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Clustering

• Unsupervised learning (no labels for training) 
• Group data into similar classes that 

• Maximize similarity within clusters 
• Minimize similarity between clusters



What is Similarity?

Can be hard to define, but we know it when we see it.



What is a natural grouping?

Simpson’s
Family

School
Employees Females Males

Choice of clustering criterion can be task-dependent



Defining Distance Measures

0.23 3 342.7

Peter Piotr

Dissimilarity/distance:  d(x1, x2)
Similarity:  s(x1, x2) } Proximity:  p(x1, x2)



Common Distance MeasuresHow to Measure Distance

For continuous variables:

Euclidean Distance

s

(

kP
i=1

(xi � yi)2)

Mahattan Distance

kP
i=1

|xi � yi |

Minkowski Distance

✓
kP

i=1
(|xi � yi |)q

◆ 1
q

Yijun Zhao Classification Model: K-Nearest Neighbor (KNN)

 x = [x1, x2, …xk]
y = [y1, y2, …yk]



Common Similarity Measures
Inner Product

 ⟨x, y⟩ = x1y1 + x2y2 + …xkyk

Cosine Similarity

 cosine(x, y) =
⟨x, y⟩

| |x | | | |y | |

 J(x, y) =
|x ∩ y |
|x ∪ y |

Jaccard Similarity

If   and   are setsx y



Similarity: Kernel Functions
Formal Definition: Inner Product (in Hilbert space)

Squared Exponential (SE)

Automatic Relevance  
Determination (ARD)

Radial Basis Function (RBF)

In Practice: Can compute directly from x and x’

Feature map   
φ: ℝD ⟶ ℝE  

k(x , x 0) = h�(x), �(x 0)i
<latexit sha1_base64="b19YqP7zOP7zySvEpNTc53iAg8M="></latexit>



Inner Product vs Distance Measure

• D(A, B) = D(B, A)
• D(A, A) = 0
• D(A, B) = 0 iff  A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry  
Constancy of Self-Similarity 
Positivity (Separation) 
Triangular Inequality

• ⟨A, B⟩ = ⟨B, A⟩

• ⟨αA, B⟩ = α⟨A, B⟩

• ⟨A, Α⟩ ≥ 0, ⟨A, Α⟩ = 0 iff  A = 0

Symmetry  
Linearity 
Postive-definiteness

Inner Product

Distance Measure



Types of Clustering

Centroid-based (K-means, K-medoids)

Notion of Clusters: Voronoi tesselation



Types of Clustering

Connectivity-based (Hierarchical)

Notion of Clusters: Cut off dendrogram at some depth



Types of Clustering

Density-based (DBSCAN, OPTICS)

Notion of Clusters: Connected regions of high density



Types of Clustering

Distribution-based (Mixture Models)

Notion of Clusters: Distributions over features
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Shantanu Jain



K-means Clustering
Algorithm and Objective



K-means Clustering

• Points: X= [x1, …, xN], where each xn ∈ ℝD

• Cluster assignments: [z1, …, zN],  
where each zn ∈ {1, …, K}

• Cluster means: [μ1, …, μΚ],  
where each μk ∈ ℝD

• Goal: find clusters with small variance  
(all points near their means) 

μ1

μ2

μ3

Idea: Find Clusters with Smallest Variance



K-means Clustering

• Randomly initialize means [μ1, …, μΚ]
• Repeat until [μ1, …, μΚ] unchanged

• Assign all points to nearest cluster 

• Update cluster means  

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo="></latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE="></latexit>



K-means Clustering
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K-means Clustering: Step 1
Algorithm: K-means, Distance Metric: Euclidean Distance

μ1

μ2

μ3

Slide based on one by Eamonn Keogh  
Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsRandomly initialize K means μk
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K-means Clustering: Step 2

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest cluster, 
then update means to average of points
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K-means Clustering: Step 3

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest cluster, 
then update means to average of points
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K-means Clustering: Step 4

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)



K-means Objective
Loss: Variance of All Clusters Combined/          
Sum Square Error (SSE)/ Sum Square Distances. μ1

μ3

Number of points in cluster k
(clusters with more points  
 contribute more to the loss)

Variance of cluster kL(z1, . . . , zN ) =
KX

k=1

Nk�
2
k

<latexit sha1_base64="ymr8+5mANFcPCNEZHkRnwpKr6v4="></latexit>μ2

Goal: Minimize Loss with Respect to Assignments
min

z1,...,zN
L(z1, . . . , zN )

<latexit sha1_base64="76LYF4phxYf4tM7DiAwJP0PiZ2o="></latexit>



Mean and Variance of a Cluster

Mean of a Cluster
<latexit sha1_base64="UiTO9SifSwc3b8I/ppBwzAPYxSo="></latexit>

µk =
1
Nk

NX

n=1

I[zn = k] xn

Number of Points in a Cluster
<latexit sha1_base64="nryDk1ZGn9m6/3ilwcH7WrjfhVs="></latexit>

Nk =
NX

n=1

I[zn = k]
μ1

μ3

<latexit sha1_base64="c6GsfeeVArPMMTCM5R5TlVIF3Ds="></latexit>

I[zn = k] =

®
1 zn = k,
0 zn 6= k.

μ2

Variance of a cluster

σk =
1
Nk

N

∑
n=1

I[zn = k] | |xn − μk | |2



K-means Objective
Loss: Variance of Clusters (given assignments)

μ1

μ3

µk =
1
Nk

NX

n=1

I[zn = k] xn
<latexit sha1_base64="mWQph8VFBVPQM2btBgs0zJY+O2E=">AAAG4nicfZRLbxMxEIDdQkMJrxaOXCJy4VBFu02TNkgVFag8LlWp+pKyIfJ6J8kqu97F9rZJLf8BOCGuXPk1XOHAv8HeLmr2IbzyyvJ8M+MZj8eNA58Ly/qztHzr9krtzurd+r37Dx4+Wlt/fMqjhBE4IVEQsXMXcwh8CifCFwGcxwxw6AZw5k5fG/nZBTDuR/RYzGMYhHhM/ZFPsNBbw7WXzoV0wkQNp43dhjNimEhbyYPhVDWcFw2HJ+FQ0l1bfTxovO9fDenudJAKLoDImRpqC02rtd3rdDZ7Dau11e7Y6cJqd3udbsNuWeloomwcDtdXvjheRJIQqCAB5rxvW7EYSMyETwJQdSfhEGMyxWPo6yXFIfCBTCNVjZz02B7IUUQFUJJTkzjkIRaT0qaBeX6XTLRjYHm32eZAGisecH9M81puqOp1x4ORznp6Mum5QQJKHr19paS10W1v2JvbqoAw8DLC3rE29FcExgyAZsjO1obd3SkzccLiAG4gy2BFKGKYjv9BxowBixCZY+2MhPOpZlr6OOm09eyY6BhQuCRRGGLqSXPfqq/z7QDlCQOTGOm4oWzaSqkSfI2aGjHyurMonCkpnVzAugRnqojNFzCTOA3NS9BVla2rEvapCnPEBASuOL2opnFSwSYlNilDrASx4gmh0ifE3A8iWopntECndTcqOw0WmKxmjMlAtwYPlyzGk2o8nvgl9qhwM0fKlMsigdk4xPqenSgGhkXEzCO+9MUk8ENfcJnJVVnLp//X0vKis32VL0rzd125r0okcYO0MPO5K1coYV6eM1FWYGOWx64vrgKMC2CW4AoyKpDZQ64gyTxPpq855XKdKsACZnwe5vsXuDGLopGqp+27Z8ZNsy4vTjdbdrvV/rDV3HuTNfJV9BQ9Q8+RjbbRHnqHDtEJIugH+ol+od81r/a59rX27RpdXsp0nqDcqH3/C++Lh14=</latexit>

KN possible combinations; 
can’t solve via brute force

Goal: Minimize Loss with Respect to Assignments
min

z1,...,zN
L(z1, . . . , zN )

<latexit sha1_base64="76LYF4phxYf4tM7DiAwJP0PiZ2o="></latexit>

μ2

L(z) =
KX

k=1

Nk�
2
k

<latexit sha1_base64="Eok6PU5Xj72Pm0njqDe9Od6Hj4k="></latexit>

=
K

∑
k=1

N

∑
n=1

I[zn = k] | |xn − μk | |2

σk =
1
Nk

N

∑
n=1

I[zn = k] | |xn − μk | |2



K-means Iteration
Solution: Define Loss in terms of μ and z

μ1

μ3

μ2

K-means Algorithm
• Randomly initialize μ 
• Repeat until L(μ, z) does not improve 

1. Minimize L(μ, z) with respect to z 
(assign points to closest cluster)  

2. Minimize L(μ, z) with respect to μ 
(place clusters close to points) 

L(μ, z) =
K

∑
k=1

N

∑
n=1

I[zn = k] | |xn − μk | |2



K-means Clustering

• Randomly initialize means [μ1, …, μΚ]
• Repeat until L(μ, z) unchanged

• Assign all points to nearest cluster 

• Update cluster means  

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo="></latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE="></latexit>

Each iteration reduces loss 
until (local) optimum is found

= argmin
zn

L(z,µ)
<latexit sha1_base64="jplDOWyPOqtRdhuBQWxbKMOrOFQ="></latexit>

= argmin
µk

L(z,µ)
<latexit sha1_base64="x9fFmTYhlvCOa4Fqj72ZI9lf3WU="></latexit>



Choosing K

55

1 2 3 4 5 6 7 8 9 10

When k = 1, the objective function is 873.0

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=1, L=873
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When k = 2, the objective function is 173.1

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=2, L=173
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When k = 3, the objective function is 133.6

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=3, L=134



Choosing K
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We can plot the cost function values for K equals 1 to 6…

The abrupt change at K = 2, is highly suggestive of two clusters in the 
data. This technique for determining the number of clusters is known 
as “elbow finding” or “knee finding”.

K

C
os

t  
Fu

nc
tio

n

Slide based on one by Eamonn Keogh  
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

“Elbow finding” (a.k.a. “knee finding”)  
Set K to value just above “abrupt” increase 



K-means Clustering
Initialization, Speed-ups and 
Limitations



Choice of Initialization

Loss: Sum of Squared Distancesμ1

μ3

μ2
L(µ, z) =

KX

k=1

NX

n=1

I[zn = k] (xn �µk)2
<latexit sha1_base64="RDi4EPfx1zC9h5Vt78ePHRp8vRI="></latexit>

• Randomly initialize μ
• Alternate between two steps

1. Minimize L(μ, z) with respect to z 
(assign points to closest cluster)  

2. Minimize L(μ, z) with respect to μ 
(place clusters close to points) 



• Alternate between two steps
1. Minimize L(μ, z) with respect to z 

(assign points to closest cluster)  
2. Minimize L(μ, z) with respect to μ 

(place clusters close to points) 

Choice of Initialization

Loss: Sum of Squared Distancesμ1

μ3

μ2
L(µ, z) =

KX

k=1

NX

n=1

I[zn = k] (xn �µk)2
<latexit sha1_base64="RDi4EPfx1zC9h5Vt78ePHRp8vRI="></latexit>

• Randomly initialize μ What is a good choice?



“Good” Initialization of Centroids
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“Bad” Initialization of Centroids
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Importance of Initial Centroids

What is the chance of randomly selecting   
one point from each of K clusters? 

(assume each cluster has size n = N/K)

Implication: We will almost always have  
multiple initial centroids in same cluster.

Good initialization: Pick one point in each cluster

≈ 2πK e−K

 for  ≈ 10−4 K = 10

 for  ≈ 10−8 K = 20



Example: 10 Clusters
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Example: 10 Clusters
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Picking the initialization cluster centers: a 
significant issue

It is the speed and simplicity of the k-means method 
that make it appealing, not its accuracy. Indeed, 
there are many natural examples for which the 
algorithm generates arbitrarily bad clustering (i.e., 
   is unbounded even when   and   are 
fixed). This does not rely on an adversarial 
placement of the starting centers, and in particular, 
it can hold with high probability if the centers are 
chosen uniformly at random from the data points.

L( ̂z)/L(zopt) N K

 : cluster assignments 
returned by K-means, 
a local minimizer of 
the loss

̂z

 : the global 
minimizer of the loss
zopt

Arthur, David, and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Stanford, 2006.



Importance of Initial Centroids
Initialization tricks 

• Use multiple restarts  

• Helps, but probability is not on your side 
• Initialize with hierarchical clustering 
• Select more than K points, keep most widely separated 

points. 

• Bisecting K-means 

• K-means++ 



Furthest first
• Pick first center to be the mean of the data 

  
• For the subsequent centers iteratively pick the point whose distance 

to the closest center is largest. 
  
 

M1 ← {μ1}

μj+1 ← argmaxx∈X[Dmin(x, Mj)]
Mj+1 → Mj ∪ {μj+1}

Problem: Outliers get chosen as 
centers.

  is the set of 

centroids at   step.

Mj
𝑗𝑡h

Dmin(x, Mj)
distance of   to the closest 
center in  .

x
Mj



K-Means ++
1.Pick first center uniformly at random 

      

2.For the subsequent centers iteratively pick a point   randomly with probability 
proportional to   

     

   

M1 ← {μ1}
x ∈ X

Dmin(x, Mj)

μj+1 ← x ∼ p(x) =
Dmin(x, Mj)2

∑x∈X Dmin(x, Mj)2

Mj+1 → Mj ∪ {μj+1}

Here the outliers still have a high probability of being 
selected compared to other points individually. 
However, the cumulative probability of points having 
moderately large distances lying in a dense region 
dominate the probability as a group.

  is the set of centroids at   step.Mj 𝑗𝑡h

Dmin(x, Mj)
distance of   to the closest 
center in  .

x
Mj

Arthur, David, and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Stanford, 2006.

E[L( ̂z)] ≤ (8 log K + 2)L(zopt)

Theoretical guarantees 
when using K-Means++



Here   is 
same as 
the loss

ϕ



K-means Clustering
Speed-ups



K-means Clustering
• Randomly initialize means [μ1, …, μΚ]
• Repeat until L(μ, z) unchanged

• Assign all points to nearest cluster 

• Update cluster means 

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo="></latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE="></latexit>

O(KND) computational 
complexity (per iteration) for 
K clusters, N points, and D 
features.

O(ND) computational 
complexity (per iteration) 
Can it be reduced further if 
only a few cluster 
assignments change?

Finding new cluster assignments

Updating the cluster centers

To compute all 
point-center 
distances



  per iteration is 
prohibitive in high dimensions 

and large K! 

O(NKD)



c2

The core idea for cutting on 
distance computation

 d(x, z) ≤ d(x, y) + d(y, z)

𝑥 𝑧

𝑦

c1
x

 

  d(x, c1) ≤
d(c1, c2)

2
⇒ d(x, c1) ≤ d(x, c2)

Also true when 

  d(x, c1) ≤ u ≤
d(c1, c2)

2

Upper bound 
for  d(x, c1)

Exploit triangle inequality

If distance between   and center  is 
relatively small compared to that between   
and another center  , the distance between 

  and   need not be computed

x c1
c1

c2
x c2

When updating the cluster 
assignments not all point-
center distances need be 

computed



Elkan’s accelerated K-means
Conditions Checked: 
1.                                                                 

2.     or   

 

u(i) ≤ s(a(i))

u(i) ≤ l(i, j) u(i) ≤
d(c(a(i)), c( j))

2

  point cluster assignment need not 
be changed. No distance  involving the  
  point needs to be computed.

ith

ith

  point cluster assignment might change, 
but it won’t be assigned to center  . 
Distance from the   center need not be 
computed.

ith

j
jth

1

2

3

1

2

3
4

 : contains the cluster 
index currently assigned 
to the   point.

a(i)

ith
 : is equal to half the 
distance of   center to 
its closest center

s( j)
jth� : contains an upper 

bound to the distance of the 
  point to its current center

u(i)

ith

� : contains a lower 
bound of the distance of the 
  point to the   center

l(i, j)

ith jth

 : is the   center.c( j) jth

Before cluster assignments. Right after 
centers have moved. Closest center 
might not be the assigned center. 



Bounding the distance of   from a 
center   after it moves to  

x
c c*

𝑑(𝑥, 𝑐) − 𝑑(𝑐, 𝑐 ∗) 𝑑(𝑥, 𝑐) + 𝑑(𝑐, 𝑐∗)

𝑑(𝑐, 𝑐 ∗)
Lower bound 

  
d(x, c*) ≥ max(0, d(x, c) − d(c, c*))

≥ max(0, l − d(c, c*))
= l*

Upper bound 

  

                           

d(x, c*) ≤ d(x, c) + d(c, c*)
≤ u + d(c, c*)
= u*

Old lower 
boundNew lower 

bound

Old upper 
boundNew upper 

bound

𝑥

𝑐∗

Distance computation: vector  operation 
Upper and lower bound: scalar operation



max(0,𝑙(𝑖, 𝑗) − 𝛿(𝑗))

  tells if the upper bound 
needs to be tightened.
𝑟:

Both upper bound and the lower bound are tight on this step.

The upper bound should be updated at this stepu(i) ← l(i, j)



max(0,𝑙(𝑖, 𝑗) − 𝛿(𝑗))

 O(K2D)

 O(N)
 O(α1NK)

  is the fraction of times 
the first condition is not 

satisfied

α1

 O(α1α2NKD)
  is the fraction of times 
the second condition is 

not satisfied.

α2

 O(NK)

 O(KD)

Since the bounds are 
loose in the first iteration, 

all distances will be 
computed:  O(NDK)



Running time of Elkan’s K-means

 : dataset size 
 : number of clusters 
 : number of dimensions 
 : number of iterations 

N
K
D
E

Major computations 
• Computing point-center distances  

•   in the first/first-few iteration. 
•   over all later iterations combined. For 

most datasets with significant cluster structure.  
• Computing pairwise center distances 

•    
• Updating the lower bound 

•  

O(NKD)
O(ND)

O(K2DE)

O(NKE)

Most points (in the core of the 
cluster) won't change cluster 
assignments after the first few 
iterations and will satisfy the 

pruning conditions. The more the 
clusters looks like gaussians, the 

more this true. This might no 
longer  be true if the data lacks a 

cluster structure.



Results for Elkan



Limitations of Elkan

Storing and updating the lower bounds 
(  dimension) can be a bottleneck 
for large  
N × K

K

Can a smaller set of lower bounds be used?



Hamerly’s accelerated K-means
Main difference from Elkan: 
   instead of   l(i) l(i, j)

Maintains one 
lower bound per 
point instead of    K

 : lower bound of the 
distance of the   
point to the second 
closest centroid  

l(i)
𝑖𝑡h

Tradeoff 
• Less memory for storing lower bounds. 
• Fewer computations for updating lower bounds. 
• However, there is less pruning and consequently 

more distance computation. 

  instead of   space 
for storing the lower bounds
O(N) O(N × K)

Conditions Checked 
   or  .  

No distance  involving the    
point needs to be computed.

𝑢(𝑖) ≤ 𝑠(𝑎(𝑖)) 𝑢(𝑖) ≤ 𝑙(𝑖)
𝑖𝑡h



max(0,𝑙(𝑖) − 𝛿′�)

  by definition is also a lower 
bound to the distances to other 
centers, except the closest one. 

l(i)

  ensures that if the second closest 
cluster changes the lower bound is still 
valid.

δ′�





Memory requirements



Summary

• For moderate   (< 50) and  (< 100), Hamerly is well-suited 
(has smaller time and memory footprint). 

• Large   (greater than 50), Elkan might be better (has smaller 
time footprint, in spite of large memory requirements).

D K

D



Speed up with an approximate algorithm
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ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for
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Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci≠0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.
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[1] L. Bottou and Y. Bengio. Convergence properties of the
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Processing Systems. 1995.
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[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178(2-page abstract)

Mini-batch K-means



Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml
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I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation
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unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set
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X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for
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Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci≠0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.
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ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml
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I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation
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unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set
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X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for
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Complexity: O(N M K D t) 

Mini-batch K-means

Here t is the number 
of iterations



Mini-batch K-means
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K-means Clustering
Limitations



K-means Limitations: Differing Sizes

Original Points K-means (3 clusters)



K-means Limitations: Different Densities

Original Points K-means (3 clusters)



K-means Limitations: Non-globular Shapes

Original Points K-means (2 clusters)



Overcoming K-means Limitations

Intuition: “Combine” smaller clusters into larger clusters

• One Solution: Hierarchical Clustering 
• Another Solution: Density-based Clustering



Clustering
Shantanu Jain



Hierarchical Clustering



Dendrogram

Similarity of A and B is 
represented as height  
of lowest shared  
internal node

(a.k.a. a similarity tree) 

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)



Dendrogram

Natural when measuring 
genetic similarity, distance  
to common ancestor

(a.k.a. a similarity tree) 

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)



Example: Iris data

https://en.wikipedia.org/wiki/Iris_flower_data_set

Iris 
Setosa

Iris 
versicolor

Iris 
virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set


Hierarchical Clustering

https://en.wikipedia.org/wiki/Iris_flower_data_set

(Euclidian Distance) 

https://en.wikipedia.org/wiki/Iris_flower_data_set


Hamming Distance

 Change dress color,   1 point 
 Change earring shape, 1 point 
 Change hair part,     1 point 

D(Patty, Selma) = 3

 Change dress color,   1 point 
 Add earrings,         1 point 
 Decrease height,      1 point 
 Take up smoking,      1 point 
 Lose weight,          1 point 

D(Marge,Selma) = 5

Distance Patty and Selma

Distance Marge and Selma

Can be defined for any set of discrete features



Edit Distance for Strings

Peter 

Piter 

Pioter 

Piotr

Substitution (i for e) 

Insertion  (o) 

Deletion  (e) 

• Transform string Q into string C, using only 
Substitution, Insertion and Deletion.

• Assume that each of these operators has a cost 
associated with it.

• The similarity between two strings can be defined 
as the cost of the cheapest transformation from 
Q to C.

Similarity “Peter” and “Piotr”?

Substitution 1 Unit
Insertion 1 Unit
Deletion 1 Unit

D(Peter,Piotr) is 3
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Hierarchical Clustering
(Edit Distance) 

 P
io

tr
 P

yo
tr

 P
et

ro
s

 P
ie

tro
Pe
dr
o

 P
ie

rre
 P

ie
ro

 P
et

er
Pe

de
r

 P
ek

a
 P

ea
da

r
M

ich
al

is
M

ich
ae

l
M
ig
ue
l

M
ick

Cr
is
to
va
o

Ch
ris

to
ph

er
Ch

ris
to

ph
e

Ch
ris

to
ph

Cr
isd

ea
n

Cr
ist

ob
al

Cr
ist

of
or

o
Kr

ist
of

fe
r

Kr
ys

to
f

Pedro (Portuguese)
Petros (Greek), Peter  (English), Piotr (Polish), 
Peadar (Irish), Pierre (French), Peder (Danish), 
Peka (Hawaiian), Pietro (Italian), Piero (Italian 
Alternative), Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)
Christoph (German), Christophe (French), Cristobal 
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher 
(English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish)

A Demonstration of Hierarchical Clustering using String Edit Distance 
Slide based on one by Eamonn Keogh
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Meaningful Patterns

Pedro
(Portuguese/Spanish)
Petros (Greek), Peter  (English), Piotr
(Polish), Peadar (Irish), Pierre (French), 
Peder (Danish), Peka (Hawaiian), Pietro
(Italian), Piero (Italian Alternative), Petr
(Czech), Pyotr (Russian)

Slide from Eamonn Keogh
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Edit distance yields clustering according to geography



Spurious Patterns

18

ANGUILLAAUSTRALIA 
St. Helena &
Dependencies 

South Georgia &
South Sandwich 
Islands

U.K.
Serbia & 
Montenegro
(Yugoslavia)

FRANCE NIGER INDIA IRELAND BRAZIL

Hierarchal clustering can sometimes show patterns 
that are meaningless or spurious

The tight grouping of Australia, Anguilla, St. Helena etc is 
meaningful; all these countries are former UK colonies

However the tight grouping of Niger and India is completely 
spurious; there is no connection between the two

Slide based on one by Eamonn Keogh
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In general clusterings will only be  
as meaningful as your distance metric



Spurious Patterns

18

ANGUILLAAUSTRALIA 
St. Helena &
Dependencies 

South Georgia &
South Sandwich 
Islands

U.K.
Serbia & 
Montenegro
(Yugoslavia)

FRANCE NIGER INDIA IRELAND BRAZIL

Hierarchal clustering can sometimes show patterns 
that are meaningless or spurious

The tight grouping of Australia, Anguilla, St. Helena etc is 
meaningful; all these countries are former UK colonies

However the tight grouping of Niger and India is completely 
spurious; there is no connection between the two

Slide based on one by Eamonn Keogh

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

In general clusterings will only be  
as meaningful as your distance metric

Former UK colonies No relation



“Correct” Number of Clusters

19

We can look at the dendrogram to determine the “correct” 
number of clusters. 

Slide based on one by Eamonn Keogh
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“Correct” Number of Clusters

19

We can look at the dendrogram to determine the “correct” 
number of clusters. 

Slide based on one by Eamonn Keogh

 
Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsDetermine number of clusters by looking at distance 



Detecting Outliers

20

Outlier

One potential use of a dendrogram: detecting outliers
The single isolated branch is suggestive of a data 
point that is very different to all others

Slide based on one by Eamonn Keogh
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Bottom-up vs Top-down

21

Hierarchical Clustering
The number of dendrograms with n

leafs  = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible
of Leafs Dendrograms
2 1
3 3
4 15
5 105
... …
10 34,459,425

Since we cannot test all possible 
trees we will have to heuristic 
search of all possible trees. We 
could do this..

Bottom-Up (agglomerative):
Starting with each item in its own 
cluster, find the best pair to merge 
into a new cluster. Repeat until all 
clusters are fused together. 

Top-Down (divisive): Starting with 
all the data in a single cluster, 
consider every possible way to 
divide the cluster into two. Choose 
the best division and recursively 
operate on both sides.

Slide based on one by Eamonn Keogh
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Bottom-up: Distance Matrix

22

0 8 8 7 7

0 2 4 4

0 3 3

0 1

0

D(  ,  ) = 8
D(  ,  ) = 1

We begin with a distance 
matrix which contains the 
distances between every 
pair of objects in our 
database.

Slide based on one by Eamonn Keogh
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Bottom-up (Agglomerative Clustering)

25

…
Consider 
all possible 
merges…

Choose 
the best

Consider 
all possible 
merges… …

Choose 
the best

Consider 
all possible 
merges…

Choose 
the best…

Bottom-Up (agglomerative):
Starting with each item in its own 
cluster, find the best pair to merge 
into a new cluster. Repeat until all 
clusters are fused together. 
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Can you now implement this?
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Distances between examples 
(can calculate using metric)
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Starting with each item in its own 
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How do we calculate the  
distance to a cluster?



Clustering Criteria
Single link: 
(Closest point)

d(A, B) = min
a2A,b2B

d(a, b)

Complete link:  
(Furthest point)

d(A, B) = max
a2A,b2B

d(a, b)

Group average:  
(Average distance)

d(A, B) =
1
|A||B|
X

a2A,b2B

d(a, b)

Centroid: 
(Distance of average)

d(A, B) = d(µA,µB) µX =
1
|X |
X

x2X

x

Ward: 
(Intra-cluster variance)

SA[B =
X

x2A[B

d(x ,µA[B)2





Naive time complexity

 O(N2D)
 O((N − i + 1)2)

 O((N − i − 1)D)

Naive approach 
 O(N2D + N3)

Performed O(N) 
iterations

N: number of points 
D: dimensionality 



True Time complexity

 O(N2D)
 O(1)

Performed O(N) 
iterations

Trick 1 
Use Min heap 
• Allows accessing the minimum 

distance in   
• Insertion of new distance and deletion 

of old ones into the heap in step 4 
takes   per distance

O(1)

O(log(N − i + 1))

O((N − i)log(N − i + 1)) and O(N − i − 1)

Trick 2 
Recompute distances from merged 
cluster distances   
•   

for single linkage, where   
denotes the merging of clusters  
  and  

d(AB, C) = min(d(A, C), d(B, C))
AB

A B

 O(N2D + N2 log N)
Overall complexity 



Lance-Williams Methods524 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Table 8.5. Table of Lance-Williams coefficients for common hierarchical clustering approaches.

Clustering Method αA αB β γ
Single Link 1/2 1/2 0 −1/2
Complete Link 1/2 1/2 0 1/2
Group Average mA

mA+mB

mB
mA+mB

0 0

Centroid mA
mA+mB

mB
mA+mB

−mAmB
(mA+mB)2 0

Ward’s mA+mQ

mA+mB+mQ

mB+mQ

mA+mB+mQ

−mQ

mA+mB+mQ
0

merged clusters monotonically increases (or is, at worst, non-increasing) as
we proceed from singleton clusters to one all-inclusive cluster.

8.3.3 The Lance-Williams Formula for Cluster Proximity

Any of the cluster proximities that we have discussed in this section can be
viewed as a choice of different parameters (in the Lance-Williams formula
shown below in Equation 8.7) for the proximity between clusters Q and R,
where R is formed by merging clusters A and B. In this equation, p(., .) is
a proximity function, while mA, mB, and mQ are the number of points in
clusters A, B, and Q, respectively. In other words, after we merge clusters A
and B to form cluster R, the proximity of the new cluster, R, to an existing
cluster, Q, is a linear function of the proximities of Q with respect to the
original clusters A and B. Table 8.5 shows the values of these coefficients for
the techniques that we have discussed.

p(R, Q) = αA p(A, Q) + αB p(B, Q) + β p(A, B) + γ |p(A, Q)− p(B, Q)| (8.7)

Any hierarchical clustering technique that can be expressed using the
Lance-Williams formula does not need to keep the original data points. In-
stead, the proximity matrix is updated as clustering occurs. While a general
formula is appealing, especially for implementation, it is easier to understand
the different hierarchical methods by looking directly at the definition of clus-
ter proximity that each method uses.

8.3.4 Key Issues in Hierarchical Clustering

Lack of a Global Objective Function

We previously mentioned that agglomerative hierarchical clustering cannot be
viewed as globally optimizing an objective function. Instead, agglomerative
hierarchical clustering techniques use various criteria to decide locally, at each

Recursively minimize/maximize proximity for  
a merger R:=A∪B relative to all existing Q

d(x,y)
 = |x-y|

d(x,y)
 = |x-y|2

p(R,Q) =↵Ap(A,Q)
+↵B p(B,Q)
+ �p(A, B)
+ �|p(A,Q)� p(B,Q)|



Hierarchical Clustering Summary
+ Hierarchical structure maps nicely onto human intuition in some 

domains 
+ No difficulty in choosing initial points 
- Heuristic method: No global objective criteria to optimize. 

Optimizes local objective at each merge.   
- Merging decisions are final: Prevents local optimization to from 

becoming global optimization. For e.g., Ward methods optimized 
local SSE doesn’t translate to the optimized global SSE. 

- Scaling: Time complexity at least  , Space 
complexity:   

- Susceptibility to noise 
- Interpretation of results is (very) subjective

O(N2D + N2 log N)
O(N2)

Can be improved 
by initializing with 
several small k-
means clusters.



Clustering
Shantanu Jain



DBScan
Density-based Clustering



DBSCAN

  
DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise 

(one of the most-cited clustering methods)



DBSCAN

  
DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise 

Intuition 
• A cluster is a islands of high density 
• Noise points lie in a sea of low density



Defining “High Density”  

Naïve approach 
 
  

For each point in a cluster there are at least a minimum number (MinPts)  
 

of points in an Eps-neighborhood of that point. 
 
 
 

DBSCAN 

cluster  



  

Eps-neighborhood of a point p 
 
  NEps(p)  =  { q ∈ D | dist (p, q) ≤ Eps }  

 
  
 
 
 
 Eps 

p 

Neighborhood of a Point 
 

Defining “High Density”



Defining “High Density”
  

Problem 
 
  

•  In each cluster there are two kinds of points: 
 
 

      ̶   points inside the cluster  (core points) 
 
 

      ̶   points on the border  (border points) 
 
 
 

An Eps-neighborhood of a border point contains significantly less points than  
 

an  Eps-neighborhood of a core point. 
 
 
 

DBSCAN ‒ Data 

cluster  

  

Problem 
 
  

•  In each cluster there are two kinds of points: 
 
 

      ̶   points inside the cluster  (core points) 
 
 

      ̶   points on the border  (border points) 
 
 
 

An Eps-neighborhood of a border point contains significantly less points than  
 

an  Eps-neighborhood of a core point. 
 
 
 

DBSCAN ‒ Data 

cluster  

  

Problem 
 
  

•  In each cluster there are two kinds of points: 
 
 

      ̶   points inside the cluster  (core points) 
 
 

      ̶   points on the border  (border points) 
 
 
 

An Eps-neighborhood of a border point contains significantly less points than  
 

an  Eps-neighborhood of a core point. 
 
 
 

DBSCAN ‒ Data 

cluster  



Density Reachability  
Definition   
  

A point p is directly density-reachable from a point q  
 

with regard to the parameters Eps and MinPts, if 
 
 
 
 

1) p ∈ NEps(q) 
 
 

2) | NEps(q) | ≥ MinPts  
 
 
 

(core point condition) 
 
 
 

p 

MinPts = 5 
q 

| NEps(q) | = 6 ≥ 5 = MinPts  (core point condition) 

(reachability) 
 
 
 

  
Remark  
  
 

Directly density-reachable is symmetric for pairs of core points. 
 

It is not symmetric if one core point and one border point are involved. 
 
 

p 

Parameter:   MinPts = 5 

q 

p directly density reachable from q 
 

 p ∈ NEps(q)  
 

  | NEps(q) | = 6 ≥ 5 = MinPts  (core point condition) 

q not directly density reachable from p 
 
 

  | NEps (p) | = 4 < 5 = MinPts   (core point condition) 
 

Note: This is an asymmetric relationship
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It is not symmetric if one core point and one border point are involved. 
 
 

p 

Parameter:   MinPts = 5 

q 

p directly density reachable from q 
 

 p ∈ NEps(q)  
 

  | NEps(q) | = 6 ≥ 5 = MinPts  (core point condition) 

q not directly density reachable from p 
 
 

  | NEps (p) | = 4 < 5 = MinPts   (core point condition) 
 



Density Reachability  
Definition   
  

A point p is density-reachable from a point q  
 

with regard to the parameters Eps and MinPts 
 

if there is a chain of points  p1, p2, . . . ,ps  with  p1 = q  and  ps = p 
 

such that pi+1 is directly density-reachable from pi  for all 1 < i < s-1. 
 

p 
MinPts = 5 

q 
| NEps(q) |  = 5 = MinPts         (core point condition) 

p1 

| NEps(p1) | = 6  ≥ 5 = MinPts  (core point condition) 

  
Definition   
  

A point p is density-reachable from a point q  
 

with regard to the parameters Eps and MinPts 
 

if there is a chain of points  p1, p2, . . . ,ps  with  p1 = q  and  ps = p 
 

such that pi+1 is directly density-reachable from pi  for all 1 < i < s-1. 
 

p 
MinPts = 5 

q 
| NEps(q) |  = 5 = MinPts         (core point condition) 

p1 

| NEps(p1) | = 6  ≥ 5 = MinPts  (core point condition) 

 p2

 p2



Density Connectivity
  

Definition  (density-connected) 
  

A point p is density-connected to a point q  
 

with regard to the parameters Eps and MinPts 
 

if there is a point v such that both p and q are density-reachable from v. 
 

p 

MinPts = 5 

q 

v 

Remark:   Density-connectivity is a symmetric relation. 
 
 

Note: This is a symmetric relationship



Definition of a Cluster  
Definition  (cluster) 
  

A cluster with regard to the parameters Eps and MinPts 
 

is a non-empty subset C of the database D with 
 
 1) For all  p, q ∈ D: 

 

If   p ∈ C    and   q is density-reachable from p  
 

with regard to the parameters Eps and MinPts,   
 

then q ∈ C.  
 

2) For all p, q ∈ C: 
 

The point p is density-connected to q  
 

with regard to the parameters Eps and MinPts. 
 
 

(Maximality) 
 

(Connectivity) 
 

  
Definition  (cluster) 
  

A cluster with regard to the parameters Eps and MinPts 
 

is a non-empty subset C of the database D with 
 
 1) For all  p, q ∈ D: 

 

If   p ∈ C    and   q is density-reachable from p  
 

with regard to the parameters Eps and MinPts,   
 

then q ∈ C.  
 

2) For all p, q ∈ C: 
 

The point p is density-connected to q  
 

with regard to the parameters Eps and MinPts. 
 
 

(Maximality) 
 

(Connectivity) 
 



Definition of Noise

  
DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise Noise

Cluster

  
Definition  (noise) 
  

Let C1,...,Ck be the clusters of the database D 
with regard to the parameters Eps i and MinPts I (i=1,...,k). 
 
The set of points in the database D not belonging to any cluster C1,...,Ck  
is called noise: 
 
 
 

Noise = { p ∈ D | p ∉ Ci  for all  i = 1,...,k} 
 

noise 



DBSCAN Algorithm  
DBSCAN  (algorithm) 

 
  

(1) Start with an arbitrary point p from the database and  
 

retrieve all points density-reachable from p  
 

with regard to Eps and MinPts.  
 
(2) If p is a core point, the procedure yields a cluster  

 

with regard to Eps and MinPts 
 

and the point is classified. 
 
(3) If p is a border point, no points are density-reachable from p  

 

and DBSCAN visits the next unclassified point in the database. 
 
 

  
DBSCAN  (algorithm) 

 
  

(1) Start with an arbitrary point p from the database and  
 

retrieve all points density-reachable from p  
 

with regard to Eps and MinPts.  
 
(2) If p is a core point, the procedure yields a cluster  

 

with regard to Eps and MinPts 
 

and the point is classified. 
 
(3) If p is a border point, no points are density-reachable from p  

 

and DBSCAN visits the next unclassified point in the database. 
 
 

and all points in the cluster are classified.
Low density point, label it as noise

The set of points reached from p 
may include points previously 
labeled as noise, but are in reality 
border points

and go to step 1



DBSCAN Complexity

• Time complexity: O(N2D) if done naively,  
O(DN log N) when using a spatial index 
such as K-D tree.  
(works in relatively low dimensions) 

• Space complexity: O(ND)



DBSCAN Algorithm
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

DBSCAN strengths

+ Resistant to noise 
+ Can handle arbitrary shapes



DBSCAN Weaknesses

- Varying densities 
- High dimensional data 
- Cannot give overlapping clusters
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When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data
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DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther 
distance

O So, plot sorted distance of every point to its kth

nearest neighbor
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DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther 
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

Ground Truth MinPts = 4, Eps=9.92 MinPts = 4, Eps=9.75



Determining EPS and MINPTS 

  
Determining the parameters Eps and MinPts 
 
 
 

•  Find threshold point with the maximal k-dist value in the “thinnest cluster” of D 
  

•  Set parameters     Eps = k-dist(p)    and    MinPts = k. 
 

Eps 

noise  cluster 1   cluster 2  

• Calculate distance of k-th nearest  
neighbor for each point 

• Plot in ascending / descending order 
• Set EPS to max distance before “jump” 
• Set Minpts to k.



K-means vs DBSCANK-means vs. DBSCAN

 

K-means 

DBSCAN 
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