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validation criteria may be available to evaluate a clustering. Thus, a number of internal
criteria may be defined to validate the quality of a clustering. The major problem with
internal criteria is that they may be biased toward one algorithm or the other, depending
on how they are defined. In some cases, external validation criteria may be available when
a test data set is synthetically generated, and therefore the true (ground-truth) clusters are
known. Alternatively, for real data sets, the class labels, if available, may be used as proxies
for the cluster identifiers. In such cases, the evaluation is more effective. Such criteria are
referred to as external validation criteria.

6.9.1 Internal Validation Criteria

Internal validation criteria are used when no external criteria are available to evaluate the
quality of a clustering. In most cases, the criteria used to validate the quality of the algorithm
are borrowed directly from the objective function, which is optimized by a particular clus-
tering model. For example, virtually any of the objective functions in the k-representatives,
EM algorithms, and agglomerative methods could be used for validation purposes. The
problem with the use of these criteria is obvious in comparing algorithms with disparate
methodologies. A validation criterion will always favor a clustering algorithm that uses a
similar kind of objective function for its optimization. Nevertheless, in the absence of exter-
nal validation criteria, this is the best that one can hope to achieve. Such criteria can also
be effective in comparing two algorithms using the same broad approach. The commonly
used internal evaluation criteria are as follows:

1. Sum of square distances to centroids: In this case, the centroids of the different clusters
are determined, and the sum of squared (SSQ) distances are reported as the corre-
sponding objective function. Smaller values of this measure are indicative of better
cluster quality. This measure is obviously more optimized to distance-based algo-
rithms, such as k-means, as opposed to a density-based method, such as DBSCAN.
Another problem with SSQ is that the absolute distances provide no meaningful infor-
mation to the user about the quality of the underlying clusters.

2. Intracluster to intercluster distance ratio: This measure is more detailed than the SSQ
measure. The idea is to sample r pairs of data points from the underlying data. Of
these, let P be the set of pairs that belong to the same cluster found by the algorithm.
The remaining pairs are denoted by set Q. The average intercluster distance and
intracluster distance are defined as follows:

Intra =
∑

(Xi,Xj)∈P

dist(Xi, Xj)/|P | (6.43)

Inter =
∑

(Xi,Xj)∈Q

dist(Xi, Xj)/|Q|. (6.44)

Then the ratio of the average intracluster distance to the intercluster distance is given
by Intra/Inter. Small values of this measure indicate better clustering behavior.

3. Silhouette coefficient: Let Davgin
i be the average distance of Xi to data points within

the cluster of Xi. The average distance of data point Xi to the points in each cluster
(other than its own) is also computed. Let Dminout

i represent the minimum of these
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(average) distances, over the other clusters. Then, the silhouette coefficient Si specific
to the ith object, is as follows:

Si =
Dminout

i − Davgin
i

max{Dminout
i , Davgin

i }
. (6.45)

The overall silhouette coefficient is the average of the data point-specific coefficients.
The silhouette coefficient will be drawn from the range (−1, 1). Large positive values
indicate highly separated clustering, and negative values are indicative of some level
of “mixing” of data points from different clusters. This is because Dminout

i will be
less than Davgin

i only in cases where data point Xi is closer to at least one other
cluster than its own cluster. One advantage of this coefficient is that the absolute
values provide a good intuitive feel of the quality of the clustering.

4. Probabilistic measure: In this case, the goal is to use a mixture model to estimate
the quality of a particular clustering. The centroid of each mixture component is
assumed to be the centroid of each discovered cluster, and the other parameters of
each component (such as the covariance matrix) are computed from the discovered
clustering using a method similar to the M-step of EM algorithms. The overall log-
likelihood of the measure is reported. Such a measure is useful when it is known
from domain-specific knowledge that the clusters ought to have a specific shape, as is
suggested by the distribution of each component in the mixture.

The major problem with internal measures is that they are heavily biased toward particular
clustering algorithms. For example, a distance-based measure, such as the silhouette coeffi-
cient, will not work well for clusters of arbitrary shape. Consider the case of the clustering
in Fig. 6.11. In this case, some of the point-specific coefficients might have a negative value
for the correct clustering. Even the overall silhouette coefficient for the correct clustering
might not be as high as an incorrect k-means clustering, which mixes points from different
clusters. This is because the clusters in Fig. 6.11 are of arbitrary shape that do not conform
to the quality metrics of distance-based measures. On the other hand, if a density-based
criterion were designed, it would also be biased toward density-based algorithms. The major
problem in relative comparison of different methodologies with internal criteria is that all
criteria attempt to define a “prototype” model for goodness. The quality measure very often
only tells us how well the prototype validation model matches the model used for discovering
clusters, rather than anything intrinsic about the underlying clustering. This can be viewed
as a form of overfitting, which significantly affects such evaluations. At the very least, this
phenomenon creates uncertainty about the reliability of the evaluation, which defeats the
purpose of evaluation in the first place. This problem is fundamental to the unsupervised
nature of data clustering, and there are no completely satisfactory solutions to this issue.

Internal validation measures do have utility in some practical scenarios. For example,
they can be used to compare clusterings by a similar class of algorithms, or different runs
of the same algorithm. Finally, these measures are also sensitive to the number of clusters
found by the algorithm. For example, two different clusterings cannot be compared on
a particular criterion when the number of clusters determined by different algorithms is
different. A fine-grained clustering will typically be associated with superior values of many
internal qualitative measures. Therefore, these measures should be used with great caution,
because of their tendency to favor specific algorithms, or different settings of the same
algorithm. Keep in mind that clustering is an unsupervised problem, which, by definition,
implies that there is no well-defined notion of a “correct” model of clustering in the absence
of external criteria.
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Figure 6.24: Inflection points in validity measures for parameter tuning

6.9.1.1 Parameter Tuning with Internal Measures

All clustering algorithms use a number of parameters as input, such as the number of
clusters or the density. Although internal measures are inherently flawed, a limited amount
of parameter tuning can be performed with these measures. The idea here is that the
variation in the validity measure may show an inflection point (or “elbow”) at the correct
choice of parameter. Of course, because these measures are flawed to begin with, such
techniques should be used with great caution. Furthermore, the shape of the inflection point
may vary significantly with the nature of the parameter being tuned, and the validation
measure being used. Consider the case of k-means clustering where the parameter being
tuned is the number of clusters k. In such a case, the SSQ measure will always reduce
with the number of clusters, though it will reduce at a sharply lower rate after the inflection
point. On the other hand, for a measure such as the ratio of the intra-cluster to inter-cluster
distance, the measure will reduce until the inflection point and then may increase slightly. An
example of these two kinds of inflections are illustrated in Fig. 6.24. The X-axis indicates the
parameter being tuned (number of clusters), and the Y -axis illustrates the (relative) values
of the validation measures. In many cases, if the validation model does not reflect either
the natural shape of the clusters in the data, or the algorithmic model used to create the
clusters very well, such inflection points may either be misleading, or not even be observed.
However, plots such as those illustrated in Fig. 6.24 can be used in conjunction with visual
inspection of the scatter plot of the data and the algorithm partitioning to determine the
correct number of clusters in many cases. Such tuning techniques with internal measures
should be used as an informal rule of thumb, rather than as a strict criterion.

6.9.2 External Validation Criteria

Such criteria are used when ground truth is available about the true clusters in the under-
lying data. In general, this is not possible in most real data sets. However, when synthetic
data is generated from known benchmarks, it is possible to associate cluster identifiers with
the generated records. In the context of real data sets, these goals can be approximately
achieved with the use of class labels when they are available. The major risk with the use of
class labels is that these labels are based on application-specific properties of that data set
and may not reflect the natural clusters in the underlying data. Nevertheless, such criteria
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Cluster Indices 1 2 3 4

1 97 0 2 1
2 5 191 1 3
3 4 3 87 6
4 0 0 5 195

Figure 6.25: Confusion matrix for a cluster-
ing of good quality

Cluster Indices 1 2 3 4

1 33 30 17 20
2 51 101 24 24
3 24 23 31 22
4 46 40 44 70

Figure 6.26: Confusion matrix for a cluster-
ing of poor quality

are still preferable to internal methods because they can usually avoid consistent bias in
evaluations, when used over multiple data sets. In the following discussion, the term “class
labels” will be used interchangeably to refer to either cluster identifiers in a synthetic data
set or class labels in a real data set.

One of the problems is that the number of natural clusters in the data may not reflect
the number of class labels (or cluster identifiers). The number of class labels is denoted by
kt, which represents the true or ground-truth number of clusters. The number of clusters
determined by the algorithm is denoted by kd. In some settings, the number of true clusters
kt is equal to the number of algorithm-determined clusters kd, though this is often not the
case. In cases where kd = kt, it is particularly helpful to create a confusion matrix, which
relates the mapping of the true clusters to those determined by the algorithm. Each row i
corresponds to the class label (ground-truth cluster) i, and each column j corresponds to
the points in algorithm-determined cluster j. Therefore, the (i, j)th entry of this matrix is
equal to the number of data points in the true cluster i, which are mapped to the algorithm-
determined cluster j. The sum of the values across a particular row i will always be the same
across different clustering algorithms because it reflects the size of ground-truth cluster i in
the data set.

When the clustering is of high quality, it is usually possible to permute the rows and
columns of this confusion matrix, so that only the diagonal entries are large. On the other
hand, when the clustering is of poor quality, the entries across the matrix will be more
evenly distributed. Two examples of confusion matrices are illustrated in Figs. 6.25 and 6.26,
respectively. The first clustering is obviously of much better quality than the second.

The confusion matrix provides an intuitive method to visually assess the clustering.
However, for larger confusion matrices, this may not be a practical solution. Furthermore,
while confusion matrices can also be created for cases where kd "= kt, it is much harder to
assess the quality of a particular clustering by visual inspection. Therefore, it is important to
design hard measures to evaluate the overall quality of the confusion matrix. Two commonly
used measures are the cluster purity, and class-based Gini index. Let mij represent the
number of data points from class (ground-truth cluster) i that are mapped to (algorithm-
determined) cluster j. Here, i is drawn from the range [1, kt], and j is drawn from the range
[1, kd]. Also assume that the number of data points in true cluster i are denoted by Ni, and
the number of data points in algorithm-determined cluster j are denoted by Mj . Therefore,
the number of data points in different clusters can be related as follows:

Ni =
kd∑

j=1

mij ∀i = 1 . . . kt (6.46)

Mj =
kt∑

i=1

mij ∀j = 1 . . . kd (6.47)
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A high-quality algorithm-determined cluster j should contain data points that are largely
dominated by a single class. Therefore, for a given algorithm-determined cluster j, the
number of data points Pj in its dominant class is equal to the maximum of the values of
mij over different values of ground truth cluster i:

Pj = maximij . (6.48)

A high-quality clustering will result in values of Pj ≤ Mj , which are very close to Mj . Then,
the overall purity is given by the following:

Purity =

∑kd

j=1 Pj
∑kd

j=1 Mj

. (6.49)

High values of the purity are desirable. The cluster purity can be computed in two differ-
ent ways. The method discussed above computes the purity of each algorithm-determined
cluster (with respect to ground-truth clusters), and then computes the aggregate purity
on this basis. The second way can compute the purity of each ground-truth cluster with
respect to the algorithm-determined clusters. The two methods will not lead to the same
results, especially when the values of kd and kt are significantly different. The mean of the
two values may also be used as a single measure in such cases. The first of these measures,
according to Eq. 6.49, is the easiest to intuitively interpret, and it is therefore the most
popular.

One of the major problems with the purity-based measure is that it only accounts for
the dominant label in the cluster and ignores the distribution of the remaining points. For
example, a cluster that contains data points predominantly drawn from two classes, is better
than one in which the data points belong to many different classes, even if the cluster purity
is the same. To account for the variation across the different classes, the Gini index may
be used. This measure is closely related to the notion of entropy, and it measures the level
of inequality (or confusion) in the distribution of the entries in a row (or column) of the
confusion matrix. As in the case of the purity measure, it can be computed with a row-wise
method or a column-wise method, and it will evaluate to different values. Here the column-
wise method is described. The Gini index Gj for column (algorithm-determined cluster) j
is defined as follows:

Gj = 1 −
kt∑

i=1

(
mij

Mj

)2

. (6.50)

The value of Gj will be close to 0 when the entries in a column of a confusion matrix are
skewed, as in the case of Fig. 6.25. When the entries are evenly distributed, the value will be
close to 1− 1/kt, which is also the upper bound on this value. The average Gini coefficient
is the weighted average of these different column-wise values where the weight of Gj is Mj :

Gaverage =

∑kd

j=1 Gj · Mj
∑kd

j=1 Mj

. (6.51)

Low values of the Gini index are desirable. The notion of the Gini index is closely related
to the notion of entropy Ej (of algorithm-determined cluster j), which measures the same
intuitive characteristics of the data:

Ej = −
kt∑

i=1

(
mij

Mj

)
· log

(
mij

Mj

)
. (6.52)
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Lower values of the entropy are indicative of a higher quality clustering. The overall entropy
is computed in a similar way to the Gini index, with the use of cluster specific entropies.

Eaverage =

∑kd

j=1 Ej · Mj
∑kd

j=1 Mj

. (6.53)

Finally, a pairwise precision and pairwise recall measure can be used to evaluate the quality
of a clustering. To compute this measure, all pairs of data points within the same algorithm-
determined cluster are generated. The fraction of pairs which belong to the same ground-
truth clusters is the precision. To determine the recall, pairs of points within the same
ground-truth clusters are sampled, and the fraction that appear in the same algorithm-
determined cluster are computed. A unified measure is the Fowlkes-Mallows measure, which
reports the geometric mean of the precision and recall.

6.9.3 General Comments

Although cluster validation is a widely studied problem in the clustering literature, most
methods for cluster validation are rather imperfect. Internal measures are imperfect because
they are typically biased toward one algorithm or the other. External measures are imperfect
because they work with class labels that may not reflect the true clusters in the data.
Even when synthetic data is generated, the method of generation will implicitly favor one
algorithm or the other. These challenges arise because clustering is an unsupervised problem,
and it is notoriously difficult to validate the quality of such algorithms. Often, the only true
measure of clustering quality is its ability to meet the goals of a specific application.

6.10 Summary

A wide variety of algorithms have been designed for the problem of data clustering, such as
representative-based methods, hierarchical methods, probabilistic methods, density-based
methods, graph-based methods, and matrix factorization-based methods. All methods typ-
ically require the algorithm to specify some parameters, such as the number of clusters,
the density, or the rank of the matrix factorization. Representative-based methods, and
probabilistic methods restrict the shape of the clusters but adjust better to varying cluster
density. On the other hand, agglomerative and density-based methods adjust better to the
shape of the clusters but do not adjust to varying density of the clusters. Graph-based
methods provide the best adjustment to varying shape and density but are typically more
expensive to implement. The problem of cluster validation is a notoriously difficult one for
unsupervised problems, such as clustering. Although external and internal validation crite-
ria are available for the clustering, they are often biased toward different algorithms, or may
not accurately reflect the internal clusters in the underlying data. Such measures should be
used with caution.

6.11 Bibliographic Notes

The problem of clustering has been widely studied in the data mining and machine learn-
ing literature. The classical books [74, 284, 303] discuss most of the traditional clustering
methods. These books present many of the classical algorithms, such as the partitioning and
hierarchical algorithms, in great detail. Another book [219] discusses more recent methods


