idea 2 - Supervised (lasels/fags correlated)

BETTER EVAL With desired clusters) Jame basel => same cluster Same dutter > same/sundar labels Description label venance * deal with graunlainty/speuificity
- chustos
- tagg (Caluly

Tlik = prob(x; -> clusterle) Soft K- Means fixed i (datapoint) Ze (Tik=) (Time K-1: K) dust for hi (Tijk K=Lik) distforxj

grosasi (1+4? distance Welihord SCOM W STOYneed assumption probab = fenctions Gauss/Normal assumptif probab ~ e-dist

exp (-1 dist2) = (e/b) -dist2 e dist > scaled dist

~ MStogram (mst) Froger (Agenth Values

sandipanweb

Simply Data Science

Hard & Soft Clustering with K-means, Weighted K-means and GMM-EM in Python

MARCH 19, 2017APRIL 7, 2017 / SANDIPAN DEY
The following problems appeared as a project in the *edX course*ColumbiaX: CSMM.102x Machine Learning.

In this assignment the following clustering algorithms will be implemented:

- 1. Hard clustering with K-means
- 2. Soft clustering with
 - a. Weighted K-means
 - b. Gaussian mixture models with Expectation Maximization.

Some datasets with n data points $\{x_1,...,x_n\}$ will be used for testing the algorithms, where each $x_i \in \mathbb{R}^d$.

Hard Clustering

1. Each point is assigned to a one and only one cluster (hard

assignment).

2. With **K-means** we try to find K centroids { μ 1,..., μ K} and the corresponding assignments of each data point {c1,...,cn} where each ci \in {1,...,K} and c_i indicates which of the K clusters the observation x_i belongs to. The objective function that we seek to minimize can be written as

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{1}(c_i = k) \|x_i - \mu_k\|^2$$

Soft Clustering
$$\Phi_i(k) = \begin{array}{c} \text{membership} \\ \text{probability} \\ \text{pr}\left(x_i \rightarrow chster\right) \end{array}$$
 This in premous under

- (1) Each point is assigned to all the clusters with different weights or probabilities (soft assignment).
- (2) With **Weighed K-means** we try to compute the weights $\varphi_i(k)$ for each data point i to the cluster k as minimizing the following objective:

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \phi_i(k) \frac{\|x_i - \mu_k\|^2}{\beta}$$

$$\phi_i(k) > 0. \ \sum_{k=1}^{K} \phi_i(k) = 1. \ \beta > 0.$$

(3) With **GMM-EM** we can do soft clustering too. The **EM** algorithm can be used to learn the parameters of a Gaussian mixture model. For this model, we assume a generative process for the data as follows:

$$x_i | c_i \sim Normal(\mu_{c_i}, \Sigma_{c_i}), \quad c_i \sim Discrete(\pi).$$

In other words, the i_th observation is first assigned to one of K clusters according to the probabilities in vector π , and the value of observation x_i is then generated from one of K multivariate Gaussian distributions, using the mean and covariance indexed by c_i . The EM algorithm seeks to maximize

$$p(x_1,\ldots,x_n|\pi,oldsymbol{\mu},oldsymbol{\Sigma})=\prod_{i=1}^n p(x_i|\pi,oldsymbol{\mu},oldsymbol{\Sigma})$$

over all parameters $\pi, \mu 1, ..., \mu K, \Sigma 1, ..., \Sigma K$ using the cluster assignments c1,...,cn as the hidden data.

The following figures show the algorithms that are going to be implemented for clustering.

HARD CLUSTERING MODELS

Taken from the slides of the edX course ColumbiaX: CSMM.102x Machine Learning

Review: K-means clustering algorithm

Given: Data x_1, \ldots, x_n , where $x \in \mathbb{R}^d$

Goal: Minimize $\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\{c_i = k\} \|x_i - \mu_k\|^2$.

- ▶ Iterate until values no longer changing
 - 1. Update c: For each i, set $c_i = \arg\min_k ||x_i \mu_k||^2$
 - 2. Update μ : For each k, set $\mu_k = \left(\sum_i x_i \mathbb{1}\{c_i = k\}\right) / \left(\sum_i \mathbb{1}\{c_i = k\}\right)$

WEIGHTED K-MEANS (SOFT CLUSTERING EXAMPLE)

Weighted K-means clustering algorithm

Given: Data x_1, \ldots, x_n , where $x \in \mathbb{R}^d$

Goal: Minimize $\mathcal{L} = \sum_{i=1}^n \sum_{k=1}^K \phi_i(k) \frac{\|x_i - \mu_k\|^2}{\beta}$ over ϕ_i and μ_k

Conditions: $\phi_i(k) > 0$ and $\sum_{k=1}^K \phi_i(k) = 1$. Set parameter $\beta > 0$.

- ► Iterate the following
- 1. Update ϕ : For each i, update the word allocation weights

 $\phi_{i}(k) = \frac{\left[\exp\{-\frac{1}{\beta}\|x_{i} - \mu_{k}\|^{2}\}\right]}{\sum_{j} \exp\{-\frac{1}{\beta}\|x_{i} - \mu_{j}\|^{2}\}}, \text{ for } k = 1, \dots, K$

- 2. Update μ : For each k, update μ_k with the weighted average

EM FOR THE GMM

Algorithm: Maximum likelihood EM for the GMM

Given: x_1, \ldots, x_n where $x \in \mathbb{R}^d$

Goal: Maximize $\mathcal{L} = \sum_{i=1}^n \ln p(x_i | \pi, \mu, \Sigma)$.

▶ Iterate until incremental improvement to \mathcal{L} is "small"

1. **E-step**: For
$$i = 1, ..., n$$
, set

probable
$$\phi_i(k) = \frac{\pi_k \overline{N(x_i|\mu_k, \Sigma_k)}}{\sum_j \pi_j N(x_i|\mu_j, \Sigma_j)}$$
, for $k = 1, \dots, K$

Probable $\phi_i(k) = \frac{\pi_k \overline{N(x_i|\mu_k, \Sigma_k)}}{\sum_j \pi_j N(x_i|\mu_j, \Sigma_j)}$, for $k = 1, \dots, K$

Source k generally distribution

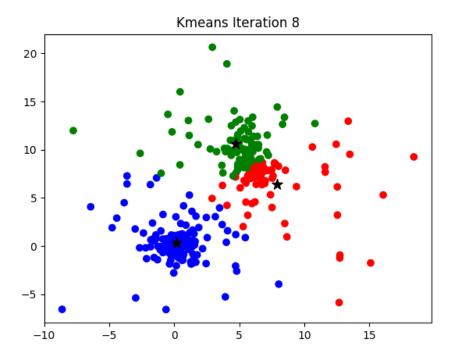
2. M-step: For $k = 1, \dots, K$, define $n_k = \sum_{i=1}^n \phi_i(k)$ and update the values

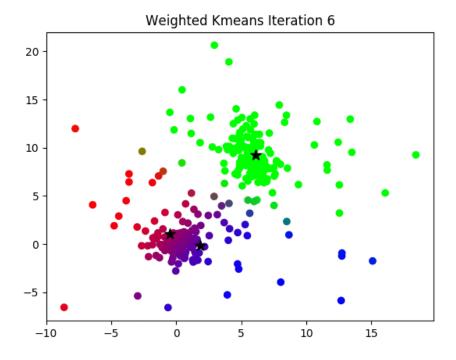
Cluster
$$\pi_k = \frac{n_k}{n}$$
, $\mu_k = \frac{1}{n_k} \sum_{i=1}^n \phi_i(k) x_i$ $\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n \phi_i(k) (x_i - \mu_k) (x_i - \mu_k)^T$

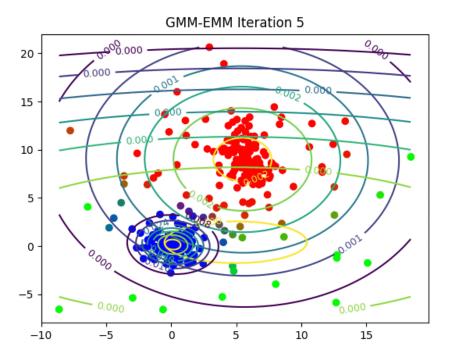
Comment: The updated value for μ_k is used when updating Σ_k . for gaussian K

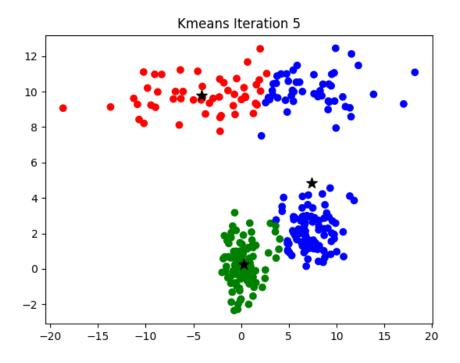
Core name waln's

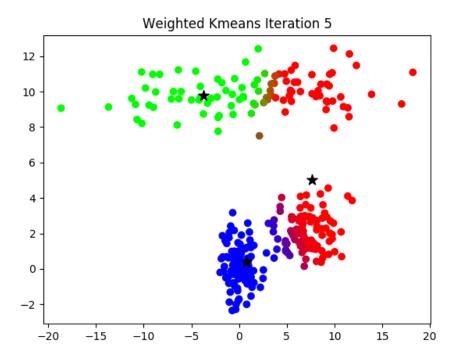
The following animations show the output of the clustering algorithms (and how they converge with different iterations) on a few datasets (with *k*=3 clusters), the weighted k-means is run with the stiffness-parameter *beta=10*.

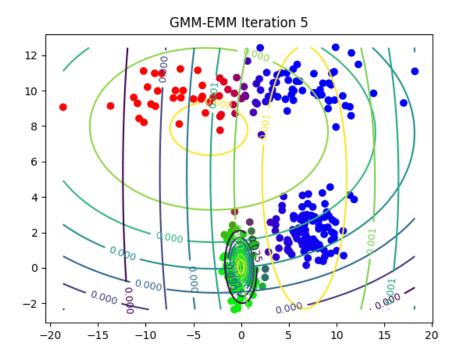


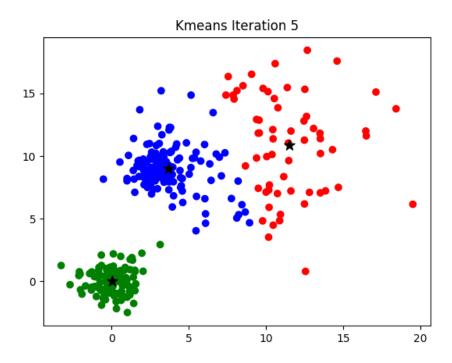


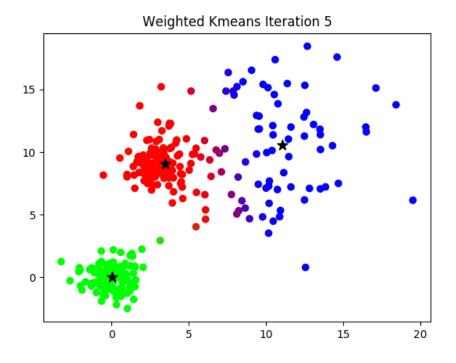


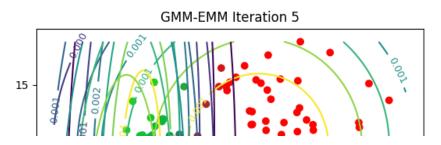


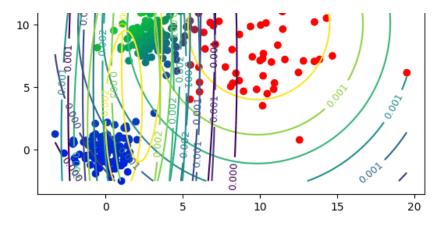


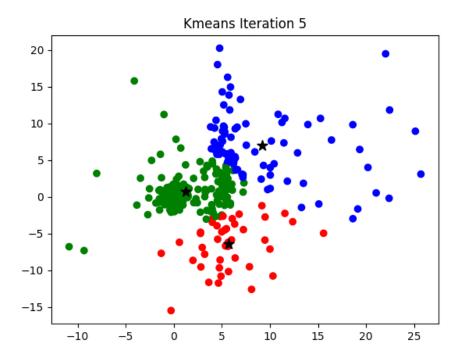


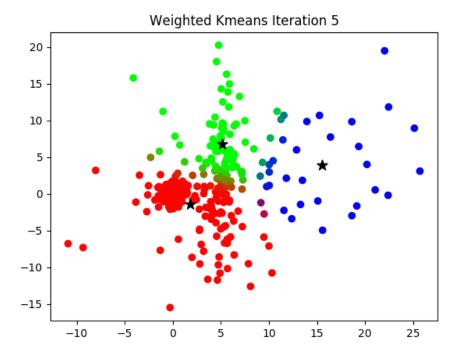


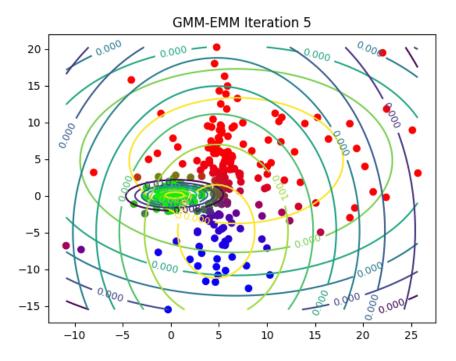


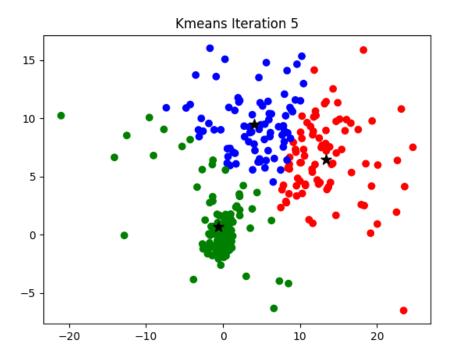


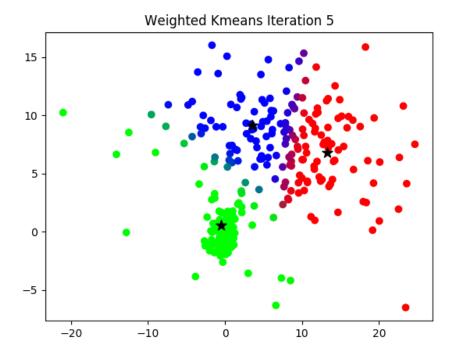


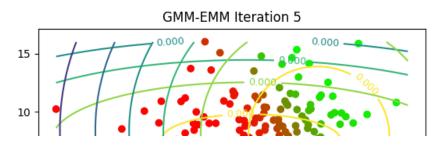


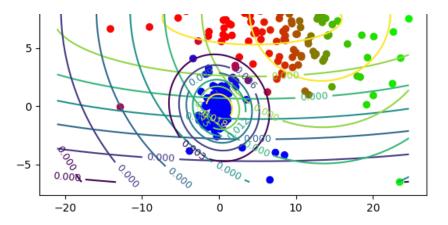


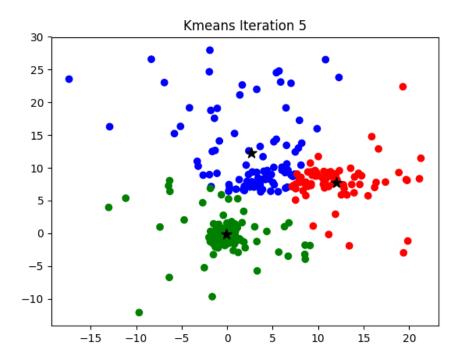


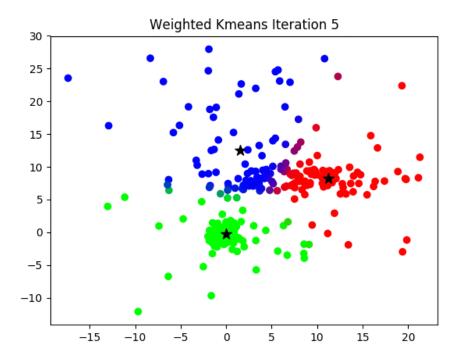


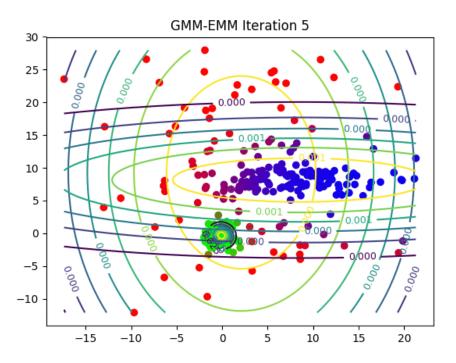


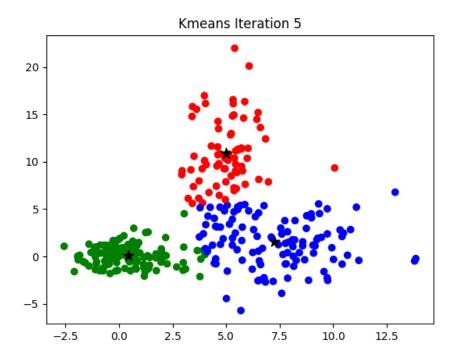


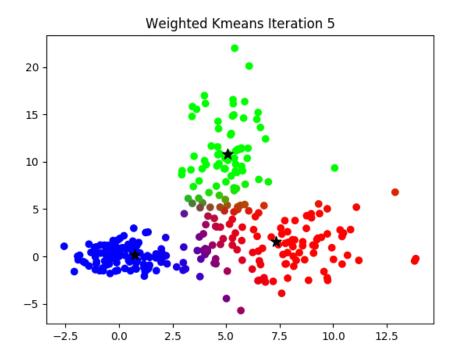


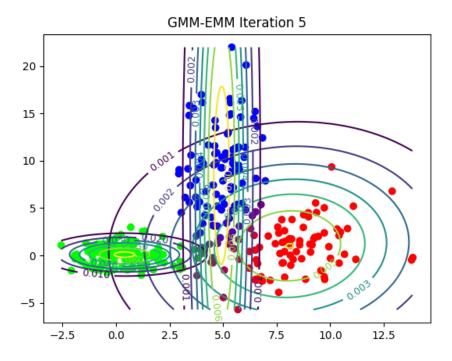


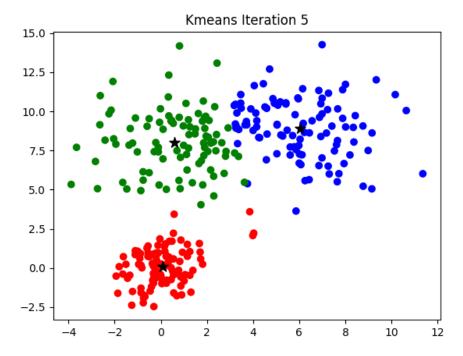




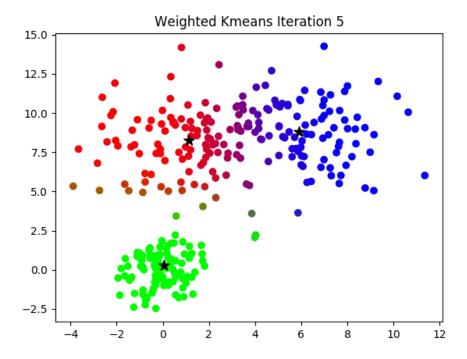




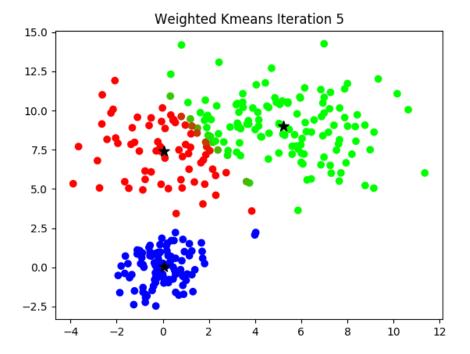


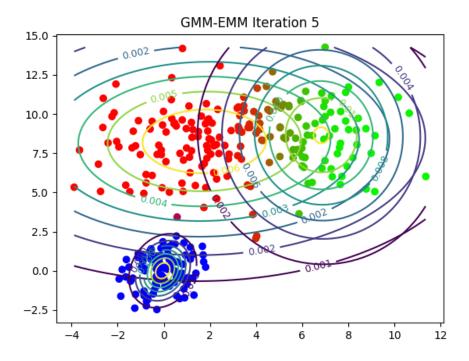


The next animation shows the results with **weighted K-means** with stiffness parameter **beta=10**

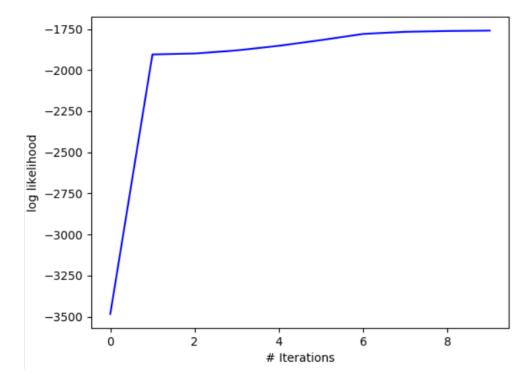


The next animation shows the results with **weighted K-means** with stiffness parameter **beta=1**

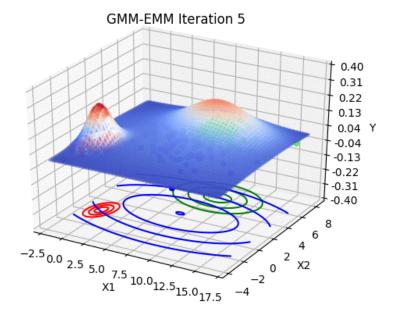


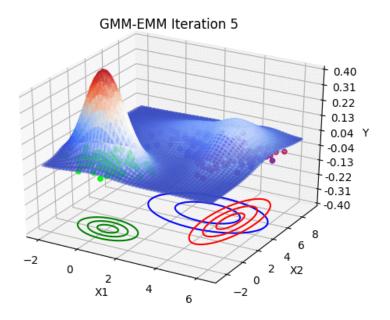


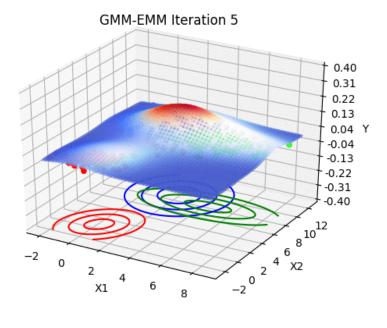
Here is how the **log-likelihood** for **EM** continuously increases over the iterations for a particular dataset:

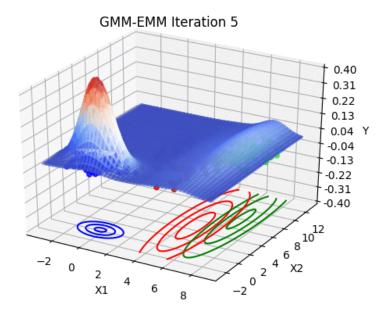


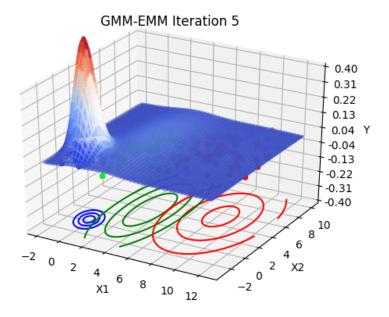
The following animations show **GMM EM convergence** on a few more datasets:

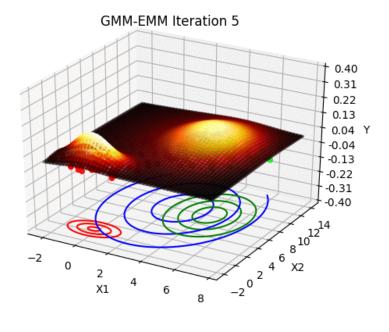


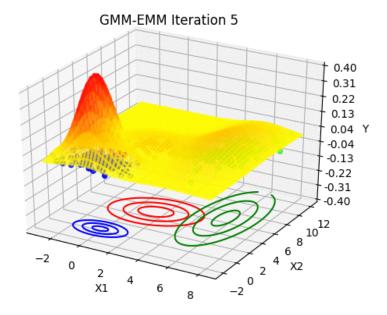


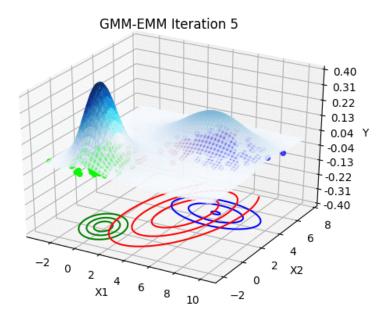


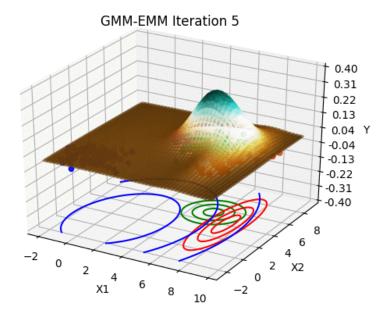


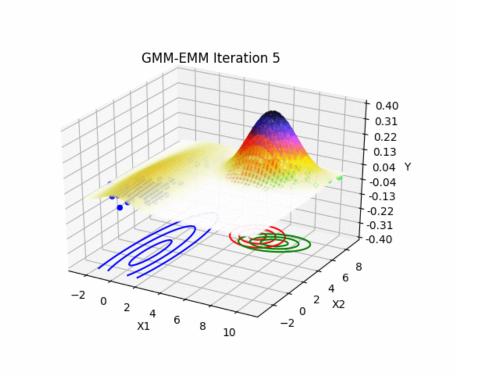


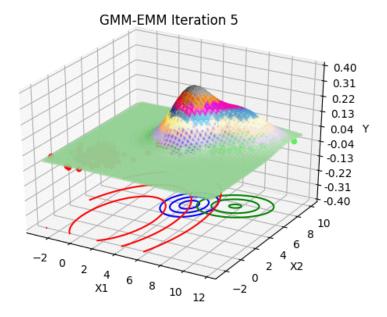


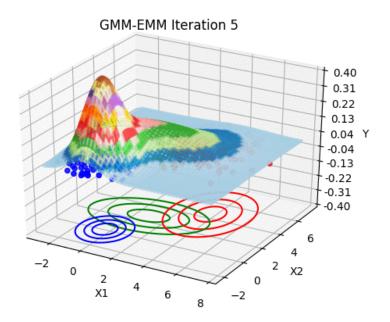


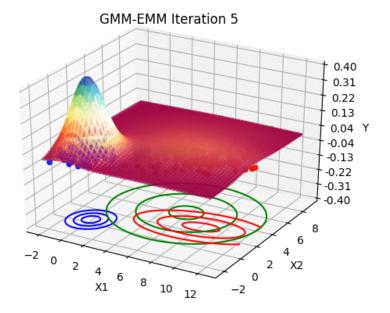












Advertisements ML, Python, Uncategorized

POWERED BY WORDPRESS.COM.