
Clustering
Shantanu Jain

Clustering

• Unsupervised learning (no labels for training)
• Group data into similar classes that

• Maximize similarity within clusters
• Minimize similarity between clusters

What is Similarity?

Can be hard to define, but we know it when we see it.

What is a natural grouping?

Simpson’s
Family

School
Employees Females Males

Choice of clustering criterion can be task-dependent

Defining Distance Measures

0.23 3 342.7

Peter Piotr

Dissimilarity/distance: d(x1, x2)
Similarity: s(x1, x2) } Proximity: p(x1, x2)

Common Distance MeasuresHow to Measure Distance

For continuous variables:

Euclidean Distance

s

(

kP
i=1

(xi � yi)2)

Mahattan Distance

kP
i=1

|xi � yi |

Minkowski Distance

✓
kP

i=1
(|xi � yi |)q

◆ 1
q

Yijun Zhao Classification Model: K-Nearest Neighbor (KNN)

 x = [x1, x2, …xk]
y = [y1, y2, …yk]

Common Similarity Measures
Inner Product

 ⟨x, y⟩ = x1y1 + x2y2 + …xkyk

Cosine Similarity

 cosine(x, y) =
⟨x, y⟩

| |x | | | |y | |

 J(x, y) =
|x ∩ y |
|x ∪ y |

Jaccard Similarity

If and are setsx y

Similarity: Kernel Functions
Formal Definition: Inner Product (in Hilbert space)

Squared Exponential (SE)

Automatic Relevance  
Determination (ARD)

Radial Basis Function (RBF)

In Practice: Can compute directly from x and x’

Feature map  
φ: ℝD ⟶ ℝE

k(x , x 0) = h�(x), �(x 0)i
<latexit sha1_base64="b19YqP7zOP7zySvEpNTc53iAg8M=">AAAG0nicfZTdb9MwEMC9wcooXxs88hLRBzapKsm6disS0gSa2OOY9iUt1eQ41zaq84HjbO0sPyAe4ZW/hlf4I/hvsLOgNXGEI0eW73d3vvP5vIQGKbftP0vL9+6vNB6sPmw+evzk6bO19eenaZwxAickpjE793AKNIjghAecwnnCAIcehTNv+kHLz66ApUEcHfN5AsMQj6NgFBDM1dbl2pvpxqxtzV5vWu8sl+JoTMFyk0mwMdtsW+7bYq3ELsuFl2stu7Mz6PW2Bpbd2e72nHxhd/uDXt9yOnY+WqgYh5frK99cPyZZCBEnFKfphWMnfCgw4wGhIJtulkKCyRSP4UItIxxCOhR5ZNIqSY+doRjFEYeIlNQEDtMQ84mxqeG0vEsmyjGwstticyi0FR/SYByVtbxQNpuuDyOV5fxkwvdoBlIcfXwvhd3ud9vO1o6sIAz8gnB27bb6qsCYAUQFsrvddvq7JpNkLKFwB9kaq0Kxvpx/kDajwSpE5lg5I+F8qpiOOk4+HTV7OjoGEVyTOAxx5Av3Coi8UPl2IUozBjoxwvVC0XKklAZ8iyqdXN50F4UzKYRbCti9EjNZxeYLmE6cguYGdFNn68bAPtdhLp8AxzWn5/U0zmrYzGAzE2IGxKonhFqfkKQBjSMjntECndfdyHRKF5iiZrRJqlqBjw2LyaQeV6/dYI8qN3MkdbksEpiNQ6zu2Y0TYJjHTD/i64BPaBAGPBWFXJpaQfR/LSWvOtuX5aLUf88T+9IgiUfzwiznzqxQwvwyp6OswcasjN1eXA2YVMAiwTVkXCGLh1xDknmZzF9zzpU6FcUcZuk8LPcv8BIWxyPZzNv3QI+7Zm0uTrc6TrfT/bTd2jsoGvkqeoleoQ3koB20hw7QITpBBP1AP9Ev9Ltx3LhpfGl8vUWXlwqdF6g0Gt//Arf2fpI=</latexit>

Inner Product vs Distance Measure

• D(A, B) = D(B, A)
• D(A, A) = 0
• D(A, B) = 0 iff A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry
Constancy of Self-Similarity
Positivity (Separation)
Triangular Inequality

• ⟨A, B⟩ = ⟨B, A⟩

• ⟨αA, B⟩ = α⟨A, B⟩

• ⟨A, Α⟩ ≥ 0, ⟨A, Α⟩ = 0 iff A = 0

Symmetry
Linearity
Postive-definiteness

Inner Product

Distance Measure

Types of Clustering

Centroid-based (K-means, K-medoids)

Notion of Clusters: Voronoi tesselation

Types of Clustering

Connectivity-based (Hierarchical)

Notion of Clusters: Cut off dendrogram at some depth

Types of Clustering

Density-based (DBSCAN, OPTICS)

Notion of Clusters: Connected regions of high density

Types of Clustering

Distribution-based (Mixture Models)

Notion of Clusters: Distributions over features

Clustering
Shantanu Jain

K-means Clustering
Algorithm and Objective

K-means Clustering

• Points: X= [x1, …, xN], where each xn ∈ ℝD

• Cluster assignments: [z1, …, zN],  
where each zn ∈ {1, …, K}

• Cluster means: [μ1, …, μΚ],  
where each μk ∈ ℝD

• Goal: find clusters with small variance  
(all points near their means) 

μ1

μ2

μ3

Idea: Find Clusters with Smallest Variance

K-means Clustering

• Randomly initialize means [μ1, …, μΚ]
• Repeat until [μ1, …, μΚ] unchanged

• Assign all points to nearest cluster

• Update cluster means

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo=">AAAG0XicfZRfb9MwEMC9wcoo/zZ45KWiLzyUKtnGNpCQJtAEvI2xf9JSKse5tlFjJzjOtsy1hHjdK5+GV/gSfBvsLEATR7hKdfL97s53Pp+fRGEqHOfXwuKNm0utW8u323fu3rv/YGX14VEaZ5zAIYmjmJ/4OIUoZHAoQhHBScIBUz+CY3/6xuiPz4CnYcwORJ7AgOIxC0chwUJvDVf6l0PWedXxMB/TkA3lVHW8l53ZzDuTF0qrnnW05NFMDaez2ae14UrX6TvF6tiCWwpdVK694erSlRfEJKPABIlwmp66TiIGEnMRkghU28tSSDCZ4jGcapFhCulAFompTkV74A7kKGYCGKmYSUxTisXE2jRwWt0lEx0YeDVsuTmQxksAaThmVSufqnbbC2Cki1ycTAZ+lIGS+29fK+n0Ntd77tqWqiEcgpJwt52e/tWBMQdgJbK90XM3t20myXgSwT/IMVgdijlm4z+QcWPAOkRyrIMRmk8109fHKT5Xf89NdhwYnJOYUswC6Z0BUae63h6wNONgCiM9n8quq5Sy4GtU2xT6tjevvFBSepWEi9aqY/kcZgqnodyCLpt8XVrY5ybMExMQuOH0opnGWQObWWxmQ9yCeP2E0BgTkjSMYmblM5qji74b2UGjOabsGeMy0pMgwJbHZNKMJ5PQYvdrN7OvTLvME2Z2YH3PXpwAxyLm5hGfh2IShTQUqSz1yrYK2f+ttL4ebFdVm9L8+77cVRZJ/KhozGrt7A4lPKhyJssGbMyr2PXFNYBJDSwL3EDGNbJ8yA0kyatk8ZoLrjKpIizgIs1pdX6Bn/A4Hql2Mb5fmLX5d1jbwtFa313vr3/Y6O68Lwf5MnqMnqCnyEVbaAe9Q3voEBH0DX1HP9DP1sdW3vrS+nqNLi6UNo9QZbWufgOTSIC+</latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE=">AAAG23icfZRLb9QwEIDdQpeyvFo4clnYC4fVKmlLu1SqVIEq4IJK1ZfUrFaOM9mNNnaC7bTdWj5xA65c+TVc4c6/wUkDbOIIR4kczzcznvF4/DSOhHScXwuLN24utW4t327fuXvv/oOV1YfHIsk4gSOSxAk/9bGAOGJwJCMZw2nKAVM/hhN/+iqXn5wDF1HCDuUshSHFYxaFEcHSLI1WBt658mimR9POTqfjhRwT5Wr1bjTV5ldkdKTYdsfb7lyNmPdkx6wahUs9Mqpdp+8Uo2NP3HLSReXYH60uffaChGQUmCQxFuLMdVI5VJjLiMSg214mIMVkisdwZqYMUxBDVYSoOxXpoTtUYcIkMFJRU5gKiuXEWsxhUV0lE+MYeNVtuThUuZUARDRmVS2f6nbbCyA06S52pgI/zkCrg9cvtXJ6m+s9d21L1xAOQUm4A6dnnjow5gCsRAYbPXdzYDNpxtMY/kFOjtWhhGM2/gPlZnKwDpEZNs4InU0N0zfbKV7XvM/z6DgwuCAJpZgFyjsHos9Mvj1gIuOQJ0Z5PlVdV2ttwdeo0SnkbW9eeKmV8ioBF6VUx2ZzWJ44A80s6KrJ1pWFfWjCPDkBiRt2L5tpnDWwmcVmNsQtiNd3CI0+IRVRnDArnnCOLuoutJ3Gc0xZM7nJ2PSEAFsW00kznk4iiz2oncyBzstlnsB8TLE5Zy9JgWOZ8PwSX0RyEkc0kkKVcm1rRez/WkZed7anq0WZf31f7WmLJH5cFGY1d3aFEh5UuTzKBmzMq9j1wTWAaQ0sE9xAJjWyvMgNJJlVyeI2F1ylU8VYwqWY0Wr/Aj/lSRLqdtG+X+Rj82+ztifHa313vb/+fqO7+7Zs5MvoMXqKniEXbaFd9AbtoyNE0Df0Hf1AP1vD1sfWp9aXa3RxodR5hCqj9fU3kEiEHw==</latexit>

K-means Clustering

33

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 1
Algorithm: K-means, Distance Metric: Euclidean Distance

μ1

μ2

μ3

Slide based on one by Eamonn Keogh
Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsRandomly initialize K means μk

34

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 2

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest cluster,
then update means to average of points

35

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 3

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest cluster,
then update means to average of points

36

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 4

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)

K-means Objective
Loss: Variance of All Clusters Combined/
Sum Square Error (SSE)/ Sum Square Distances. μ1

μ3

Number of points in cluster k
(clusters with more points  
 contribute more to the loss)

Variance of cluster kL(z1, . . . , zN) =
KX

k=1

Nk�
2
k

<latexit sha1_base64="ymr8+5mANFcPCNEZHkRnwpKr6v4=">AAAG03icfZRfb9MwEMC9wcoo/zZ45CWiL0OqqmQb23iYNIEmQKBpTOs2aSmR41zbqM4fbGdba/kF8YZ45dPwCt+Bb4OTBWjiCFeprLvf3fnO5/NTGnJh278WFm/cXGrdWr7dvnP33v0HK6sPT3iSMQJ9ktCEnfmYAw1j6ItQUDhLGeDIp3DqT17m+tMLYDxM4mMxTWEQ4VEcDkOChRZ5K/a7tZnndC03SATvWjPv4Km1a7k8izw52XXUh7fWgTfRgnAUYW/yYd1b6dg9u1iWuXHKTQeV69BbXfqinZMsglgQijk/d+xUDCRmIiQUVNvNOKSYTPAIzvU2xhHwgSxSU1ZFe+wM5DCJBcSkYiZxxCMsxoYwh3lVSsY6MLBq2FI4kLmXAHSycdXKj1S77QYw1GUuTiYDn2ag5NGrF0ra3a2NrrO+rWoIg6AknB27q391YMQA4hLZ2ew6Wzsmk2YspfAPsnOsDiUMx6M/UO4mB+sQmWIdjETTiWZ6+jjF5+jvWZ4dgxguSRJFOA6kewFEnet6uxDzjEFeGOn6kew4SikDvka1TaFvu/PKKyWlW0nYvZBXqo5N57C8cBqaGtCsydfMwD42Ya4Yg8ANpxfNNM4a2MxgMxNiBsTqJ4TGmJDykCaxkc9wji76bmgGpXNM2TO5S6pnQYANj+m4GU/HocEe1W7mSOXtMk9gpqeDvmc3SYFhkbD8EV+GYkzDKBRclnplWoXx/620vh5sX1WbMv/3fbmvDJL4tGjMau3MDiUsqHJ5lg3YiFWx64trANMaWBa4gUxqZPmQG0gyrZLFay64yqSiWMAVn0bV+QV+ypJkqNrF+H6er62/w9rcnKz3nI3exvvNzt6bcpAvo8foCVpDDtpGe+g1OkR9RNA39B39QD9b/ZZsfWp9vkYXF0qbR6iyWl9/Ay+2f3A=</latexit>μ2

Goal: Minimize Loss with Respect to Assignments
min

z1,...,zN
L(z1, . . . , zN)

<latexit sha1_base64="76LYF4phxYf4tM7DiAwJP0PiZ2o=">AAAG0HicfZRfb9MwEMC9wcoo/zZ45KWiL0MqVbKNbfA0gSZAQmhU25i0VJXjXNtojhNsZ2tqWYhXeOTT8Aqfgm+DkwVo4ghXqay73935zufzExoK6Ti/lpavXV9p3Vi92b51+87de2vr909EnHICxySmMT/1sQAaMjiWoaRwmnDAkU/hg3/+Mtd/uAAuwpgdySyBYYQnLByHBEsjGq098aKQjdR85PY6XhBL0evMR+90x3veebtRkz7ujNa6Tt8pVsfeuOWmi8p1OFpf+WrsSRoBk4RiIc5cJ5FDhbkMCQXd9lIBCSbneAJnZstwBGKoirx0p6I9codqHDMJjFTMFI5EhOXUEuawqErJ1AQGXg1bCocq9xKACCesauVHut32AhibGhcnU4FPU9Bq8OqFVk5vZ6vnbu7qGsIhKAl3z+mZXx2YcABWInvbPXdnz2aSlCcU/kFOjtWhmGM2+QPlbnKwDpEMm2Akys4N0zfHKT7XfE/z7DgwuCRxFGEWKO8CiD4z9faAiZRDXhjl+ZHqulprC75CjU2hb3uLyplWyqsk7F2oma5j2QKWF85AmQXNm3zNLexjE+bJKUjccHrZTOO0gU0tNrUhbkG8fkJojAmJCGnMrHzGC3TRd2M7KF1gyp7JXVIzCAJseUymzXgyDS12ULuZgc7bZZHAfBJhc89enADHMub5I74M5ZSGUSiFKvXatgrZ/62Mvh7sQFebMv/3fXWgLZL4tGjMau3sDiU8qHJ5lg3YhFexq4trAJMaWBa4gYxrZPmQG0iSVcniNRdcZVJRLGEmsqg6v8BPeByPdbsY38/ytfN3WNubk82+u9Xfer/d3X9TDvJV9BA9QhvIRbtoH71Gh+gYEfQNfUc/0M/WoDVrfWp9vkKXl0qbB6iyWl9+Ay1jffg=</latexit>

Mean and Variance of a Cluster

Mean of a Cluster
<latexit sha1_base64="UiTO9SifSwc3b8I/ppBwzAPYxSo=">AAAG3nicfZTNb9MwFMA9YGWUrw2OXCp64VBVydiXQJMm0AS7TGPal9SU4rivbdTYCbazrbN85YIQV678NVzhyH+DnQXRxBGOHFl+v/ee3/PzC9M4EtLzfi/cuHlrsXF76U7z7r37Dx4urzw6EUnGCRyTJE74WYgFxBGDYxnJGM5SDpiGMZyG09dWfnoOXEQJO5KzFPoUj1k0igiWZmuw/DKg2WDa2m4FI46J8rXaH0x1K3jRCkRGB4pt+/r9fmuvdzVg29N+LjgHoi71wGi3va6Xj5a78ItFGxXjYLCy+DkYJiSjwCSJsRA930tlX2EuIxKDbgaZgBSTKR5DzywZpiD6Ko9St0rSI7+vRgmTwEhJTWEqKJYTZ9PCorxLJsYx8LLbYrOvrJUhiGjMyloh1c1mMISRyXh+MjUM4wy0OnzzSiuvs/G8469u6grCYVgQ/pbXMV8VGHMAViBbax1/Y8tl0oynMfyDPItVoYRjNv4LWTMWrEJkho0zQmdTw3TNcfLpm7luo+PA4IIklGI2VPa+dc/kOwAmMg42MSoIqWr7WmsHvkZtjVh5M5gXXmqlglLAwbkppSo2m8Ns4gw0c6CrOltXDvaxDgvkBCSuOb2sp3FWw2YOm7kQdyBePSHU+oRURHHCnHhGc3RedyPXaTzHFDVjTcamLQyxYzGd1OPpJHLYw8rNHGpbLvME5mOKzT0HSQocy4TbR3wRyUkc0UgKVci1qxWx/2sZedXZri4Xpf2HodrVDknCOC/Mcu7cCiV8WOZslDXYmJex64urAdMKWCS4hkwqZPGQa0gyK5P5a865UqeKsYRLMaPl/gVhypNkpJumffvVZu0uTla7/nrXe7fW3tkrGvkSeoKeomfIR5toB71FB+gYEfQd/UA/0a/Gh8anxpfG12v0xkKh8xiVRuPbH2zIhOI=</latexit>

µk =
1
Nk

NX

n=1

I[zn = k] xn

Number of Points in a Cluster
<latexit sha1_base64="nryDk1ZGn9m6/3ilwcH7WrjfhVs=">AAAGvnicfZRLb9QwEIBdoEtZXi0ce1mxFw6rVVL6ulSqQBX0UpWqL2mzrBxndjda2wm20+7W8oEzP4Qr/Bz+DU4axCaOcOTI8nwz4xmPJ0xpLJXn/V558PDRauvx2pP202fPX7xc33h1KZNMELggCU3EdYgl0JjDhYoVhetUAGYhhatw9iGXX92AkHHCz9UihSHDEx6PY4KV3Rqtb56MZp2DTiAzNtL8wDdfTjrHg7sRP5gNR+tdr+8Vo+Mu/HLRReU4HW2sfg+ihGQMuCIUSznwvVQNNRYqJhRMO8gkpJjM8AQGdskxAznURRSmU5Ge+0M9TrgCTipqGjPJsJo6mzksq7tkah2DqLotN4c6txKBjCe8qhUy024HEYxtRouT6SikGRh99vG90V5v913P39ozNURAVBL+vtezXx2YCABeIvvbPX9332XSTKQU/kFejtWhRGA++QvlZnKwDpEFts4IW8ws07fHKaZv504enQAOtyRhDPNIBzdAzMDmOwAuMwF5YnQQMt31jTEOfI9anULeDpaFc6N1UAk4uNFzU8cWS1ieOAstHOiuydadg31twgI1BYUbTq+aaZw1sJnDZi4kHEjUTwiNPiGVMU24E894iS7qbuw6pUtMWTO5SWqffYQdi+m0GU+nscOe1W7mzOTlskxgMWHY3nOQpCCwSkT+iG9jNaUxi5XUpdy4WjH/v5aV150dmWpR5v8w1EfGIUlIi8Ks5s6tUCKiKpdH2YBNRBW7v7gGMK2BZYIbyKRGlg+5gSSLKlm85oKrdCqKFczlglX7F4SpSJKxadv27debtbu43Or7O33v83b38Lhs5GtoE71Bb5GP9tAh+oRO0QUi6Bv6gX6iX63D1rjFWsk9+mCl1HmNKqM1/wOam3f+</latexit>

Nk =
NX

n=1

I[zn = k]
μ1

μ3

<latexit sha1_base64="c6GsfeeVArPMMTCM5R5TlVIF3Ds=">AAAG6XicfZRLb9QwEIDdQpcSXi0cuaxYqeKwWiWlr0ulClSgt1L1JW1WK8eZzUabOMF22qaWfwEnbogrV34NNwQ/BicbxCaOcJTI8XwzY8+Mx0ujkAvb/rm0fOfuSufe6n3rwcNHj5+srT8950nGCJyRJErYpYc5RCGFMxGKCC5TBjj2IrjwZm8K+cUVMB4m9FTkKYxiHNBwEhIs9NJ47e3R8HZM92cja2Pfcj0IQiqJtseV1e063Y1uKe13XVf/2/N/lyZifzawXKB+BY/XevbALkfXnDjVpIeqcTxeX/nk+gnJYqCCRJjzoWOnYiQxEyGJQFluxiHFZIYDGOopxTHwkSwPrLo16akzkpOECqCkpiZxzGMspsZiAfP6Kplqx8DqbqvFkSys+MDDgNa1vFhZluvDRAe/3Jn0vSgDJU/evVbS7u+86jubu6qBMPArwtmz+/ppAgEDoBWyt9V3dvZMJs1YGsE/yC6wJpQwTIO/UGGmAJsQybF2RuJ8ppmB3k75OvrdLk7HgMI1SeIY62S7V0DUUMdbp55nDIrASNeLZc9RShnwHNU6pdxyF4U3Skq3dmD3St6oJpYvYEXgNJQb0G2brVsD+9iGuWIKArfsXrTTOGthM4PNTIgZEGvuEFp9QsrDKKHGeSYLdFl3E9NptMBUNVOYjHSH8LFhMZ224+k0NNiTRmZOVFEuiwRmQYx1nt0kBYZFwopLfB2KaRTGoeCykitTK6T/19LyprNDVS/K4ut58lAZJPGisjDrsTMrlDC/zhWnbMECVsfmiWsB0wZYBbiFTBpkdZFbSJLXyfI2l1ytU0VYwA3P43r/Ai9lSTJRlm7fTrNZm5PzzYGzPbA/bPUOjqpGvoqeoxfoJXLQLjpA79ExOkMEfUc/0C/0uzPrfO586Xydo8tLlc4zVBudb38AnDOGaA==</latexit>

I[zn = k] =

®
1 zn = k,
0 zn 6= k.

μ2

Variance of a cluster

σk =
1
Nk

N

∑
n=1

I[zn = k] | |xn − μk | |2

K-means Objective
Loss: Variance of Clusters (given assignments)

μ1

μ3

µk =
1
Nk

NX

n=1

I[zn = k] xn
<latexit sha1_base64="mWQph8VFBVPQM2btBgs0zJY+O2E=">AAAG4nicfZRLbxMxEIDdQkMJrxaOXCJy4VBFu02TNkgVFag8LlWp+pKyIfJ6J8kqu97F9rZJLf8BOCGuXPk1XOHAv8HeLmr2IbzyyvJ8M+MZj8eNA58Ly/qztHzr9krtzurd+r37Dx4+Wlt/fMqjhBE4IVEQsXMXcwh8CifCFwGcxwxw6AZw5k5fG/nZBTDuR/RYzGMYhHhM/ZFPsNBbw7WXzoV0wkQNp43dhjNimEhbyYPhVDWcFw2HJ+FQ0l1bfTxovO9fDenudJAKLoDImRpqC02rtd3rdDZ7Dau11e7Y6cJqd3udbsNuWeloomwcDtdXvjheRJIQqCAB5rxvW7EYSMyETwJQdSfhEGMyxWPo6yXFIfCBTCNVjZz02B7IUUQFUJJTkzjkIRaT0qaBeX6XTLRjYHm32eZAGisecH9M81puqOp1x4ORznp6Mum5QQJKHr19paS10W1v2JvbqoAw8DLC3rE29FcExgyAZsjO1obd3SkzccLiAG4gy2BFKGKYjv9BxowBixCZY+2MhPOpZlr6OOm09eyY6BhQuCRRGGLqSXPfqq/z7QDlCQOTGOm4oWzaSqkSfI2aGjHyurMonCkpnVzAugRnqojNFzCTOA3NS9BVla2rEvapCnPEBASuOL2opnFSwSYlNilDrASx4gmh0ifE3A8iWopntECndTcqOw0WmKxmjMlAtwYPlyzGk2o8nvgl9qhwM0fKlMsigdk4xPqenSgGhkXEzCO+9MUk8ENfcJnJVVnLp//X0vKis32VL0rzd125r0okcYO0MPO5K1coYV6eM1FWYGOWx64vrgKMC2CW4AoyKpDZQ64gyTxPpq855XKdKsACZnwe5vsXuDGLopGqp+27Z8ZNsy4vTjdbdrvV/rDV3HuTNfJV9BQ9Q8+RjbbRHnqHDtEJIugH+ol+od81r/a59rX27RpdXsp0nqDcqH3/C++Lh14=</latexit>

KN possible combinations;
can’t solve via brute force

Goal: Minimize Loss with Respect to Assignments
min

z1,...,zN
L(z1, . . . , zN)

<latexit sha1_base64="76LYF4phxYf4tM7DiAwJP0PiZ2o=">AAAG0HicfZRfb9MwEMC9wcoo/zZ45KWiL0MqVbKNbfA0gSZAQmhU25i0VJXjXNtojhNsZ2tqWYhXeOTT8Aqfgm+DkwVo4ghXqay73935zufzExoK6Ti/lpavXV9p3Vi92b51+87de2vr909EnHICxySmMT/1sQAaMjiWoaRwmnDAkU/hg3/+Mtd/uAAuwpgdySyBYYQnLByHBEsjGq098aKQjdR85PY6XhBL0evMR+90x3veebtRkz7ujNa6Tt8pVsfeuOWmi8p1OFpf+WrsSRoBk4RiIc5cJ5FDhbkMCQXd9lIBCSbneAJnZstwBGKoirx0p6I9codqHDMJjFTMFI5EhOXUEuawqErJ1AQGXg1bCocq9xKACCesauVHut32AhibGhcnU4FPU9Bq8OqFVk5vZ6vnbu7qGsIhKAl3z+mZXx2YcABWInvbPXdnz2aSlCcU/kFOjtWhmGM2+QPlbnKwDpEMm2Akys4N0zfHKT7XfE/z7DgwuCRxFGEWKO8CiD4z9faAiZRDXhjl+ZHqulprC75CjU2hb3uLyplWyqsk7F2oma5j2QKWF85AmQXNm3zNLexjE+bJKUjccHrZTOO0gU0tNrUhbkG8fkJojAmJCGnMrHzGC3TRd2M7KF1gyp7JXVIzCAJseUymzXgyDS12ULuZgc7bZZHAfBJhc89enADHMub5I74M5ZSGUSiFKvXatgrZ/62Mvh7sQFebMv/3fXWgLZL4tGjMau3sDiU8qHJ5lg3YhFexq4trAJMaWBa4gYxrZPmQG0iSVcniNRdcZVJRLGEmsqg6v8BPeByPdbsY38/ytfN3WNubk82+u9Xfer/d3X9TDvJV9BA9QhvIRbtoH71Gh+gYEfQNfUc/0M/WoDVrfWp9vkKXl0qbB6iyWl9+Ay1jffg=</latexit>

μ2

L(z) =
KX

k=1

Nk�
2
k

<latexit sha1_base64="Eok6PU5Xj72Pm0njqDe9Od6Hj4k=">AAAGxXicfZRfb9MwEMC9wcoo/zZ45KVaX4ZUVck6tvEwaQJNA4HQmPZPWrrKca5t1NgJttOtsyxekfguvMJX4dvgZAGaOMJVKuvud3e+8/n8JAqFdJxfC4t37i417i3fbz54+Ojxk5XVp6ciTjmBExJHMT/3sYAoZHAiQxnBecIBUz+CM3/yJtOfTYGLMGbHcpZAn+IRC4chwdKIBitrH9ZvXrR2W55I6UBNdl19+b71cTAxgnBE8WByuTFYaTtdJ18te+MWmzYq1uFgdembF8QkpcAkibAQF66TyL7CXIYkAt30UgEJJhM8gguzZZiC6Ks8Gd0qaY/dvhrGTAIjJTOFqaBYji1hBouylIxNYODlsIWwrzIvAZhkWdnKp7rZ9AIYmsLmJ1OBH6Wg1dHBa62czlav425s6wrCISgId8fpmF8VGHEAViA7mx13a8dmkpQnEfyDnAyrQjHHbPQHytxkYBUiM2yCETqbGKZrjpN/rvleZtlxYHBFYkoxC5Q3BaIvTL09YCLlkBVGeT5VbVdrbcG3qLHJ9U1vXnmtlfJKCXtTda2r2GwOywpnoJkF3dT5urGwz3WYJ8cgcc3pZT2N0xo2tdjUhrgF8eoJoTYmJCKMYmblM5yj874b2kGjOabomcxlZF5/gC2PybgeT8ahxR5VbuZIZ+0yT2BupoO5Zy9OgGMZ8+wRX4VyHIU0lEIVem1bhez/VkZfDbavy02Z/fu+2tcWSfwob8xy7ewOJTwoc1mWNdiIl7Hbi6sBkwpYFLiGjCtk8ZBrSDIrk/lrzrnSpIqwhGsxo+X5BX7C43iom/n4fpWtrb/D2t6cbnTdXrf3abO9964Y5MvoOVpD68hF22gPvUWH6AQR9BV9Rz/Qz8ZBgzZkY3qLLi4UNs9QaTW+/AbChnp/</latexit>

=
K

∑
k=1

N

∑
n=1

I[zn = k] | |xn − μk | |2

σk =
1
Nk

N

∑
n=1

I[zn = k] | |xn − μk | |2

K-means Iteration
Solution: Define Loss in terms of μ and z

μ1

μ3

μ2

K-means Algorithm
• Randomly initialize μ
• Repeat until L(μ, z) does not improve

1. Minimize L(μ, z) with respect to z 
(assign points to closest cluster)

2. Minimize L(μ, z) with respect to μ 
(place clusters close to points)

L(μ, z) =
K

∑
k=1

N

∑
n=1

I[zn = k] | |xn − μk | |2

K-means Clustering

• Randomly initialize means [μ1, …, μΚ]
• Repeat until L(μ, z) unchanged

• Assign all points to nearest cluster

• Update cluster means

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo=">AAAG0XicfZRfb9MwEMC9wcoo/zZ45KWiLzyUKtnGNpCQJtAEvI2xf9JSKse5tlFjJzjOtsy1hHjdK5+GV/gSfBvsLEATR7hKdfL97s53Pp+fRGEqHOfXwuKNm0utW8u323fu3rv/YGX14VEaZ5zAIYmjmJ/4OIUoZHAoQhHBScIBUz+CY3/6xuiPz4CnYcwORJ7AgOIxC0chwUJvDVf6l0PWedXxMB/TkA3lVHW8l53ZzDuTF0qrnnW05NFMDaez2ae14UrX6TvF6tiCWwpdVK694erSlRfEJKPABIlwmp66TiIGEnMRkghU28tSSDCZ4jGcapFhCulAFompTkV74A7kKGYCGKmYSUxTisXE2jRwWt0lEx0YeDVsuTmQxksAaThmVSufqnbbC2Cki1ycTAZ+lIGS+29fK+n0Ntd77tqWqiEcgpJwt52e/tWBMQdgJbK90XM3t20myXgSwT/IMVgdijlm4z+QcWPAOkRyrIMRmk8109fHKT5Xf89NdhwYnJOYUswC6Z0BUae63h6wNONgCiM9n8quq5Sy4GtU2xT6tjevvFBSepWEi9aqY/kcZgqnodyCLpt8XVrY5ybMExMQuOH0opnGWQObWWxmQ9yCeP2E0BgTkjSMYmblM5qji74b2UGjOabsGeMy0pMgwJbHZNKMJ5PQYvdrN7OvTLvME2Z2YH3PXpwAxyLm5hGfh2IShTQUqSz1yrYK2f+ttL4ebFdVm9L8+77cVRZJ/KhozGrt7A4lPKhyJssGbMyr2PXFNYBJDSwL3EDGNbJ8yA0kyatk8ZoLrjKpIizgIs1pdX6Bn/A4Hql2Mb5fmLX5d1jbwtFa313vr3/Y6O68Lwf5MnqMnqCnyEVbaAe9Q3voEBH0DX1HP9DP1sdW3vrS+nqNLi6UNo9QZbWufgOTSIC+</latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE=">AAAG23icfZRLb9QwEIDdQpeyvFo4clnYC4fVKmlLu1SqVIEq4IJK1ZfUrFaOM9mNNnaC7bTdWj5xA65c+TVc4c6/wUkDbOIIR4kczzcznvF4/DSOhHScXwuLN24utW4t327fuXvv/oOV1YfHIsk4gSOSxAk/9bGAOGJwJCMZw2nKAVM/hhN/+iqXn5wDF1HCDuUshSHFYxaFEcHSLI1WBt658mimR9POTqfjhRwT5Wr1bjTV5ldkdKTYdsfb7lyNmPdkx6wahUs9Mqpdp+8Uo2NP3HLSReXYH60uffaChGQUmCQxFuLMdVI5VJjLiMSg214mIMVkisdwZqYMUxBDVYSoOxXpoTtUYcIkMFJRU5gKiuXEWsxhUV0lE+MYeNVtuThUuZUARDRmVS2f6nbbCyA06S52pgI/zkCrg9cvtXJ6m+s9d21L1xAOQUm4A6dnnjow5gCsRAYbPXdzYDNpxtMY/kFOjtWhhGM2/gPlZnKwDpEZNs4InU0N0zfbKV7XvM/z6DgwuCAJpZgFyjsHos9Mvj1gIuOQJ0Z5PlVdV2ttwdeo0SnkbW9eeKmV8ioBF6VUx2ZzWJ44A80s6KrJ1pWFfWjCPDkBiRt2L5tpnDWwmcVmNsQtiNd3CI0+IRVRnDArnnCOLuoutJ3Gc0xZM7nJ2PSEAFsW00kznk4iiz2oncyBzstlnsB8TLE5Zy9JgWOZ8PwSX0RyEkc0kkKVcm1rRez/WkZed7anq0WZf31f7WmLJH5cFGY1d3aFEh5UuTzKBmzMq9j1wTWAaQ0sE9xAJjWyvMgNJJlVyeI2F1ylU8VYwqWY0Wr/Aj/lSRLqdtG+X+Rj82+ztifHa313vb/+fqO7+7Zs5MvoMXqKniEXbaFd9AbtoyNE0Df0Hf1AP1vD1sfWp9aXa3RxodR5hCqj9fU3kEiEHw==</latexit>

Each iteration reduces loss 
until (local) optimum is found

= argmin
zn

L(z,µ)
<latexit sha1_base64="jplDOWyPOqtRdhuBQWxbKMOrOFQ=">AAAGu3icfZRfb9MwEMA9YGWUfxu8IPFS0ZchVVWyrt36MGkCTYDEw5j2T1qqynGubZjtBMfZ1lrmC/A1eIXvw7chzoLWxBGOHFm+3935zufzYxom0nH+rNy7/2C18XDtUfPxk6fPnq9vvDhNolQQOCERjcS5jxOgIYcTGUoK57EAzHwKZ/7leyM/uwKRhBE/lvMYRgxPeTgJCZbZ1nj91V7Lw2LKQj5WizHXrc+bi47H0rfj9bbT3Rn2+1vDltPd7vXdfOH0BsP+oOV2nXy0UTEOxxurP7wgIikDLgnFSXLhOrEcKSxkSCjoppcmEGNyiadwkS05ZpCMVB6CbpWkx+5ITSIugZOSmsIsYVjOrE0DJ+VdMsscgyi7LTZHylgJIAmnvKzlM91segFMsnTmJ1OBT1PQ6ujDO62czqDXcbd2dAUREBSEu+t0sq8KTAUAL5Dd7Y472LWZOBUxhTvIMVgVigTm03+QMWPAKkTmOHNG2PwyY7rZcfLpZrNvohPA4ZpEjGEeKO8KiL7I8u0BT1IBJjHK85lqu1prC75FM51c3vSWhTdaKa8UsHelbnQVmy9hJnEZNLegRZ2thYV9q8M8OQOJa04v62mc1rCpxaY2JCxIVE8ItT4hTkIacSueyRKd193EdkqXmKJmjEmavfkAWxbjWT0ez0KLParczJE25bJMmE6Bs3v2ohgElpEwj/g6lDMaslAmqpBrWyvk/9fK5FVnB7pclObv++pAWyTxaV6Y5dzZFUpEUOZMlDXYVJSx24urAeMKWCS4howqZPGQa0gyL5P5a865UqeiWMJNMmfl/gV+LKJoopt5+x6acdes7cXpVtftdXtfttv7n4pGvoZeozdoE7loB+2jj+gQnSCCvqOf6Bf63dhrkMbXBr1F760UOi9RaTTSv6W5d64=</latexit>

= argmin
µk

L(z,µ)
<latexit sha1_base64="x9fFmTYhlvCOa4Fqj72ZI9lf3WU=">AAAGvXicfZRfb9MwEMC9wcoo/zZ4g5eKvgypqpJ17dYHxASaAImHMe2ftFSV41zbqI4THGdbZ1nine/BK3wdvg12FrQmjnDkyPL97s53Pp+f0DAVjvNnZfXe/bXGg/WHzUePnzx9trH5/DSNM07ghMQ05uc+ToGGDE5EKCicJxxw5FM48+cfjPzsEngaxuxYLBIYRXjKwklIsNBb442Xb1se5tMoZGPpRdl4rlpftm46evlmvNF2urvDfn972HK6O72+my+c3mDYH7TcrpOPNirG4Xhz7YcXxCSLgAlCcZpeuE4iRhJzERIKqullKSSYzPEULvSS4QjSkcyDUK2S9NgdyUnMBDBSUpM4SiMsZtamgdPyLplpx8DLbovNkTRWAkjDKStr+ZFqNr0AJjqh+clk4NMMlDz6+F5JpzPoddztXVVBOAQF4e45Hf1VgSkHYAWyt9NxB3s2k2Q8oXAHOQarQjHHbPoPMmYMWIXIAmtnJFrMNdPVx8mnq2ffRMeBwRWJowizQHqXQNSFzrcHLM04mMRIz49k21VKWfAtqnVyedNbFl4rKb1SwN6lvFZVbLGEmcRpaGFBN3W2bizsWx3miRkIXHN6UU/jrIbNLDazIW5BvHpCqPUJSRrSmFnxTJbovO4mtlO6xBQ1Y0xS/eoDbFlMZvV4Mgst9qhyM0fKlMsyYXoF1vfsxQlwLGJuHvFVKGY0jEKRykKubK2Q/V9Ly6vODlS5KM3f9+WBskji07wwy7mzK5TwoMyZKGuwKS9jtxdXAyYVsEhwDRlXyOIh15BkUSbz15xzpU5FsYDrdBGV+xf4CY/jiWrm7Xtoxl2zthen21231+193Wnvfy4a+Tp6hV6jLeSiXbSPPqFDdIII+o5+ol/od+NdAxq0wW7R1ZVC5wUqjcbVX8DzeIM=</latexit>

Choosing K

55

1 2 3 4 5 6 7 8 9 10

When k = 1, the objective function is 873.0

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=1, L=873

56

1 2 3 4 5 6 7 8 9 10

When k = 2, the objective function is 173.1

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=2, L=173

57

1 2 3 4 5 6 7 8 9 10

When k = 3, the objective function is 133.6

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=3, L=134

Choosing K

58

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

9.00E+02

1.00E+03

1 2 3 4 5 6

We can plot the cost function values for K equals 1 to 6…

The abrupt change at K = 2, is highly suggestive of two clusters in the
data. This technique for determining the number of clusters is known
as “elbow finding” or “knee finding”.

K

C
os

t
Fu

nc
tio

n

Slide based on one by Eamonn Keogh
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

“Elbow finding” (a.k.a. “knee finding”)  
Set K to value just above “abrupt” increase

K-means Clustering
Initialization, Speed-ups and
Limitations

Choice of Initialization

Loss: Sum of Squared Distancesμ1

μ3

μ2
L(µ, z) =

KX

k=1

NX

n=1

I[zn = k] (xn �µk)2
<latexit sha1_base64="RDi4EPfx1zC9h5Vt78ePHRp8vRI=">AAAG+3icfZRfb9MwEMC9wcoo/zZ45CWiEtqkUiXb2AbSpAk0wQRCY9o/aekqx7m2URMnOM621vIn4GPwhnjlle/BO6/wGbCzAE0c4Srpxfe7O/t8Pi8Jg5Tb9veZ2WvX5xo35m82b92+c/fewuL9ozTOGIFDEocxO/FwCmFA4ZAHPISThAGOvBCOvdFLrT8+B5YGMT3g4wS6ER7QoB8QzNVUb+Hk7ZJ7Ltwok231P5HL1uMty02zqCdGW448e1N8UP3xznKfW7unkx7dGnW1rG0vZY9aT6zCizKTy2crTau30LI7dj4sU3AKoYWKsddbnPvo+jHJIqCchDhNTx074V2BGQ9ICLLpZikkmIzwAE6VSHEEaVfkKZBWSXvgdEU/phwoKZkJHKUR5kNjUsNpeZYMVWBg5bDFZFdoLz6kwYCWrbxINpuuD311HPnKhO+FGUix/+qFFHZ7fbXtrGzICsLALwhn026rXxUYMABaIJtrbWd902SSjCUh/INsjVWhmGE6+ANpNxqsQmSMVTASjUeK6ajl5I+jnqd6dwwoXJA4ijD1hXsORJ6qfLtA04yBToxwvUi0HCmlAV+hyibXN91p5aUUwi1tOK+uKjaewnTiFDQ2oEmdr4mBfajDXD4EjmtWz+tpnNWwmcFmJsQMiFVXCLUxIUmDMKbGfvpTdF53fTNoOMUUNaNdhqpn+NjwmAzr8WQYGOx+5WT2pS6XaQKzQYTVObtxAgzzmOlLfBHwYRhEAU9FoZemVUD/b6X01WA7slyU+u15YkcaJPHCvDDLuTMrlDC/zOld1mADVsauDq4GTCpgkeAaMq6QxUWuIcm4TOa3OedKnSrEHC7TcVTuX+AlLI77spm372d6rP9t1qZwtNJxVjur79da27tFI59HD9EjtIQctIG20Wu0hw4RQd/QD/QT/WrIxqfG58aXK3R2prB5gEqj8fU3ez+PPQ==</latexit>

• Randomly initialize μ
• Alternate between two steps

1. Minimize L(μ, z) with respect to z 
(assign points to closest cluster)

2. Minimize L(μ, z) with respect to μ 
(place clusters close to points)

• Alternate between two steps
1. Minimize L(μ, z) with respect to z 

(assign points to closest cluster)
2. Minimize L(μ, z) with respect to μ 

(place clusters close to points)

Choice of Initialization

Loss: Sum of Squared Distancesμ1

μ3

μ2
L(µ, z) =

KX

k=1

NX

n=1

I[zn = k] (xn �µk)2
<latexit sha1_base64="RDi4EPfx1zC9h5Vt78ePHRp8vRI=">AAAG+3icfZRfb9MwEMC9wcoo/zZ45CWiEtqkUiXb2AbSpAk0wQRCY9o/aekqx7m2URMnOM621vIn4GPwhnjlle/BO6/wGbCzAE0c4Srpxfe7O/t8Pi8Jg5Tb9veZ2WvX5xo35m82b92+c/fewuL9ozTOGIFDEocxO/FwCmFA4ZAHPISThAGOvBCOvdFLrT8+B5YGMT3g4wS6ER7QoB8QzNVUb+Hk7ZJ7Ltwok231P5HL1uMty02zqCdGW448e1N8UP3xznKfW7unkx7dGnW1rG0vZY9aT6zCizKTy2crTau30LI7dj4sU3AKoYWKsddbnPvo+jHJIqCchDhNTx074V2BGQ9ICLLpZikkmIzwAE6VSHEEaVfkKZBWSXvgdEU/phwoKZkJHKUR5kNjUsNpeZYMVWBg5bDFZFdoLz6kwYCWrbxINpuuD311HPnKhO+FGUix/+qFFHZ7fbXtrGzICsLALwhn026rXxUYMABaIJtrbWd902SSjCUh/INsjVWhmGE6+ANpNxqsQmSMVTASjUeK6ajl5I+jnqd6dwwoXJA4ijD1hXsORJ6qfLtA04yBToxwvUi0HCmlAV+hyibXN91p5aUUwi1tOK+uKjaewnTiFDQ2oEmdr4mBfajDXD4EjmtWz+tpnNWwmcFmJsQMiFVXCLUxIUmDMKbGfvpTdF53fTNoOMUUNaNdhqpn+NjwmAzr8WQYGOx+5WT2pS6XaQKzQYTVObtxAgzzmOlLfBHwYRhEAU9FoZemVUD/b6X01WA7slyU+u15YkcaJPHCvDDLuTMrlDC/zOld1mADVsauDq4GTCpgkeAaMq6QxUWuIcm4TOa3OedKnSrEHC7TcVTuX+AlLI77spm372d6rP9t1qZwtNJxVjur79da27tFI59HD9EjtIQctIG20Wu0hw4RQd/QD/QT/WrIxqfG58aXK3R2prB5gEqj8fU3ez+PPQ==</latexit>

• Randomly initialize μ What is a good choice?

“Good” Initialization of Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

+
+
+

+

+

+ +

+

+

+

+

+ +

+

+ +

+

+

“Bad” Initialization of Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

+

+

+ +

+

+

+

+

+
+

+

+
+

+

+

Importance of Initial Centroids

What is the chance of randomly selecting
one point from each of K clusters?

(assume each cluster has size n = N/K)

Implication: We will almost always have  
multiple initial centroids in same cluster.

Good initialization: Pick one point in each cluster

≈ 2πK e−K

 for ≈ 10−4 K = 10

 for ≈ 10−8 K = 20

Example: 10 Clusters

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

5 pairs of clusters, two initial points in each pair

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4

Example: 10 Clusters

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4

Picking the initialization cluster centers: a
significant issue

It is the speed and simplicity of the k-means method
that make it appealing, not its accuracy. Indeed,
there are many natural examples for which the
algorithm generates arbitrarily bad clustering (i.e.,
 is unbounded even when and are
fixed). This does not rely on an adversarial
placement of the starting centers, and in particular,
it can hold with high probability if the centers are
chosen uniformly at random from the data points.

L(̂z)/L(zopt) N K

 : cluster assignments
returned by K-means,
a local minimizer of
the loss

̂z

 : the global
minimizer of the loss
zopt

Arthur, David, and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Stanford, 2006.

Importance of Initial Centroids
Initialization tricks

• Use multiple restarts

• Helps, but probability is not on your side
• Initialize with hierarchical clustering
• Select more than K points, keep most widely separated

points.

• Bisecting K-means

• K-means++ 

Furthest first
• Pick first center to be the mean of the data

• For the subsequent centers iteratively pick the point whose distance

to the closest center is largest.

M1 ← {μ1}

μj+1 ← argmaxx∈X[Dmin(x, Mj)]
Mj+1 → Mj ∪ {μj+1}

Problem: Outliers get chosen as
centers.

 is the set of

centroids at step.

Mj
𝑗𝑡h

Dmin(x, Mj)
distance of to the closest
center in .

x
Mj

K-Means ++
1.Pick first center uniformly at random

2.For the subsequent centers iteratively pick a point randomly with probability
proportional to

M1 ← {μ1}
x ∈ X

Dmin(x, Mj)

μj+1 ← x ∼ p(x) =
Dmin(x, Mj)2

∑x∈X Dmin(x, Mj)2

Mj+1 → Mj ∪ {μj+1}

Here the outliers still have a high probability of being
selected compared to other points individually.
However, the cumulative probability of points having
moderately large distances lying in a dense region
dominate the probability as a group.

 is the set of centroids at step.Mj 𝑗𝑡h

Dmin(x, Mj)
distance of to the closest
center in .

x
Mj

Arthur, David, and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Stanford, 2006.

E[L(̂z)] ≤ (8 log K + 2)L(zopt)

Theoretical guarantees
when using K-Means++

Here is
same as
the loss

ϕ

K-means Clustering
Speed-ups

K-means Clustering
• Randomly initialize means [μ1, …, μΚ]
• Repeat until L(μ, z) unchanged

• Assign all points to nearest cluster

• Update cluster means

μ1

μ2

μ3

K-means Algorithm

zn = argmin
k
||xn �µk||2

<latexit sha1_base64="pUPI4dvxyAGtz3pppnDchfyxBjo=">AAAG0XicfZRfb9MwEMC9wcoo/zZ45KWiLzyUKtnGNpCQJtAEvI2xf9JSKse5tlFjJzjOtsy1hHjdK5+GV/gSfBvsLEATR7hKdfL97s53Pp+fRGEqHOfXwuKNm0utW8u323fu3rv/YGX14VEaZ5zAIYmjmJ/4OIUoZHAoQhHBScIBUz+CY3/6xuiPz4CnYcwORJ7AgOIxC0chwUJvDVf6l0PWedXxMB/TkA3lVHW8l53ZzDuTF0qrnnW05NFMDaez2ae14UrX6TvF6tiCWwpdVK694erSlRfEJKPABIlwmp66TiIGEnMRkghU28tSSDCZ4jGcapFhCulAFompTkV74A7kKGYCGKmYSUxTisXE2jRwWt0lEx0YeDVsuTmQxksAaThmVSufqnbbC2Cki1ycTAZ+lIGS+29fK+n0Ntd77tqWqiEcgpJwt52e/tWBMQdgJbK90XM3t20myXgSwT/IMVgdijlm4z+QcWPAOkRyrIMRmk8109fHKT5Xf89NdhwYnJOYUswC6Z0BUae63h6wNONgCiM9n8quq5Sy4GtU2xT6tjevvFBSepWEi9aqY/kcZgqnodyCLpt8XVrY5ybMExMQuOH0opnGWQObWWxmQ9yCeP2E0BgTkjSMYmblM5qji74b2UGjOabsGeMy0pMgwJbHZNKMJ5PQYvdrN7OvTLvME2Z2YH3PXpwAxyLm5hGfh2IShTQUqSz1yrYK2f+ttL4ebFdVm9L8+77cVRZJ/KhozGrt7A4lPKhyJssGbMyr2PXFNYBJDSwL3EDGNbJ8yA0kyatk8ZoLrjKpIizgIs1pdX6Bn/A4Hql2Mb5fmLX5d1jbwtFa313vr3/Y6O68Lwf5MnqMnqCnyEVbaAe9Q3voEBH0DX1HP9DP1sdW3vrS+nqNLi6UNo9QZbWufgOTSIC+</latexit>

µk =
1
Nk

X

n: zn=k

xn

<latexit sha1_base64="LCfM2c4JmH55eHst1v79fJuavsE=">AAAG23icfZRLb9QwEIDdQpeyvFo4clnYC4fVKmlLu1SqVIEq4IJK1ZfUrFaOM9mNNnaC7bTdWj5xA65c+TVc4c6/wUkDbOIIR4kczzcznvF4/DSOhHScXwuLN24utW4t327fuXvv/oOV1YfHIsk4gSOSxAk/9bGAOGJwJCMZw2nKAVM/hhN/+iqXn5wDF1HCDuUshSHFYxaFEcHSLI1WBt658mimR9POTqfjhRwT5Wr1bjTV5ldkdKTYdsfb7lyNmPdkx6wahUs9Mqpdp+8Uo2NP3HLSReXYH60uffaChGQUmCQxFuLMdVI5VJjLiMSg214mIMVkisdwZqYMUxBDVYSoOxXpoTtUYcIkMFJRU5gKiuXEWsxhUV0lE+MYeNVtuThUuZUARDRmVS2f6nbbCyA06S52pgI/zkCrg9cvtXJ6m+s9d21L1xAOQUm4A6dnnjow5gCsRAYbPXdzYDNpxtMY/kFOjtWhhGM2/gPlZnKwDpEZNs4InU0N0zfbKV7XvM/z6DgwuCAJpZgFyjsHos9Mvj1gIuOQJ0Z5PlVdV2ttwdeo0SnkbW9eeKmV8ioBF6VUx2ZzWJ44A80s6KrJ1pWFfWjCPDkBiRt2L5tpnDWwmcVmNsQtiNd3CI0+IRVRnDArnnCOLuoutJ3Gc0xZM7nJ2PSEAFsW00kznk4iiz2oncyBzstlnsB8TLE5Zy9JgWOZ8PwSX0RyEkc0kkKVcm1rRez/WkZed7anq0WZf31f7WmLJH5cFGY1d3aFEh5UuTzKBmzMq9j1wTWAaQ0sE9xAJjWyvMgNJJlVyeI2F1ylU8VYwqWY0Wr/Aj/lSRLqdtG+X+Rj82+ztifHa313vb/+fqO7+7Zs5MvoMXqKniEXbaFd9AbtoyNE0Df0Hf1AP1vD1sfWp9aXa3RxodR5hCqj9fU3kEiEHw==</latexit>

O(KND) computational
complexity (per iteration) for
K clusters, N points, and D
features.

O(ND) computational
complexity (per iteration)
Can it be reduced further if
only a few cluster
assignments change?

Finding new cluster assignments

Updating the cluster centers

To compute all
point-center
distances

 per iteration is
prohibitive in high dimensions

and large K!

O(NKD)

c2

The core idea for cutting on
distance computation

 d(x, z) ≤ d(x, y) + d(y, z)

𝑥 𝑧

𝑦

c1
x

 d(x, c1) ≤
d(c1, c2)

2
⇒ d(x, c1) ≤ d(x, c2)

Also true when

 d(x, c1) ≤ u ≤
d(c1, c2)

2

Upper bound
for d(x, c1)

Exploit triangle inequality

If distance between and center is
relatively small compared to that between
and another center , the distance between

 and need not be computed

x c1
c1

c2
x c2

When updating the cluster
assignments not all point-
center distances need be

computed

Elkan’s accelerated K-means
Conditions Checked:
1.

2. or

u(i) ≤ s(a(i))

u(i) ≤ l(i, j) u(i) ≤
d(c(a(i)), c(j))

2

 point cluster assignment need not
be changed. No distance involving the
 point needs to be computed.

ith

ith

 point cluster assignment might change,
but it won’t be assigned to center .
Distance from the center need not be
computed.

ith

j
jth

1

2

3

1

2

3
4

 : contains the cluster
index currently assigned
to the point.

a(i)

ith
 : is equal to half the
distance of center to
its closest center

s(j)
jth� : contains an upper

bound to the distance of the
 point to its current center

u(i)

ith

� : contains a lower
bound of the distance of the
 point to the center

l(i, j)

ith jth

 : is the center.c(j) jth

Before cluster assignments. Right after
centers have moved. Closest center
might not be the assigned center.

Bounding the distance of from a
center after it moves to

x
c c*

𝑑(𝑥, 𝑐) − 𝑑(𝑐, 𝑐 ∗) 𝑑(𝑥, 𝑐) + 𝑑(𝑐, 𝑐∗)

𝑑(𝑐, 𝑐 ∗)
Lower bound

d(x, c*) ≥ max(0, d(x, c) − d(c, c*))

≥ max(0, l − d(c, c*))
= l*

Upper bound

d(x, c*) ≤ d(x, c) + d(c, c*)
≤ u + d(c, c*)
= u*

Old lower
boundNew lower

bound

Old upper
boundNew upper

bound

𝑥

𝑐∗

Distance computation: vector operation
Upper and lower bound: scalar operation

max(0,𝑙(𝑖, 𝑗) − 𝛿(𝑗))

 tells if the upper bound
needs to be tightened.
𝑟:

Both upper bound and the lower bound are tight on this step.

The upper bound should be updated at this stepu(i) ← l(i, j)

max(0,𝑙(𝑖, 𝑗) − 𝛿(𝑗))

 O(K2D)

 O(N)
 O(α1NK)

 is the fraction of times
the first condition is not

satisfied

α1

 O(α1α2NKD)
 is the fraction of times
the second condition is

not satisfied.

α2

 O(NK)

 O(KD)

Since the bounds are
loose in the first iteration,

all distances will be
computed: O(NDK)

Running time of Elkan’s K-means

 : dataset size
 : number of clusters
 : number of dimensions
 : number of iterations

N
K
D
E

Major computations
• Computing point-center distances

• in the first/first-few iteration.
• over all later iterations combined. For

most datasets with significant cluster structure.
• Computing pairwise center distances

•
• Updating the lower bound

•

O(NKD)
O(ND)

O(K2DE)

O(NKE)

Most points (in the core of the
cluster) won't change cluster
assignments after the first few
iterations and will satisfy the

pruning conditions. The more the
clusters looks like gaussians, the

more this true. This might no
longer be true if the data lacks a

cluster structure.

Results for Elkan

Limitations of Elkan

Storing and updating the lower bounds
(dimension) can be a bottleneck
for large
N × K

K

Can a smaller set of lower bounds be used?

Hamerly’s accelerated K-means
Main difference from Elkan:
 instead of l(i) l(i, j)

Maintains one
lower bound per
point instead of K

 : lower bound of the
distance of the
point to the second
closest centroid

l(i)
𝑖𝑡h

Tradeoff
• Less memory for storing lower bounds.
• Fewer computations for updating lower bounds.
• However, there is less pruning and consequently

more distance computation.

 instead of space
for storing the lower bounds
O(N) O(N × K)

Conditions Checked
 or .

No distance involving the
point needs to be computed.

𝑢(𝑖) ≤ 𝑠(𝑎(𝑖)) 𝑢(𝑖) ≤ 𝑙(𝑖)
𝑖𝑡h

max(0,𝑙(𝑖) − 𝛿′�)

 by definition is also a lower
bound to the distances to other
centers, except the closest one.

l(i)

 ensures that if the second closest
cluster changes the lower bound is still
valid.

δ′�

Memory requirements

Summary

• For moderate (< 50) and (< 100), Hamerly is well-suited
(has smaller time and memory footprint).

• Large (greater than 50), Elkan might be better (has smaller
time footprint, in spite of large memory requirements).

D K

D

Speed up with an approximate algorithm

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=3

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=10

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=50

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci≠0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES
[1] L. Bottou and Y. Bengio. Convergence properties of the

kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the l1-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178(2-page abstract)

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=3

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=10

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=50

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci≠0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES
[1] L. Bottou and Y. Bengio. Convergence properties of the

kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the l1-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178(2-page abstract)

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

Complexity: O(N M K D t)

Mini-batch K-means

Here t is the number
of iterations

Mini-batch K-means

Clustering
Jan-Willem van de Meent

K-means Clustering
Limitations

K-means Limitations: Differing Sizes

Original Points K-means (3 clusters)

K-means Limitations: Different Densities

Original Points K-means (3 clusters)

K-means Limitations: Non-globular Shapes

Original Points K-means (2 clusters)

Overcoming K-means Limitations

Intuition: “Combine” smaller clusters into larger clusters

• One Solution: Hierarchical Clustering
• Another Solution: Density-based Clustering

Clustering
Shantanu Jain

Hierarchical Clustering

Dendrogram

Similarity of A and B is
represented as height  
of lowest shared  
internal node

(a.k.a. a similarity tree)

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)

Dendrogram

Natural when measuring 
genetic similarity, distance  
to common ancestor

(a.k.a. a similarity tree)

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)

Example: Iris data

https://en.wikipedia.org/wiki/Iris_flower_data_set

Iris
Setosa

Iris
versicolor

Iris
virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hierarchical Clustering

https://en.wikipedia.org/wiki/Iris_flower_data_set

(Euclidian Distance)

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hamming Distance

 Change dress color, 1 point
 Change earring shape, 1 point
 Change hair part, 1 point

D(Patty, Selma) = 3

 Change dress color, 1 point
 Add earrings, 1 point
 Decrease height, 1 point
 Take up smoking, 1 point
 Lose weight, 1 point

D(Marge,Selma) = 5

Distance Patty and Selma

Distance Marge and Selma

Can be defined for any set of discrete features

Edit Distance for Strings

Peter

Piter

Pioter

Piotr

Substitution (i for e)

Insertion (o)

Deletion (e)

• Transform string Q into string C, using only
Substitution, Insertion and Deletion.

• Assume that each of these operators has a cost
associated with it.

• The similarity between two strings can be defined
as the cost of the cheapest transformation from
Q to C.

Similarity “Peter” and “Piotr”?

Substitution 1 Unit
Insertion 1 Unit
Deletion 1 Unit

D(Peter,Piotr) is 3

 Pi
ot

r

 Py
ot

r

 Pe
tro

s

 Pi
et

ro

Pe
dr

o
 Pi

er
re

 Pi
er

o

 Pe
te

r

Hierarchical Clustering
(Edit Distance)

 P
io

tr
 P

yo
tr

 P
et

ro
s

 P
ie

tro
Pe
dr
o

 P
ie

rre
 P

ie
ro

 P
et

er
Pe

de
r

 P
ek

a
 P

ea
da

r
M

ich
al

is
M

ich
ae

l
M
ig
ue
l

M
ick

Cr
is
to
va
o

Ch
ris

to
ph

er
Ch

ris
to

ph
e

Ch
ris

to
ph

Cr
isd

ea
n

Cr
ist

ob
al

Cr
ist

of
or

o
Kr

ist
of

fe
r

Kr
ys

to
f

Pedro (Portuguese)
Petros (Greek), Peter (English), Piotr (Polish),
Peadar (Irish), Pierre (French), Peder (Danish),
Peka (Hawaiian), Pietro (Italian), Piero (Italian
Alternative), Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)
Christoph (German), Christophe (French), Cristobal
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher
(English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish)

A Demonstration of Hierarchical Clustering using String Edit Distance
Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Meaningful Patterns

Pedro
(Portuguese/Spanish)
Petros (Greek), Peter (English), Piotr
(Polish), Peadar (Irish), Pierre (French),
Peder (Danish), Peka (Hawaiian), Pietro
(Italian), Piero (Italian Alternative), Petr
(Czech), Pyotr (Russian)

Slide from Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Edit distance yields clustering according to geography

Spurious Patterns

18

ANGUILLAAUSTRALIA
St. Helena &
Dependencies

South Georgia &
South Sandwich
Islands

U.K.
Serbia &
Montenegro
(Yugoslavia)

FRANCE NIGER INDIA IRELAND BRAZIL

Hierarchal clustering can sometimes show patterns
that are meaningless or spurious

The tight grouping of Australia, Anguilla, St. Helena etc is
meaningful; all these countries are former UK colonies

However the tight grouping of Niger and India is completely
spurious; there is no connection between the two

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

In general clusterings will only be
as meaningful as your distance metric

Spurious Patterns

18

ANGUILLAAUSTRALIA
St. Helena &
Dependencies

South Georgia &
South Sandwich
Islands

U.K.
Serbia &
Montenegro
(Yugoslavia)

FRANCE NIGER INDIA IRELAND BRAZIL

Hierarchal clustering can sometimes show patterns
that are meaningless or spurious

The tight grouping of Australia, Anguilla, St. Helena etc is
meaningful; all these countries are former UK colonies

However the tight grouping of Niger and India is completely
spurious; there is no connection between the two

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

In general clusterings will only be
as meaningful as your distance metric

Former UK colonies No relation

“Correct” Number of Clusters

19

We can look at the dendrogram to determine the “correct”
number of clusters.

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

“Correct” Number of Clusters

19

We can look at the dendrogram to determine the “correct”
number of clusters.

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsDetermine number of clusters by looking at distance

Detecting Outliers

20

Outlier

One potential use of a dendrogram: detecting outliers
The single isolated branch is suggestive of a data
point that is very different to all others

Slide based on one by Eamonn Keogh

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up vs Top-down

21

Hierarchical Clustering
The number of dendrograms with n

leafs = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible
of Leafs Dendrograms
2 1
3 3
4 15
5 105
... …
10 34,459,425

Since we cannot test all possible
trees we will have to heuristic
search of all possible trees. We
could do this..

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Top-Down (divisive): Starting with
all the data in a single cluster,
consider every possible way to
divide the cluster into two. Choose
the best division and recursively
operate on both sides.

Slide based on one by Eamonn Keogh

 Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up: Distance Matrix

22

0 8 8 7 7

0 2 4 4

0 3 3

0 1

0

D(,) = 8
D(,) = 1

We begin with a distance
matrix which contains the
distances between every
pair of objects in our
database.

Slide based on one by Eamonn Keogh

 Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms 26

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms 26

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Can you now implement this?

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms 26

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Distances between examples
(can calculate using metric)

Bottom-up (Agglomerative Clustering)

25

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms 26

…
Consider
all possible
merges…

Choose
the best

Consider
all possible
merges… …

Choose
the best

Consider
all possible
merges…

Choose
the best…

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge
into a new cluster. Repeat until all
clusters are fused together.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

How do we calculate the  
distance to a cluster?

Clustering Criteria
Single link: 
(Closest point)

d(A, B) = min
a2A,b2B

d(a, b)

Complete link:  
(Furthest point)

d(A, B) = max
a2A,b2B

d(a, b)

Group average:  
(Average distance)

d(A, B) =
1
|A||B|
X

a2A,b2B

d(a, b)

Centroid: 
(Distance of average)

d(A, B) = d(µA,µB) µX =
1
|X |
X

x2X

x

Ward: 
(Intra-cluster variance)

SA[B =
X

x2A[B

d(x ,µA[B)2

Naive time complexity

 O(N2D)
 O((N − i + 1)2)

 O((N − i − 1)D)

Naive approach
 O(N2D + N3)

Performed O(N)
iterations

N: number of points
D: dimensionality

True Time complexity

 O(N2D)
 O(1)

Performed O(N)
iterations

Trick 1
Use Min heap
• Allows accessing the minimum

distance in
• Insertion of new distance and deletion

of old ones into the heap in step 4
takes per distance

O(1)

O(log(N − i + 1))

O((N − i)log(N − i + 1)) and O(N − i − 1)

Trick 2
Recompute distances from merged
cluster distances
•

for single linkage, where
denotes the merging of clusters
 and

d(AB, C) = min(d(A, C), d(B, C))
AB

A B

 O(N2D + N2 log N)
Overall complexity

Lance-Williams Methods524 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

Table 8.5. Table of Lance-Williams coefficients for common hierarchical clustering approaches.

Clustering Method αA αB β γ
Single Link 1/2 1/2 0 −1/2
Complete Link 1/2 1/2 0 1/2
Group Average mA

mA+mB

mB
mA+mB

0 0

Centroid mA
mA+mB

mB
mA+mB

−mAmB
(mA+mB)2 0

Ward’s mA+mQ

mA+mB+mQ

mB+mQ

mA+mB+mQ

−mQ

mA+mB+mQ
0

merged clusters monotonically increases (or is, at worst, non-increasing) as
we proceed from singleton clusters to one all-inclusive cluster.

8.3.3 The Lance-Williams Formula for Cluster Proximity

Any of the cluster proximities that we have discussed in this section can be
viewed as a choice of different parameters (in the Lance-Williams formula
shown below in Equation 8.7) for the proximity between clusters Q and R,
where R is formed by merging clusters A and B. In this equation, p(., .) is
a proximity function, while mA, mB, and mQ are the number of points in
clusters A, B, and Q, respectively. In other words, after we merge clusters A
and B to form cluster R, the proximity of the new cluster, R, to an existing
cluster, Q, is a linear function of the proximities of Q with respect to the
original clusters A and B. Table 8.5 shows the values of these coefficients for
the techniques that we have discussed.

p(R, Q) = αA p(A, Q) + αB p(B, Q) + β p(A, B) + γ |p(A, Q)− p(B, Q)| (8.7)

Any hierarchical clustering technique that can be expressed using the
Lance-Williams formula does not need to keep the original data points. In-
stead, the proximity matrix is updated as clustering occurs. While a general
formula is appealing, especially for implementation, it is easier to understand
the different hierarchical methods by looking directly at the definition of clus-
ter proximity that each method uses.

8.3.4 Key Issues in Hierarchical Clustering

Lack of a Global Objective Function

We previously mentioned that agglomerative hierarchical clustering cannot be
viewed as globally optimizing an objective function. Instead, agglomerative
hierarchical clustering techniques use various criteria to decide locally, at each

Recursively minimize/maximize proximity for  
a merger R:=A∪B relative to all existing Q

d(x,y)
 = |x-y|

d(x,y)
 = |x-y|2

p(R,Q) =↵Ap(A,Q)
+↵B p(B,Q)
+ �p(A, B)
+ �|p(A,Q)� p(B,Q)|

Hierarchical Clustering Summary
+ Hierarchical structure maps nicely onto human intuition in some

domains
+ No difficulty in choosing initial points
- Heuristic method: No global objective criteria to optimize.

Optimizes local objective at each merge.
- Merging decisions are final: Prevents local optimization to from

becoming global optimization. For e.g., Ward methods optimized
local SSE doesn’t translate to the optimized global SSE.

- Scaling: Time complexity at least , Space
complexity:

- Susceptibility to noise
- Interpretation of results is (very) subjective

O(N2D + N2 log N)
O(N2)

Can be improved
by initializing with
several small k-
means clusters.

Clustering
Shantanu Jain

DBScan
Density-based Clustering

DBSCAN

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise

(one of the most-cited clustering methods)

DBSCAN

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise

Intuition
• A cluster is a islands of high density
• Noise points lie in a sea of low density

Defining “High Density”

Naïve approach

For each point in a cluster there are at least a minimum number (MinPts)

of points in an Eps-neighborhood of that point.

DBSCAN

cluster

Eps-neighborhood of a point p

 NEps(p) = { q ∈ D | dist (p, q) ≤ Eps }

 Eps

p

Neighborhood of a Point

Defining “High Density”

Defining “High Density”

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Density Reachability
Definition

A point p is directly density-reachable from a point q

with regard to the parameters Eps and MinPts, if

1) p ∈ NEps(q)

2) | NEps(q) | ≥ MinPts

(core point condition)

p

MinPts = 5
q

| NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

(reachability)

Remark

Directly density-reachable is symmetric for pairs of core points.

It is not symmetric if one core point and one border point are involved.

p

Parameter: MinPts = 5

q

p directly density reachable from q

 p ∈ NEps(q)

 | NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

q not directly density reachable from p

 | NEps (p) | = 4 < 5 = MinPts (core point condition)

Note: This is an asymmetric relationship

Remark

Directly density-reachable is symmetric for pairs of core points.

It is not symmetric if one core point and one border point are involved.

p

Parameter: MinPts = 5

q

p directly density reachable from q

 p ∈ NEps(q)

 | NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

q not directly density reachable from p

 | NEps (p) | = 4 < 5 = MinPts (core point condition)

Density Reachability
Definition

A point p is density-reachable from a point q

with regard to the parameters Eps and MinPts

if there is a chain of points p1, p2, . . . ,ps with p1 = q and ps = p

such that pi+1 is directly density-reachable from pi for all 1 < i < s-1.

p
MinPts = 5

q
| NEps(q) | = 5 = MinPts (core point condition)

p1

| NEps(p1) | = 6 ≥ 5 = MinPts (core point condition)

Definition

A point p is density-reachable from a point q

with regard to the parameters Eps and MinPts

if there is a chain of points p1, p2, . . . ,ps with p1 = q and ps = p

such that pi+1 is directly density-reachable from pi for all 1 < i < s-1.

p
MinPts = 5

q
| NEps(q) | = 5 = MinPts (core point condition)

p1

| NEps(p1) | = 6 ≥ 5 = MinPts (core point condition)

 p2

 p2

Density Connectivity

Definition (density-connected)

A point p is density-connected to a point q

with regard to the parameters Eps and MinPts

if there is a point v such that both p and q are density-reachable from v.

p

MinPts = 5

q

v

Remark: Density-connectivity is a symmetric relation.

Note: This is a symmetric relationship

Definition of a Cluster
Definition (cluster)

A cluster with regard to the parameters Eps and MinPts

is a non-empty subset C of the database D with

 1) For all p, q ∈ D:

If p ∈ C and q is density-reachable from p

with regard to the parameters Eps and MinPts,

then q ∈ C.

2) For all p, q ∈ C:

The point p is density-connected to q

with regard to the parameters Eps and MinPts.

(Maximality)

(Connectivity)

Definition (cluster)

A cluster with regard to the parameters Eps and MinPts

is a non-empty subset C of the database D with

 1) For all p, q ∈ D:

If p ∈ C and q is density-reachable from p

with regard to the parameters Eps and MinPts,

then q ∈ C.

2) For all p, q ∈ C:

The point p is density-connected to q

with regard to the parameters Eps and MinPts.

(Maximality)

(Connectivity)

Definition of Noise

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise Noise

Cluster

Definition (noise)

Let C1,...,Ck be the clusters of the database D
with regard to the parameters Eps i and MinPts I (i=1,...,k).

The set of points in the database D not belonging to any cluster C1,...,Ck
is called noise:

Noise = { p ∈ D | p ∉ Ci for all i = 1,...,k}

noise

DBSCAN Algorithm
DBSCAN (algorithm)

(1) Start with an arbitrary point p from the database and

retrieve all points density-reachable from p

with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster

with regard to Eps and MinPts

and the point is classified.

(3) If p is a border point, no points are density-reachable from p

and DBSCAN visits the next unclassified point in the database.

DBSCAN (algorithm)

(1) Start with an arbitrary point p from the database and

retrieve all points density-reachable from p

with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster

with regard to Eps and MinPts

and the point is classified.

(3) If p is a border point, no points are density-reachable from p

and DBSCAN visits the next unclassified point in the database.

and all points in the cluster are classified.
Low density point, label it as noise

The set of points reached from p
may include points previously
labeled as noise, but are in reality
border points

and go to step 1

DBSCAN Complexity

• Time complexity: O(N2D) if done naively,  
O(DN log N) when using a spatial index
such as K-D tree.  
(works in relatively low dimensions)

• Space complexity: O(ND)

DBSCAN Algorithm

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 79

DBSCAN: Core, Border and Noise Points

Original Points Point types: core,
border and noise

Eps = 10, MinPts = 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 80

When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 79

DBSCAN: Core, Border and Noise Points

Original Points Point types: core,
border and noise

Eps = 10, MinPts = 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 80

When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

DBSCAN strengths

+ Resistant to noise
+ Can handle arbitrary shapes

DBSCAN Weaknesses

- Varying densities
- High dimensional data
- Cannot give overlapping clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

Ground Truth MinPts = 4, Eps=9.92 MinPts = 4, Eps=9.75

Determining EPS and MINPTS

Determining the parameters Eps and MinPts

• Find threshold point with the maximal k-dist value in the “thinnest cluster” of D

• Set parameters Eps = k-dist(p) and MinPts = k.

Eps

noise cluster 1 cluster 2

• Calculate distance of k-th nearest  
neighbor for each point

• Plot in ascending / descending order
• Set EPS to max distance before “jump”
• Set Minpts to k.

K-means vs DBSCANK-means vs. DBSCAN

K-means

DBSCAN

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

