a natural grouping®

!

Simpson’s School

. Females Males
Family Employees

Defining Distance Measures

342.7

Dissimilarity/distance: d(x4, Xo

) S
Similarity: s(X1, X») j Proximity: p(xi, x)

Common Distance Measures

@ Euclidean Distance \/(Z(XI —)/i)z)

k
@ Mahattan Distance Y Ix — v
i—1

B ;
@ Minkowsk! Distance (Z(|Xl — y/I)">
=1

Common Similarity Measures

Inner Product

(X, ¥) = X191 + 00, + X
Cosine Similarity
. o nY)
cosine(x,y) = —————
x|yl

Jaccard Similarity

XNy
J(x,y) =

XUy

Similarity: Kernel Functions

Formal Definition: Inner Product (in Hilbert space)

k(x,x") = (¢ (x), ¢(x"))+—— Feature map
®: RD — RE

In Practice: Can compute directly from x and x’

|°

Radlal Basis Function (RBF) k(x,x’)=exp 2/ llx—x
1 TZ_lx/

Squared Exponential (SE) k(x,x") =exp 2*

1 ~d (¥ —xl{)2

Automatic Relevance K() = =3 2ui=1 T 2
Determination (ARD) X,X)= €xp

INnner Product vs Distance Measure

Inner Product

- (A, B)=<B, A Symmetry

 (aA, B) = a(A, B) Linearity

« (A, A =0 (A, A =0iff A=0 Postive-definiteness

Distance Measure

* D(A, B) = D(B, A) Symmetry

* D(A, A) = Constancy of Selt-Similarity
* D(A, B) = |ff A=B Positivity (Separation)

* D(A, B) = D(A, C) + D(B, C) Triangular Inequality

Types of Clustering

Centroid-based (K-means, K-medoids)

Notion of Clusters: Voronoi tesselation

Types of Clustering

Connectivity-based (Hierarchical)

::::J...o ®
P
%, . R
s L/ e h Q*‘ %
o # * :boo o & ::“...
" .':QQ 4 . .‘ ?} .0' ..“
.": ..3;0:0 P * LA TR :,g"‘o
. ¢ +%.°%° - o.. .:. .
L J).:’.o"oo.a .o ! Lo ?}t“. ::
t.. "".:E.i':.. ..:0.':. .'g" » ®
- ..o. .“. :.. ‘o.% .:.. - . .! . ‘$.
" .‘10.”&05‘0. o:‘. ’ “3..o.~.°.
:.‘ 'o..'o .o"' .‘
. ¢ ..:

Notion of Clusters: Cut off dendrogram at some depth

Types of Clustering

Density-based (DBSCAN, OPTICS)

o .m rf. .
..’ .. ': = .
0.7 \.". o [Y.:‘..
= . # o L Y '5‘3.".‘:
< (o) . :‘ o
® o ¢ 2’ : B .. : }:0::..-..
*te.® % o o YL 7y "
% ..:.Q %* e .::) o
, de : e
’ o .?r. Y ouw '!.‘.'.':)'
‘: o o -
O. ..“..' .. : .33
o ~ @ Y
oh o’o". >®
oo Vo0 * |
’1?2?00 : &
‘..‘. ‘.’.' .‘
8}

Notion of Clusters: Connected regions of high density

Types of Clustering

Distribution-based (Mixture Models)

Notion of Clusters: Distributions over features

Clustering

Shantanu Jain

K-means Clustering

Algorithm and Objective

K-means Clustering

U1 ldea: Find Clusters with Smallest Variance

* Points: X=[X1, ..., Xn], where each xp e RP

o Cluster assignments:[z1, ..., ZN],
where each zhe {1, ..., K}

o Cluster means: [ui, ..., Uk],
where each Pk e RP

e GGoal: find clusters with small variance
(all points near their means)

K-means Clustering

K-means Algorithm

o Randomly initialize means [M1, ..., UK]
* Repeat until [u1, ..., uk] unchanged

* Assign all points to nearest cluster

Zp = arglfnin 2, — paelI?

o Update cluster means

K-means Clustering

IS IS
IS ‘0’
C“ IS
1 4 °
IS
® @
o o @
. 4 ¢ ¢
° S
0‘ . IS
TS ® o ¢ o
I “3
0 1 2 3 4 5

Randomly initialize K means i

K-means Clustering

5
& &
. & A<><>
1 o N
3
&

® o

5 Ho o
2

2

1 &
2

\ X 4

0 . .
0 1 2 3 4 5

Assign each point to closest cluster,
then update means to average of points

K-means Clustering

5
& ® o
4 © @
IJ% o
&
3
&
®
2 O 4
& ® @ ¢
*® Hze
1 OEZ ° &
®
XS ® o
0
0 1 2 3 4 5

Assign each point to closest cluster,
then update means to average of points

K-means Clustering

O * o
4 * o> .°
|J1> o
O
3
.
.
2 .
. \ ¢
@
1 oMo
.
L R
0 | |
0 1 2 3 4 5

Repeat until convergence
(nO points reassigned, means unchanged)

K-means Objective

Loss: Variance of All Clusters Combined/

K
L(2{,...,2y) = ZNkoi — Variance

k=1 '\

: "

Sum Square Error (SSE)/ Sum Square Distances.

of cluster k

Number of points in cluster k
(clusters with more points

contribute more

min L(zq,...,2x)

0 the loss)

Goal: Minimize Loss with Respect to Assignments

Mean and Variance of a Cluster
Number of Points in a Cluster

A 1 z, =k,
Ne=) Iz, =kl I[z,=k]=
n=1

0 z,#k.

Mean of a Cluster

Variance of a cluster

] & ,
0=—z:lzn=k X, —
3 N, & [1] Hi | |

K-means Objective

Loss: Variance of Clusters (given assignments)

K 1 &
2
L(Z)ZZNkGi Uk=VZI[Zn=k] 1, — el |
k=1 K n=1
K N 1 N
:ZZ[[Zn:k] H'Xn_//tk‘lz tu’k:]Vk;I[zn:k]xn
k=1 n=1

Goal: Minimize Loss with Respect to Assignments

min L(21,...,%x)

Z1 yeeesBN

AN

KN possible combinations;
can't solve via brute force

K-means lteration

Solution: Define Loss in terms of 4 and z

K N
L(u.2) = Y Y Iz, =k |1x, — w| I

k=1 n=1

K-means Algorithm
e Randomly initialize u
+ Repeat until L(, z) does not improve

1. Minimize L(u, z) with respect to z
(assign points to closest cluster)

2. Minimize L(M, z) with respect to u
(place clusters close to points)

K-means Clustering

K-means Algorithm

o Randomly initialize means [M1, ..., UK]
* Repeat until L(M, z) unchanged
* Assign all points to nearest cluster

7, = argmin ||x, — W ||* = argmin L(z, u)
k

. Updaz‘e cluster means

Zn

Wy = Z X, = argMII?mL(z ,)

nzk

Each iteration reduces loss
until (local) optimum is found

Choosing K

4

)

Y

1

1

oo, ©

I oCe o

\vd o %2 o

oo 9% o
o q 0%
O ® O ®0
R EgHE g

™M e g

™~ = o"a_m

1 Uy

1

nw_.,

N

QP

N

i

1

.

||

12 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

12 3 4 5 6 7 8 9 10

Choosing K

1.00E+03

9.00E+02

8.00E+02

7.00E+02

6.00E+02

5.00E+02

4.00E+02

3.00E+02

Cost Function

2.00E+02

1.00E+02

0.00E+00

‘Elbow finding” (a.k.a. “knee finding”)
Set K to value just above “abrupt” increase

K-means Clustering

Initialization, Speed-ups anad
L imitations

Choice of Initialization

U1 Loss: Sum of Squared Distances

K N
L(wz)= D D Iz, =k] (x, —)’
k=1 n=1

Randomly initialize u
- Alternate between two steps

1. Minimize L(u, z) with respect to z
(assign points to closest cluster)

2. Minimize L(\U, z) with respect to u
(place clusters close to points)

Choice of Initialization

Randomly initialize u = What is a good choice?

2.5

1.5

0.5

2.5

1.5

0.5

‘Good”

lteration 1
. * 0 3
&
, 4% ‘,‘ L g 2.5
s;“
! KRR 15
* :
. >
- 1
I 0.5
-y,
i ".-!. 0
L | L . \. . L L
15 4 05 0 05 1 15 2
X
lteration 4
) * o 3
O
L e ’0 ‘:‘ L g 2.5
* L 3
‘e 8 }
i AR5 4 R 2
¢ 1D 0,
- sto et , 15
¢ ¢ ¢ >
- 1
‘
I + 0.5
|
: '.'-!'.“ 0
[L L . \. . L L
15 4 05 0 05 1 15 2
X

Iteration 2

0“%‘.‘ .

* 00 ‘0.
“ " “

-15 -1 -0.5 0 0.5 1

lteration 5
* 0

»
R ¢
AR IR N

4
to 038 “‘

. , &’ & s
ow&

0”’0

-15 -1 -0.5 0 0.5 1

2.5

1.5

0.5

2.5

1.5

0.5

lteration 3

Initialization of Centroids

[]
: e
|
[|
[| | \..\
15 1 05 0 05 1 15
X
lteration 6
s ¢ ’
0" o‘Q
i 6:0 o
Q
] ‘0004‘
o ,&’ o,s
ow&
i 4 ” ’ Q
0 ¢ ¢
f *
¢
[]
| i#
H
[[| \..\
15 1 05 0 05 1 15

2.5

1.5+

0.5

“Bad” Initialization of Centroids

ltegation 1 lteration 2
3r : 3
25 25 L2
4,
N
ot 2 g&' o
‘t‘o ¢ %y,
X JS R GV IR
15 1 *
0.5 ° ¢ 0.5 ° ¢
| " "y | " -
0 ':’.‘+ . 0" ‘e + e
® . ® .
[] []
H n | . |
[| ‘ | [| | [. [| | [| |
2 -15 -1 05 0.5 1 1.5 2 2 1.5 -1 05 0 0.5 1 1.5 2
X
lteration 3 lteration 4 lteration 5
3 3
- 2.5 2.5r
. = =
I o % I I
¢ @Y% » ¢ 2 2
* 09, .&‘,0
*te0 0 %0 1.5 15
b4 >
4 ¢ ¢
- . 1 1r
° ¢ ° ¢ PY ¢
I . 05" o 05 o ®
o " gt s "l o " il
‘o e + o, 0 ‘o + ok, 0 ‘urd + g
. l. . [| . l.
H Bu H Bu H B
‘ [[| ‘ [[| [‘ | |
1.5 -1 05 0 0.5 1 1.5 2 1.5 -1 05 0 0.5 1 1.5 2 -2 15 -1 05 0 0.5 1 1.5
X X X

Importance of Initial Centroids

Good initialization: Pick one point in each cluster

What is the chance of randomly selecting
one point from each of K clusters”
(assume each cluster has size n = N/K)

ways to select one from each cluster K!n® K! _ V27K ek
ways to select K centroids ~ (Kn)X KK

~ 107 for K = 10
~ 1078 for K = 20

Implication: We will almost always have
multiple Initial centroids In same cluster.

Example: 10 Clusters

lteration 4

5 pairs of clusters, two Initial points in each pair

10 Clusters

lteration 4

Example

20

15

10

Picking the Initialization cluster centers: a
significant issue

Z: cluster assignments

returned by K-means,
a local minimizer of

the loss It is the speed and simplicity of the k-means method
that make it appealing, not its accuracy. Indeed,
Zopr- the global there are many natural examples for which the

minimizer ofthe loss — 3lgorithm generates arbitrarily bad clustering (i.e.,
L(2)/L(z,,,) is unbounded even when N and K are

fixed). This does not rely on an adversarial
placement of the starting centers, and in particular,
it can hold with high probability if the centers are
chosen uniformly at random from the data points.

Importance of Initial Centroids

Initialization tricks
e Use multiple restarts

 Helps, but probability is not on your side
* |nitialize with hierarchical clustering

e Select more than K points, keep most widely separated
points.

e Bisecting K-means

e K-means++

Furthest first

* Pick first center to be the mean of the data

M, < {u}

* For the subsequent centers iteratively pick the point whose distance
to the closest center is largest.

distance of x to the closest
Hiy < argmaxxeX[Dmm(x,]\4]-)] D . (x, Mj) center in M,
M = M;U {4}
Problem: Outliers get chosen as M; is the set of

centers centroids at j'" step.

K-Means ++

1.Pick first center uniformly at random

— i}
2.For the subsequent centers iteratively pick a point x € X randomly with probability

proportional to D, (x, M;)
N D, . (x,M)2
Hiy1 < X ~ p(x) = S Dy M)
M — M;U gy} j*
Here the outliers still have a high probability of being Theoretical guarantees
selected compared to other points individually. when using K-Means+ +

However, the cumulative probability of points having

moderately large distances lying in a dense region ~
dominate the probability as a group. E[L(Z)] < (8logK + Z)L(Zopt)

Average ¢

Minimum ¢

Average 1

k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 | 135512 126433 119201 111611 0.14 0.13
25 | 48050.5 15.8313 25734.6 15.8313 1.69 0.26
H0 | 5466.02 14.76 14.79 14.73 3.79 4.21

Table 2: Experimental results on the Norm-25 dataset (n = 10000, d = 15)

Average ¢ Minimum ¢ Average T
k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 7553.5 6151.2 6139.45 5631.99 0.12 0.05
25 | 3626.1 2064.9 2568.2 1988.76 0.19 0.09
H0 | 2004.2 1133.7 1344 1088 0.27 0.17

Table 3: Experimental results on the Cloud dataset (n = 1024, d = 10)

Average ¢ Minimum ¢ Average 1’
k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 | 3.45-10% | 2.31-107 | 3.25-10% | 1.79 -107 107.5 64.04
25 | 3.15-10° | 2.53-.10° | 3.1.10° | 2.06 -10° 421.5 313.65
50 | 3.08-10% | 4.67 -10° | 3.08 -10% | 3.98 -10° 766.2 282.9

Table 4: Experimental results on the Intrusion dataset (n = 494019, d = 35)

Here @ is
same as
the loss

K-means Clustering

Speed-ups

K-means Clustering

K-means Algorithm

Finding new cluster assignments

o compute al O(KND) computational * Assign all points to nearest cluster
L complexity (per iteration) for \, z. = argmin ||x _MkHZ
pO!nt center K clusters, N points, and D " k "
distances features.
Upadating the cluster centers / —

O(ND) computational
complexity (per iteration)

Can it be reduced further if
only a few cluster
assignments change?

O(NKD) per iteration is
prohibitive in high dimensions
and large K!

The core idea for cutting on
distance computation

When updating the cluster
assignments not all point-
center distances need be

computed Exploit triangle inequality
Y
Also true when
d(cy, ¢,) d(cq, c
dx,cy) < I{\S 12 - d(x,cy) < (12) = d(x,c)) <dx,c)) X
;Joﬁp;(rxbczu)n d f distance between x and center ¢,is
1 relatively small compared to that between ¢,

and another center ¢,, the distance between
X and ¢, need not be computed

Elkan's accelerated K-means

ﬁﬁﬁﬁﬁ

- =
o ” ™

.. '¢'¢ . I:~~\\02'/E ~\‘
Conditions Checked: FAa- o SRR
1. u(i) < s(a(i)) 110 i 9%

th . : N, Tt 23. AR ',1/'

1" point cluster assignment need not Seal LS ’ i .

be changed. No distance involving the

i point needs to be computed.

. . a(1): contains the cluster
d(c(a(i)),c(J)) index currently assigned
) to the i point.

c(7): is the j™ center.
2. u(i) <I(,7) oru(i) <
s(j): is equal to half the

ah , , u(i): contains an upper distance of j”* center to
1" point cluster assignment might change, ,,,nd 1o the distance of the its closest center

but it won’t be assigned to center j. i" point to its current center
. -th
Distance from the ;" center need not be (i,): contains a lower

computed. bound of the distance of the
i point to the j”* center

Bounding the distance of x from a
center ¢ after it moves to c*

Distance computation: vector operation
Upper and lower bound: scalar operation

Lower bound
d(x, c*) > max(0, d(x,c) — d(c, c*))

> max(0, [— d(c, c?))
_ J* ™
NG Old lower
New lower bound

bound

Upper bound
d(x,c*) <d(x,c)+ d(c, c*)

<u+d(,c*)

i

/ Old upper

New upper bound
bound

center distances

Algorithm 3 Elkan’s algorithm—using k& lower bounds per point and k? center-

h

10:

15:

20:

25:

procedure ELKAN(X, C)
a(i) < 1, u(i) < oo, Vi € N {Initialize invalid bounds, all in one cluster.
(i,j)<—0,VieN,j K
while not converged do

compute |[c(j) —c(G)I. V). j € K

compute s(j) <— minjr=; |[c(j) — c(j’

foralli € N do

/2. VjekK

if u(i) < s(a(i)) then continue with next i

r <— True
for all j € K do

r. tells if the upper bound
needs to be tightened.

z < max(£(i, j), lle(a(@)) —c()I/2)
if] = a(i)oru(i) < zthen continue with next j

if r then
u(i) < |[x (@) —c(a(@))||

r <— False

if u(i) < z then continue with next j
(i, 7)< |lx(@)—c() Both upper bound and the lower bound are tight on this step.

if £(i. j) < u(i)thena(i) < j

u(t) < 1,) The upper bound should be updated at this step

for all j € K do {Move the centers and track their movement}

move c¢(j) to its new location

let 4(/) be the distance moved by ¢(/)
for alli € N do {Update the upper and lower distance bounds }

u(i) <— u(i) + o(a(i))
forall j € K do

(i, j) < (i, 7)—484)_ max

(O,l(i,j) — 5(j))

\ /

Algorithm 3 Elkan’s algorithm—using k& lower bounds per point and k? center-

center distances
procedure ELKAN(X, C)

a(i) < 1, u(i) < oc, Vi € N {Initialize invalid bounds, all in one cluster. }

((i,j)<—0,VieN.j K

while not converged do 0

5: compute [lc(j)—c(j)I.Vj. j' € K O(K~D)

compute s(j) <= miny=<; |[c(j) —c(j)I/2.Vj € K
foralli € N do

if u(i) < s(a(i)) then continue with next i O(N) 0. is the fraction of Himes
r <— True 1
10: for all j € K do O(CIINK) the first condition is not
z < max(£(i, j). |lea(@)) —c(j)/2) satistied

if j =a(i)oru(i) < zthen continue with next j
if r then

loose in the first ite¥ation, r < False

Since the bounds are u(i) < ||x(@@) — cla(@))l||
all distances will be [(.'f f‘)(’) 5” :(t_l;e" C‘()“_t)'l‘lwe with next j O ((l i (,¥2N KD)
computed: O(NDK 2, J) < llx() =<l | .
P () if £(i, j) < u(i) thena(i) < j (, Is the fractio
for all j € K do {Move the centers and track their movement} the second co
20: move ¢(J) to its new location not satisf
let 4(7) be the distance moved by ¢(/) 0 (KD)

for alli € N do {Update the upper and lower distance bounds }
u(i) < u(i) + d(a(i))

L0 — TG 80 max (0,1(i,j) =)) OWK)

\ /

o
N

N of times
ndition IS

lied.

Running time of Elkan’s K-means

Major computations
o Computing point-center distances
o O(NKD) in the first/first-few iteration.

« O(ND) over all later iterations combined. For

most datasets with significant cluster structure.

 Computing pairwise center distances
. O(K’DE)

* Updating the lower bound
. O(NKE)

Most points (in the core of the
cluster) won't change cluster
assignments after the first few
iterations and will satisty the
pruning conditions. The more the
clusters looks like gaussians, the
more this true. This might no
longer be true if the data lacks a
cluster structure.

N: dataset size

K: number of clusters
D: number of dimensions
£: number of iterations

Results for Elkan

name cardinality | dimensionality | description

birch 100000 2 | 10 by 10 grid of Gaussian clusters, DS1 in (Zhang et al., 1996)
covtype 150000 54 | remote soil cover measurements, after (Moore, 2000)

kddcup 05413 56 | KDD Cup 1998 data, un-normalized

mnist50 60000 50 | random projection of NIST handwritten digit training data
mnist784 60000 784 | original NIST handwritten digit training data

random 10000 1000 | uniform random data

k=3 ke — 20 g — 100

birch iterations 17 38 56
standard 5.100e+06 7.600e+07 5.600e+08

fast 4.495e+05 1.085e+06 1.597e+06

speedup 11.3 70.0 351

covtype iterations 18 256 152
standard 8.100e+06 7.680e+08 2.280e+09

fast 0.416e+05 7.147e+06 7.353e+06

speedup 8.60 107 310

kddcup iterations 34 100 325
standard 9.732e+06 1.908e+08 3.101e+09

fast 6.179e+05 3.812e+06 1.005e+07

speedup 15.4 50.1 309

mnists0 iterations 38 178 217
standard 6.840e+06 2.136e+08 1.302e+09

fast 1.573e+06 9.353e+06 3.159e+07

speedup 4.35 22.8 41.2

mnist784 iterations 63 60 165
standard 1.134e+07 7.200e+07 9.900e+08

fast 1.625e+06 7.396e+06 3.055e+07

speedup 6.98 0.73 324

random iterations 52 33 18
standard 1.560e+06 6.600e+06 1.800e+07

fast 1.040e+06 3.020e+06 5.348e+06

speedup 1.50 2.19 3.37

Table 2. Rows labeled ‘Standard”and ‘fast” give the number of distance calculations performed by the unaccelerated k-means algorithm
and by the new algorithm. Rows labeled ‘Speedup” show how many times faster the new algorithm is, when the unit of measurement is
distance calculations.

| Imitations of Elkan

Storing and updating the lower bounds
(N X K dimension) can be a bottleneck
for large K

Can a smaller set of lower bounds be used?

Hamerly's accelerated K-means

Main difference from Elkan: Maintains one I(i): lower bound of the
[(i) instead of [(i, j) lower bound per distance of the i’
point instead of K point to the second
Conditions Checked closest centroic
u(i) < S(Cl(i)) or u(i) < I(i). O(N) instead of O(N X K) space
.th for storing the lower bounds

No distance involving the 1
point needs to be computed.

Tradeoff

* Less memory for storing lower bounds.

* Fewer computations for updating lower bounds.

 However, there is less pruning and consequently
more distance computation.

Algorithm 4 Hamerly's algorithm—using 1 lower bound per point

procedure HAMERLY(X, C)
a(i) < l,u(i) < oc. (i) < 0.Vi € N {Initialize invalid bounds, all in one cluster. }
while not converged do
compute 5(j) < min < ; [lc(j) — c(j)I/2.Vj € K

5: foralli € N do N [(i) by definition is also a lower
z <— max(£(7), s(a(i))) bound to the distances to other

if u(7) = z then continue with next centers, except the closest one.
u(i) < ||x(i) — c(a(i))|| {Tighten the upper bound} ’

if u(i) < z then continue with next 7
10: Find ¢(j) and ¢(j), the two closest centers to x (i), as well as the distances to each.
if j #% a(i) then
a(i) <= j
u(i) < |lx @) —cla@)ll
£(i) < [[x(@)—cUNI

15: for all j € K do { Move the centers and track their movement}
move ¢ () to its new location | 0’ ensures that if the second closest
let 5(j) be the distance moved by ¢(j) cluster changes the lower bound is still
§' «<— max ek 8(j) valid.
for alli € N do {Update the upper and lower distance bounds }
20: u(i) <— u(i) + 8(a(i))

E(l) (_M maX(O,l(i) — 5’)

Total user CPU Seconds (User CPU seconds per iteration)

Dataset k=3 E = 20 E = 100 E = 500

unmniform random 1iterations 44 227 208 710

n = 1250000 lloyvd 4.0 (0.058) 61.4 (0.264) 320.2 (1.070) 3486.9 (4.909)

d = 2 kd-tree 3.5 (0.006) 11.8 (0.035) 34.6 (0.102) 338.8 (0.471)
elkan 7.2 (0.133) 7TH.2 (0.325) 353.1 (1.130) 277T1.8 (3.902)
hamerly 2.7 (0.031) 14.6 (0.058) 28.2 (0.090) 204.2 (0.286)

unmniform random 1terations 121 353 312 1405

n — 1250000 llovd 21.8 (0.134) 173.9 (0.491) 660.7 (2.100) 138354.4 (9.8357)

d =8 kd-tree 117.5 (0.336) 622.6 (1.740) 2390.8 7.633) 46731.5 (33.254)
elkan 14.1 (0.071) 130.6 (0.354) 591.8 (1.8379) 11327.9 (3.414)
hamerly 10.9 (0.045) 40.4 (0.099) 169.8 (0.527) 1395.6 (0.989)

uniform random 1iterations 137 4120 2006 2408

n — 1250000 llovd 66.4 (0.323) 5479.5 (1.325) 12543.8 (5.974) 63967.3 (23.632)

d = 32 kd-tree 2058.4 (1.324) 20719.6 (7.207) 74181.3 (35.380) 425513.0 (176.697)
elkan 458.1 (0.139) 1370.1 (0.327) 2624.9 (1.242) 14245.9 (5.907)
hamerly 46.9 (0.180) 446 .4 (0.103) 1238.9 (0.581) O886.9 (4.007)

birch 1iterations 52 179 110 aa

rnn =— 100000 lloyvd 0.53 (0.004) 4.60 (0.024) 11.50 (0.104) 48 837 (0.490)

d = 2 kd-tree 0.41 (<0.001) 0.96 (0.003) 2.67 (0.021) 17.68 (0.173)
elkan 0.58 (0.005) 4.35 (0.023) 11.50 (0.104) 54 .28 (0.545)
hamerly 0.44 (0.002) 0.90 (0.003) 1.856 (0.014) 7T.81 (0.075)

covtype iterations 19 204 320 111

n — 150000 llovd 3.52 (0.048) 48.02 (0.222) 322.25 (0.999) 564.05 (5.058)

d = 54 kd-tree 6.65 (0.205) 266.65 (1.293) 2014.03 (6.285) 3303.27 (29.734)
elkan 3.07 (0.022) 11.58 (0.044) 70.45 (0.212) 152.15 (1.347)
hamerly 2.95 (0.019) 7.40 (0.024) 42 .83 (0.126) 169.53 (1.505)

kddcup 1terations 39 = 169 142

n — 95412 lloyd 4.74 (0.032) 12.35 (0.159) 116.63 (0.669) 464 .22 (3.244)

d = 56 kd-tree 9.68 (0.156) 58.55 (0.996) 839.31 (4.945) 3349 .47 (23.562)
elkan 4.13 (0.012) 6.24 (0.049) 32.27 (0.169) 132.39 (0.907)
hamerly 3.95 (0.011) 5.87 (0.042) 258.39 (0.147) 197.26 (1.364)

mnist50 1iterations 37 249 190 S1

rn = 60000 llovd 2.92 (0.018) 23.18 (0.0834) 7TH5.82 (0.387) 162.09 (1.974)

d = 50 kd-tree 4.90 (0.069) 100.09 (0.393) 371.57 (1.943) 794 .51 (9.730)
elkan 2.42 (0.005) 7.02 (0.019) 21.58 (0.101) 55.61 (0.660)
hamerly 2.41 (0.004) 4.54 (0.009) 21.95 (0.104) 7T7.34 (0.928)

Table 3: These results show the fraction of times that
each algorithm was able to skip the innermost loop
on data of different dimensions (values closer to 1 are
better). These results are averaged over runs using k =
3, 20, 100, and 500 (one run for each k). The randX
datasets are uniform random hypercube data with X
dimensions.

dataset | rand?2 | rand3 rand32 | rand128
elkan (.56 0.01 (.00 0.00
hamerly [0.97 (.88 (.91 .83

dataset | birch | covtype | kddcup | mnist50
elkan 0.52 0.34 0.18 (.22

hamerly | 0.94 .89 (.82 .82

Memory requirements

Megabyvtes

Dataset | Algorithm | k=3 I k=20 | k=100 | =500
uniform | lloyd 7.5 7.5 7.5 7.5
random kd-tree 32.1| 32.1 32.1 32.1
n=1.25M | elkan 1981 60.3| 251.0] 1205.2
Y- hamerly 14.7| 14.7 14.7 14.7
uniform | lloyd 21.9| 21.9 21.9 21.9
random kd-tree 54.8| 54.8 54.8 54.8
n=1.25M | elkan 34.1| 74.6| 265.3| 1219.5
d=8 hamerly 290.0| 29.0 29.0 29.0
uniform | lloyd 70.1| 79.1 79.1 79.1
random kd-tree 145.2 | 145.2 | 145.2| 145.3
n=1.25M | elkan 91.3|131.83| 3226| 1276.8
d=32 hamerly 86.2| 26.2 86.2 86.3
birch loyd 1.4 1.1 1.1 1.3
n=100K | kd-tree 2.9 2.9 2.8 2.7
d=2 elkan 2.1 5.2 20.6 97.3

hamerly 1.5 1.7 1.6 1.5
covtype |lloyd 16.2] 16.2 16.1| 16.4
n=150K | kd-tree 27.2 | 27.2 27.2 27.3
d=54 elkan 17.4| 22.5 45.3| 160.4

hamerly 17.0| 17.0 16.8 17.2
kddcup lloyd 10,9 10.3 11.1 11.2
n=95412 | kd-tree 1.8 13.9 19.1 19.0
d=56 elkan 11.9] 15.1 20.6| 103.1

hamerly 11.6| 11.6 11.3 11.7
mnist50 | lloyd 6.3] 6.6 6.4 6.8
n=60K kd-tree 10.5] 10.4 10.6 10.7
d=50 elkan 7.0 9.1 13.4 64.38

hamerly 6.9 6.9 6.9 6.8

summary

» For moderate D (< 50) and K(< 100), Hamerly is well-suited
(has smaller time and memory footprint).

 Large D (greater than 50), Elkan might be better (has smaller
time footprint, in spite of large memory requirements).

Speed up with an approximate algorithm

Minl-patch K-means

Web-scale k-means clustering
D Sculley - Proceedings of the 19th international conference on ..., 2010 - dl.acm.org

Abstract We present two modifications to the popular k-means clustering algorithm to
address the extreme requirements for latency, scalability, and sparsity encountered in user-
facing web applications. First, we propose the use of mini-batch optimization for k-means ...
Cited by 152 Related articles All 11 versions Cite Save

Minl-patch K-means

WWW 2010 « Poster

April 26-30 « Raleigh « NC * USA

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA

dsculley@google.com

ABSTRACT

We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast e-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors

1.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms

Algorithms, Performance, Experimentation

Keywords

unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THE WEB

Unsupervised clustering is an important task in a range
of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS

The k-means optimization problem is to find the set C' of
cluster centers ¢ € R™, with |C| = &, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x € R™ the following objective function:

min) ||f(C,x) - x||”

xeX

Here, f(C,x) returns the nearest cluster center ¢ € C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations ¢, data set X

2: Initialize each ¢ € C with an x picked randomly from X
3:ve—20

4: fori=1tot do

5: M <« b examples picked randomly from X

6: forxe M do

T dx] — f(C,x) // Cache the center nearest to x
8: end for

9: forxe M do

10: c — d[x] // Get cached center for this x

11: v[c] « v[c] +1 // Update per-center counts

12: R // Get per-center learning rate
13: c— (l—n)c+nx // Take gradient step
14: end for

15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against

both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 « Poster

April 26-30 « Raleigh * NC « USA

YR ——

@
@
20
58
7%
==
5
g

leans (i

e

000) 2@

Error from Best K-Means Objective Function Value
Error from Best K-Means Objsciive Funion Value

0.005 [

0.1

Error from Best K-Means Objective Function Value

o o
0.0001 0.001 0.1 1 10 100 1000 0.0001 0.001 0.01

= o
1 10 100 1000 0.0001 0.001 0.01 01 1 10 100 1000

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS

We modify mini-batch k-means to find sparse cluster cen-
ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point ¢’ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an Ll-ball of radius A after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 e-L1: an e-Accurate Projection to L1 Ball.

Given: € tolerance, L1-ball radius A, vector ¢ € R™
if |||l < A + € then exit
upper «— ||c||oo ; lower « 0 ; current — ||c||1
while current > A(1+ €) or current < A do
uppertlower // Get L1 value for this 6
current «— 2,20 max(0, |ci| — 6)
if current < X\ then upper «— 0 else lower «— 0
end while
for i =1 tom do
c; < sign(c;) * max(0, |c;| — 0) // Do the projection
: end for

0 —

H OO IR WD

— =

2-page apbstract

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value 6 that
projects ¢ to an L1 ball with radius between A and (1+ ¢€)\.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

METHOD A #NON-ZERO’S | TEST OBJECTIVE | CPUs
full batch | - 200,319 0 (baseline) | 133.96
LTL1P 5.0 46,446 | .004 (.002-.006) 0.51
e-L1 5.0 44,060 | .007 (.005-.008) 0.27
LTL1P 1.0 3,181 | .018 (.016-.019) 0.48
e-L1 1.0 2,547 | .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our e-accurate projection
for mini-batch k-means, with a range of A\ values. The value
of € was arbitrarily set to 0.01. We report values for k£ = 10,
b = 1000, and ¢t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES

[1] L. Bottou and Y. Bengio. Convergence properties of the
kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the 11-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Revl: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[6] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

Minl-patch K-means

WWW 2010 Poster April 26-30 » Raleigh « NC « USA

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA

dsculley@google.com

WWW 2010 - Poster April 26-30 » Raleigh « NC « USA

K=3 K=10 K=50

[— SGD K-Means s
Batch K-Means
Mini-Batch K-Means (b=1000) 1111z

SGD K-Means
Batch K-Means
Mini-Batch K-Means (b=1000) 2t |

SGD K-Means
Batch K-Means
Mini-Batch K-Means (b=1000) 111z

jective Function Value

'—,u"

002 -
",

Error from Best K-Means Objective Function Value
Error from Best K-Means Objective Function Value

Error from Best K-Means Obje
2
el

0.005 [
0.005 -

",
LTI

° L L ° L L L - L . 0 L L L
0.0001 0.001 0.01 o1 1 10 100 1000 0.0001 0.001 001 o1 1 10 100 1000 0.0001 0.001 0.01 o1 1 10 100 1000
Training CPU secs Training CPU secs Training CPU secs.

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

ABSTRACT

We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast e-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors

1.5.3 [Computing Methodologies|: Pattern Recognition—
Clustering

General Terms

Algorithms, Performance, Experimentation

Keywords

unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THE WEB

Unsupervised clustering is an important task in a rangg
of web-based applications, including grouping search results
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popula:
choice for real-world clustering tasks [6]. However, the stan
dard batch algorithm is slow for large data sets. Even op
timized batch k-means variants exploiting triangle inequal
ity [3] cannot cheaply meet the latency needs of user-facing]
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS

The k-means optimization problem is to find the set C' of
cluster centers ¢ € R™, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x € R™ the following objective function:

min » _ ||£(C, x) — x]||?

xeX

Here, f(C,x) returns the nearest cluster center ¢ € C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data

due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

Given: k, mini-batch size b, iterations t, data set X
Initialize each ¢ € C with an x picked randomly from
v—0
fort=1tot do
M «— b examples picked randomly from X
for x € M do
d[x] < f(C,x) // Cache the center nearest to x
end for
for x € M do
c — d[x] // Get cached center for this x
vic] « v[c] +1 // Update per-center counts
n«— ﬁ // Get per-center learning rate
c— (1—-n)c+nx // Take gradient step
end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against

both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS

We modify mini-batch k-means to find sparse cluster cen-
ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point ¢ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an Ll-ball of radius A after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ¢-L1: an e-Accurate Projection to L1 Ball.

Given: € tolerance, L1-ball radius A, vector ¢ € R™
if |[c||i < A + € then exit
upper « ||c||so ; lower < 0 ; current «— ||c||1
while current > A(1 + ¢€) or current < A do
g « ppertiower // Get L1 value for this 6
current < o max(0, |ci| — 0)
if current < X\ then upper «— 0 else lower «— 0
end while
for i =1 tom do
c; — sign(c;) * max(0,|c;| — @) // Do the projection
: end for

H
HY XD W

—_

2-page apbstract

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value 6 that
projects ¢ to an L1 ball with radius between A and (1+€).
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

METHOD A #NON-ZERO’S | TEST OBJECTIVE | CPUs
full batch | - 200,319 0 (baseline) | 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
e-L1 5.0 44,060 | .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
e-L1 1.0 2,547 | .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our e-accurate projection
for mini-batch k-means, with a range of A values. The value
of € was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and ¢ = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES

[1] L. Bottou and Y. Bengio. Convergence properties of the
kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the 11-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcvl: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

Minl-patch K-means

Algorithm 1 Mini-batch k-Means.

1:
2:
3:
4:
3

0

7
&:
9.
0
1
2
3
4
D

Given: k, mini-batch size b, iterations ¢, data set X
Initialize each ¢ € (' with an x picked randomly from X
v «— (
for:=1tot do
M <+ b examples picked randomly from X
for x € M do
d|x| — f(C,x) // Cache the center nearest to x
end for
for x € M do
c — d[x] // Get cached center for this x
v|c] «— v|c|+1 // Update per-center counts
n < V[lc] // Get per-center learning rate
c+— (1—m)c+nx // Take gradient step
end for
end for

Complexity: O(N M K D t) rlere tis the number
of iterations

KMeans

Mini-batch K-means

MiniBatchKMeans

tram tlme..ﬂ,geg-

train time:. f),geg-

r o

inertia: 24.7.5 5- A

Difference

Wats, e

Clustering

Jan-Willem van de Meent

K-means Clustering

L Imitations

K-means Limitations: Differing Sizes

“ Sy
- ’ - -

Original Points

LT o WL
- ¥

K-means (3 clusters)

K-means Limitations: Ditfferent Densities

3F 3L
g Y
2+ 7k & _
OV ~ O
o O
16 1k
* O + iy O oC
>0t Q. > ot £ 0 o ©
) -~ Q ¢
1 K ! 1 k O QO
-
"-:} l:‘.:‘:\ l'.-' D
v o~ ' ‘__{_‘} O
7k gy 7k o Ve OO
{.-} {‘-{-‘ "___:'
3F 3
1 1 1 1 1 1 1 | | | | 1 | | | 1
2 1 0 1 2 3 4 5 6 o, 1 0 1 2 3 4 5 6
X X

Original Points K-means (3 clusters)

15

10

K-means Limitations: Non-globular Shapes

10 15

15

10

10

15

Original Points

K-means (2 clusters)

Overcoming K-means Limitations

Intuition: “Combine” smaller clusters into larger clusters

e One Solution: Hierarchical Clustering
e Another Solution: Density-based Clustering

Clustering

Shantanu Jain

Hierarchical Clustering

Similarity of A and

represented as height

of lowest shared
iINternal node

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

Dendrogram

(a.k.a. a similarity tree)

3 1S

D(A.B)

Nat

Jral when meas

ger

etic similarity, d

Dendrogram

(a.k.a. a similarity tree)

uring

IStance

tO common ancestor

D(A.B)

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

4.0

3.0

2.0

2.5

1.5

0.5

Example: Iris data

Iris Data (red=setosa,green=versicolor,blue=virginica)

lllll

Sepal.Length

T T T T T 1
45 55 65 75

T T T T T 1
1 2 3 4 5 6 7

|t

Sepal.Width
Jo * 0 H
i e’ o oodelly
;.?o ::.;E ’ Petal.Length
stk R Lin a
: .. .8§.£.. .E.) : g::: . Lf.i.
. oot T f;“ ate
: .:.;.l. = ::85 0 S Petal.Width

lllllll

45 65 65 75

lllllll

Ir1S

Setosa

Iris

-\ versicolor

Ir1S

virginica

https://en.wikipedia.org/wiki/lris_flower_data_set

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hierarchical Clustering

(Euclidian Distance)

virginica
versicolor
setosa

9
00

rL |

A AJ;E};%I‘;& b *ﬁ(ﬁ;%rﬁ Wi (e ARAAT

https://en.wikipedia.org/wiki/lris_flower_ data_set

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hamming Distance

Distance Patty and Selma

Change dress color, 1 point
Change earring shape, 1 point
Change hair part, 1 point

D(Patty, Selma) =3

Distance Marge and Selma

Change dress color, 1 point
Add earrings, 1 point
Decrease height, 1 point
Take up smoking, 1 point
Lose weight, 1 point

D(Marge,Selma) =5

Can be defined for any set of discrete features

Edit Distance for Strings

- Transform string Q into string C, using only
Substitution, Insertion and Deletion.

- Assume that each of these operators has a cost
associated with it.

- The similarity between two strings can be defined

as the cost of the cheapest transformation from
Qto C.

Similarity “Peter” and “Piotr”?

Substitution 1 Unit
Insertion 1 Unit
Deletion 1 Unit

D(Peter,Piotr) is 3

Peter

‘ Substitution (i for e)
Piter

Insertion (0)
Pioter

Deletion (e)

Piot

Hierarchical Clustering

Pedro (Portuguese)

Petros (Greek), Peter (English), Piotr (Polish),
Peadar (Irish), Pierre (French), Peder (Danish),

Peka (Hawaiian), Pietro (Italian), Piero (Italian
Alternative), Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)

Christoph (German), Christophe (French), Cristobal
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher
(English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish)

Fdit Distance)

o A N LN
TEL LIS SES
08 853 LS5 L
2F ES58FEF LY
S5 & 0% Yo

Meaningful Patterns

Edit distance yields clustering according to geography

Slide from Eamonn Keogh

Pedro

(Portuguese/Spanish)
Petros (Greek), Peter (English), Piotr
(Polish), Peadar (Irish), Pierre (French),
Peder (Danish), Peka (Hawaiian), Pietro
(Italian), Piero (Italian Alternative), Petr
(Czech), Pyotr (Russian)

Spurious Patterns

In general clusterings will only be
as meaningful as your distance metric

N ZOL R ZEhS IS L
i

NG

St. Helena & South Georgia &

AUSTRALIA Dependencies ANGUILLA South Sandwich U.K. o FRANCE NIGER INDIA IRELAND BRAZIL
Islands

Spurious Patterns

In general clusterings will only be
as meaningful as your distance metric

South Georgia & erbia
AUSTRALIA Dependencies ANGUILLA South Sandwich U.K. onteneqgro IRELAND BRAZIL

Islands

Former UK colonies No relation

-
-

e R o L o e T S IS

“Correct” Number of Clusters

~. o
-....
o
[— h""
... 1
i
e ® ®
.o de
o *9,
o,"'
ey
®e
®
®

1 2 3 4 5 6 7 8 9 10

T T |

T I ITTT]

“Correct” Number of Clusters

10
9 !

g

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

T T T ST

Determine number of clusters by looking at distance

Detecting Outliers

The single isolated branch is suggestive of a data

point that is very different to all others

\

R L]
EE g
@ -...--.-l.
m = ..
‘C‘Q . -..
° ®Je o =
il o
Outlier/

cenilzitlis

Bottom-up vs Top-down

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
iInto a new cluster. Repeat until all
clusters are fused together.

Top-Down (divisive): Starting with
all the data in a single cluster,
consider every possible way to
divide the cluster into two. Choose
the best division and recursively
operate on both sides.

Bottom-up: Distance Matrix

We begin with a distance
matrix which contains the

distances between every a
pair of objects in our =
database. 8 |8 |7 |7

0 |3 |3
0 |1
' 0

Bottom-up (Agglomerative Clustering)

- B
- T i
Feieal
Pt
A | 4:
I-- . "
I 0
i
.. | .
.

(T
Y

all possmle ¢ _ ‘} 4" the best

—— | L -~
fhai S e I"""jx

Consider m l_l 1_1‘ l_l Choose
,-t

Bottom-up (Agglomerative Clustering)

Consider Choose
all possible ‘?

P o ‘I e & M &l e the best
merges... 2 A a 4 " a' A

Consider m

all possible” .
merges... |

]
> P
3 Caj :]

Choose
the best

- A
= ‘_:,.'_F_- |:
11
|
- A :
— | J
—
i
i
=
y 1
i
o

HPE

Bottom-up (Agglomerative Clustering)

all possible the best
merges...

Consider ‘ | l:l_l I i ; |

HE

li_;_

E i
D

all possible the best
merges... a

>

= O

B :’%‘_'-_

§ ca)
.-

Consider I f d
Choose

Sy

Consider m

all possible . ¢
merges... E 4

Choose
the best

- e Ty
4
: | -
L}
- o 1
- 'x - g
-
i 1
| i
1
]
'
=

D
¥ s

Choose
Choose
the best

m % s
@) _H [i>

E * the best

[P i y
- .
i - [Y

all possible

Consider
merges...
Consider
all possible
merges...

Bottom-up (Agglomerative Clustering)

[1

Consider
all possible . \!

Choose

[LY o i
_ ¥ -~
b &
§ o = |
i, i n Ak
Tt
'|-_|

T~

the best

' ra.
[i
o
|

ll

T -

merges...

Bottom-up (Agglomerative Clustering)

ﬁ

P : Eﬂ! 1 3{ E
.'T' | il

-u-l- -a-i-

all possible % 5ol O
g s W o) “ the best ;_&5‘;
merges w N e SR /™ /
aEm * ;‘,Jrl. | .-". "'.I Ilg-_‘_=__.-_ll .p- i

i W — o g e EE

Consider I 1 I 1

_ ‘ s Choose

all possible ﬂ}l A ‘r{] the best
4 4
L.

Can you now implement this?

2 Lo

merges... i‘ & i‘ /

Consider m X

all possible” . \© &
merges... E 4 & '

= i) ::I
F:ﬁ:ﬁf’

Choose
5 o the best
|

- B
. &rr‘ |:
i
1 i
= o T e = I
—
i
e
5
5 b
(L o

(
HBS

Bottom-up (Agglomerative Clustering)

Distances between examples [I 1 ;I—x

(can calculate using metric)

Consider
all possible
merges...

I i ; d I e - . Choose

% @ % .. R E the best
— . g P

Consider
all possible
merges...

the best

-
I i E 1 | : _ Choose
9 Y " S L) y =" N
1 | f i

Consider
all possible ™ - _ 70 (-
merges... i a 4 A

Choose
the best

Bottom-up (Agglomerative Clustering)

How do we calculate the ﬁ

distance to a cluster? G

Consider
all possible
merges...

-~ ., Choose

! E " the best A
i i .

HpE:
- ' "

¢ t(___;::;
i e

Consider
all possible
merges...

Consider 1_1

all possible” . \© &
merges... E 4 '

i

Choose
the best

= \In
E e
gf:l >,

S
>

§ ca)
§ o2l

- Choose
%} gﬂ the best

- B
= il-l-q_ I:
: | -
(.
ol
_— 1]
-
1
v}
-
s) -

HS,

Single link:
(Closest point)

Complete link:
(Furthest point)

Group average:
(Average distance)

Centroid:

(Distance of average)

Warad

(Intra-cluster variance)

Clustering Criteria

d(A,B) = min d(a,b)

ac€A,beB

d(A,B) = max d(a,b)

d(A,B) =

d(A, B)

SAuB

a€A,beB

L)
....
* “, *
* L] <
0000

-

Average Linkage Complete Linkage Ward Linkage

Single Linkage

.04s

.04s

.04s

.04s

.04s

.04s

.0ls

1s

0

Nalve time complexity

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.
1: Compute the proximity matrix, if necessa.ry.O(N 2 D)

2: repeat
3: Merge the closest two clusters. O((N — 1 —+ 1)2)
4: Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters. 0((N —] — 1) D)
5: until Only one cluster remains. ‘\Derformed O(N)
terations
Naive approach N: number of points

O(N*D + N°) D: dimensionality

True Time complexity

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

1: Compute the proximity matrix, if necessary.
! ! t' ' Y- O(N*D) Performed O(N)
2: repeat «””””/”’,,,, . .
3: Merge the closest two clusters. 0(1) Itel’?lOﬂS
4: Update the proximity matrix to reflect the proximity between the new

cluster and the original clusters. 0((N — l)]()g(N — 7+ 1)) =1ale O(N —] — 1)

5: until Only one cluster remains.

Overall complexity

O(N’D + N*log N)
Trick 1 Trick 2
Use Min heap Recompute distances from merged
* Allows accessing the minimum cluster distances
distance in O(1) » d(AB, C) = min(d(A, C),d(B, C))
» Insertion of new distance and deletion ~ for single linkage, where AB
of old ones into the heap in step 4 denotes the merging of clusters

takes O(log(N — 1+ 1)) per distance A and B

| ance-Willlams Methods

Clustering Method QA aB 15, y
Single Link 1/2 1/2 0| —1/2
Complete Link 1/2 1/2 0 1/2
Group Average e e 0 0
Centroid mAﬂj:?lnB mAﬂ:—izB (T;Zlfﬂzfﬁ 0
Ward's m AW-LI-%I_BWZLFQW Q m AW—IIJ—%FBT?F%"L Q m A -I—_TYZT;Q—I— meo 0

Recursively minimize/maximize proximity for
a merger R:=AuB relative to all existing Q

P(R,Q) =a,p(A,Q)

+ agp(B,Q)
+ [5p(A, B)

+7v|p(A,Q)—p(B,Q)]

Hierarchical Clustering Summary

+ Hierarchical structure maps nicely onto human intuition in some
domains

+ No difficulty in choosing initial points

- Heuristic method: No global objective criteria to optimize.
Optimizes local objective at each merge.

- Merging decisions are final: Prevents local optimization to from ., ve improved
becoming global optimization. For e.g., Ward methods optimized by initializing with
local SSE doesn'’t translate to the optimized global SSE. several small k-

means clusters.
- Scaling: Time complexity at least O(N*D + N*log N), Space
complexity: O(N?)

- Susceptibility to noise
- Interpretation of results is (very) subjective

Clustering

Shantanu Jain

DBScan

Density-based Clustering

noise

arbitrarily shaped clusters

[PDF] A density-based algorithm for discovering clusters in large spatial

databases with noise.

M Ester, HP Kriegel, J Sander, X Xu - Kdd, 1996 - aaai.org

Abstract Clustering algorithms are attractive for the task of class identification in spatial
databases. However, the application to large spatial databases rises the following
requirements for clustering algorithms: minimal requirements of domain knowledge to ...
Cited by 8901 Related articles All 70 versions Cite Save More

(one of the most-cited clustering methods)

noise

arbitrarily shaped clusters

Intuition
e A clusteris a islands of high density
e Noise points lie in a sea of low density

Defining "High Density”

Naive approach

For each point in a cluster there are at least a minimum number (MinPts)
of points in an Eps-neighborhood of that point.

cluster

Defining "High Density”

Eps-neighborhood of a point p

Neos(P) = {g €D | dist(p,q) <Eps}

Defining "High Density”

* |n each cluster there are two kinds of points: o °

— points inside the cluster (core points) . ::.. o

— points on the border (border points) e o ° o

An Eps-neighborhood of a border point contains significantly less points than
an Eps-neighborhood of a core point.

Density Reachability

Definition

A point p is directly density-reachable from a point g

with regard to the parameters Eps and MinPts, if
1) p € Ng,(a) (reachability)
2) | Ngs(a) | =2 MinPts (core point condition)

Parameter: MinPts =5

¢ P e NEps(q)
| NEps(q) | =625

p directly density reachable from q

= MinPts (core point condition)

g not directly density reachable from p

| Neps (P) | =4 <5 =MinPts (core point condition)

Note: This Is an asymmetric relationship

Density Reachability

Definition

A point p Iis density-reachable from a point g

with regard to the parameters Eps and MinPts

if there is a chain of points p,, p,, ... ,ps With p,=q and p, =p
such that p,,, is directly density-reachable from p; for all 1 <i < s-1.

P>

° ° MinPts = 5
° ° . | Neos(@) | =5 = MinPts (core point condition)
° . ° | NEpS(p{) | =6 =25 = MinPts (core point condition)

° o ° p2

Density Connectivity

Definition (density-connected)

A point p Is density-connected to a point g

with regard to the parameters Eps and MinPts

If there Is a point v such that both p and g are density-reachable from v.

MinPts = 5

Note: This Is a symmetric relationship

Definition of a Cluster

A cluster with regard to the parameters Eps and MinPts
IS a non-empty subset C of the database D with

1) Forall p, q € D; (Maximality)
If pe C and qis density-reachable from p

with regard to the parameters Eps and MinPts,
then q € C.

2) Forall p,q e C: (Connectivity)
The point p is density-connected to g
with regard to the parameters Eps and MinPts.

Definition of Noise

Let C,,...,C, be the clusters of the database D
with regard to the parameters Eps; and MinPts (i=1,...,k).

The set of points in the database D not belonging to any cluster C,,...,C,
Is called noise:

Noise={peD|pegC forall i=1,...k}

/
Cluster

DBSCAN Algorithm

(1) Start with an arbitrary point p from the database and

The set of points reached from p

may Include points previously

with regard to Eps and MinPts. labeled as noise, but are in reality
border points

(2) If p I1s a core point, the procedure yields a cluster

retrieve all points density-reachable from p

with regard to Eps and MinPts
and all points in the cluster are classified.

Low density point, label it as noise |
(3) If p Is a berderpoint, no points are density-reachable from p

and DBSCAN visits the next unclassified point in the database.

and go to step 1

DBSCAN Complexity

* [ime complexity: O(N2D) it done naively,
O(DN log N) when using a spatial index
such as K-D tree.

(works in relatively low dimensions)

e Space complexity: O(ND)

DBSCAN Algorithm

Point types: core,

Original Points

border and noise

DBSCAN strengths

Original Points Clusters

+ Resistant to noise
+ Can handle arbitrary shapes

DBSCAN Weaknesses

Ground Truth MinPts = 4, Eps=9.92 MinPts = 4, Eps=9.75

- Varying densities
- High dimensional data
- Cannot give overlapping clusters

Determining EPS and MINPTS

K-dist 4

threshold
point

o |

o
Eps -

F RS G-

noise | cluster 1 | cluster 2

e Calculate distance of k-th nearest
neighbor for each point

* Plot in ascending / descending order

e Set EPS to max distance before “jump”

e Set Minpts to k.

K-means vs DBSCAN

K-means

DBSCAN

