Frequent Itemsets & Association Rules

Lecture 2

Agenda

- 1. Sets, frequent itemsets, association rules
 - Formalism
 - Why is it useful?
- 2. What makes a rule interesting?
 - Support, Confidence
 - Lift
- 3. Generating association rules
 - Confidence pruning
 - Frequent itemsets?
- 4. Apriori
 - Algorithm
 - Issues
- 5. FP-Growth
 - Algorithm
 - Issues, comparison with Apriori
- 6. Representative itemsets
 - Maximal, closed

Frequent Itemsets & Association Rules

September 16, 2017 2

Association Analysis

Input

Trans. ID	Items
0	soy milk, lettuce
1	lettuce, diapers, wine, chard
2	soy milk, diapers, wine, OJ
3	lettuce, soy milk, diapers, wine
4	lettuce, soy milk, diapers, OJ

Output

• $\{diapers\} \Rightarrow \{wine\}$

Plagiarism: documents = {sentences}

Drug Trials: patients = {side effects, +/-medication}

Politics: politician = {voting, party}

Some Definitions

- Items
- Transactions (N is the size)

$$\mathcal{I} = \{i_1, i_2, \dots, i_M\}$$

$$\mathcal{D} = \{t | t \in (\text{TID}, X),$$

$$X \subseteq \mathcal{I}$$

$$N \coloneqq |D|$$

Association rule

$$X \Rightarrow Y$$

$$X \subset \mathcal{I}$$
,

$$Y\subset\mathcal{I},$$

$$X \cap Y = \emptyset$$

What Makes a Rule "Interesting"?

 Let's define items that frequently co-occur as frequent itemsets

- So then an "interesting" rule would be one that identifies a strong relationship between frequently co-occurring items
 - Not always true, but a good starting point :)

Itemset Support

 Let's define the following function as the number of times a particular itemset occurs within a dataset

$$\sigma(X) = |\{t | t \in \mathcal{D}, X \subseteq t\}|$$

 Then the support of an itemset is the percentage of the dataset that contains the itemset

$$s(X) = \frac{\sigma(X)}{N}$$

Quick Check

Input

Trans. ID	Items
0	soy milk, lettuce
1	lettuce, diapers, wine, chard
2	soy milk, diapers, wine, OJ
3	lettuce, soy milk, diapers, wine
4	lettuce, soy milk, diapers, OJ

Itemsets with $\sigma \geq 3$?

Output

{soy milk}: 4

{lettuce}: 4

{diapers}: 4

{wine}: 3

{soy milk, lettuce}: 3

{soy milk, diapers}: 3

{lettuce, diapers}: 3

{diapers, wine}: 3

Quick Check

Input

Trans. ID	Items
0	soy milk, lettuce
1	lettuce, diapers, wine, chard
2	soy milk, diapers, wine, OJ
3	lettuce, soy milk, diapers, wine
4	lettuce, soy milk, diapers, OJ

Output

3/5 = 0.6

s({diapers, wine}) = ?

Association Rule Support

 The support of an association rule is the support of the comprising elements

$$s(X \Rightarrow Y) = s(X \cup Y) = \frac{\sigma(X \cup Y)}{N}$$

 What does this say about association rules derived from frequent itemsets (i.e. those for which $\sigma(X) \geq \sigma_{\min}$?

Quick Check

Input

Trans. ID	Items
0	soy milk, lettuce
1	lettuce, diapers, wine, chard
2	soy milk, diapers, wine, OJ
3	lettuce, soy milk, diapers, wine
4	lettuce, soy milk, diapers, OJ

Output

3/5 = 0.6

i.e. support is a **symmetric** measure

$$s(\{diapers, wine\}) = ?$$

 $s(\{diapers\} \Rightarrow \{wine\}) = ?$
 $s(\{wine\} \Rightarrow \{diapers\}) = ?$

Association Rule Confidence

- The confidence of an association rule is one measure of the strength of cooccurrence between the antecedent (X) and consequent (Y)
- It measures the probability of Y occurring given that X has

$$c(X \Rightarrow Y) = \frac{s(X \cup Y)}{s(X)} = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

Quick Check

Input

Trans. ID	Items
0	soy milk, lettuce
1	lettuce, diapers, wine, chard
2	soy milk, diapers, wine, OJ
3	lettuce, soy milk, diapers, wine
4	lettuce, soy milk, diapers, OJ

Output

$$3/4 = 0.75$$

$$3/3 = 1.0$$

i.e. confidence is an **asymmetric** measure

$$c(\{diapers\} \Rightarrow \{wine\}) = ?$$

 $c(\{wine\} \Rightarrow \{diapers\}) = ?$

Quick Check

Describe a situation in which an association rule has a high confidence, but is likely uninteresting (i.e. does not reflect cooccurrence)

Trans. ID	Items
0	a, b
1	a
2	a
3	а
4	а

$$c(a \Rightarrow b) = 0.2$$

$$c(b \Rightarrow a) = 1.0$$

- There are many other measures
 - See TSK:6.7

- Each measure has properties that, in a particular task, may legitimize its use
 - Content-oriented: relates to classes of rules (not) identified by the measure
 - Algorithmic: relates to its efficient automation (e.g. [anti-]monotonicity)

Example: Lift

 The lift of an association rule is similar to confidence, but also includes the support of the consequent (note: 1=independent)

$$lift(X \Rightarrow Y) = \frac{c(X \Rightarrow Y)}{s(Y)}$$

$$= \frac{s(X \cup Y)}{s(X) \cdot s(Y)}$$

$$= \frac{\sigma(X \cup Y) \cdot N}{\sigma(X) \cdot \sigma(Y)}$$

Quick Check

Input

Trans. ID	Items
0	a, b
1	а
2	а
3	а
4	a

Output

$$1/5 = 0.2$$

$$1/1 = 1.0$$

$$(1 * 5) / (1 * 5) = 1$$

$$(1 * 5) / (5 * 1) = 1$$

$$c({a} \Rightarrow {b}) = ?$$

$$c(\{b\} \Rightarrow \{a\}) = ?$$

$$lift({a} \Rightarrow {b}) = ?$$

$$lift({b} \Rightarrow {a}) = ?$$

Mining Association Rules (1)

 Problem. Given a dataset, find all association rules that have support $\geq s$ and confidence $\geq c$

- Algorithm sketch…
 - For all possible rules, keep those with support $\geq s$ and confidence $\geq c$

Quick Check

Input

Trans. ID	Items
0	a, b
1	a, b, c, d
2	a, b, c
3	c, d
4	a, b, d

Output

$$2/5 = 0.4$$

All association rules derived from a common itemset have the same support!

$$s({a}) \Rightarrow {b, c}) = ?$$
 $s({a, b}) \Rightarrow {c}) = ?$
 $s({b}) \Rightarrow {a, c}) = ?$ $s({a, c}) \Rightarrow {b}) = ?$

$$s({c} \Rightarrow {a, b}) = ?$$
 $s({b, c} \Rightarrow {a}) = ?$

Algorithmic Optimization #1

In order to avoid redundant computation, it is common to decompose the problem into two subparts: first collect all itemsets with sufficient support, and then find associated rules with sufficient confidence (since they are already guaranteed to have sufficient support)

Mining Association Rules (2)

 Problem. Given a dataset, find all association rules that have support $\geq s$ and confidence $\geq c$

- Algorithm sketch...
 - 1. Given dataset D, find frequent itemsets F
 - a) For all distinct itemsets, count occurrences
 - b) $F = itemsets with support \geq s$
 - 2. Given F, find interesting rules R
 - a) For each frequent itemset
 - For all possible rules, keep those with confidence ≥ c

Frequent Itemsets & Association Rules

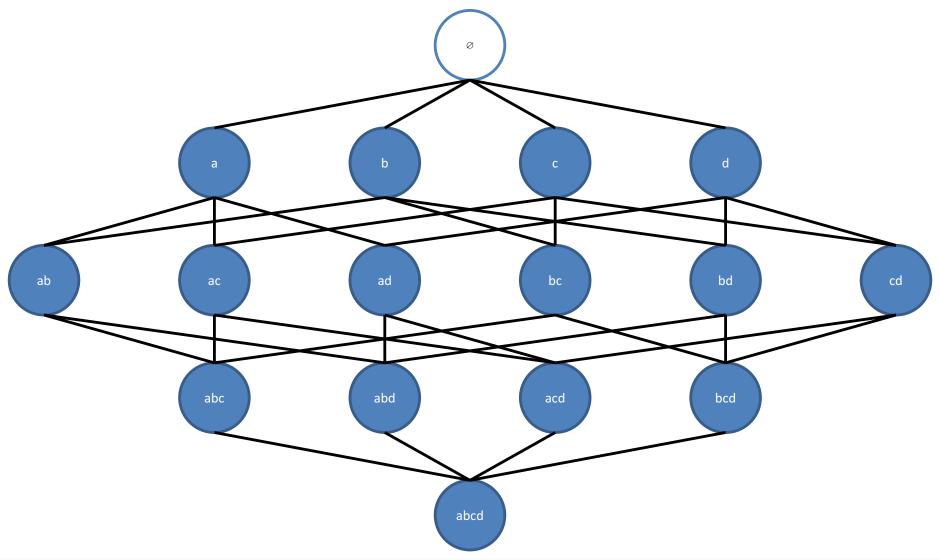
September 16, 2017 20

Focus 1a: "For all distinct itemsets"

Given 4 items (a, b, c, d) – how many distinct itemsets are there?

- Size 1 (4): a, b, c, d
- Size 2 (6): ab, ac, ad, bc, bd, cd
- Size 3 (4): abc, abd, acd, bcd
- Size 4 (1): abcd
- Total: 15

Itemset Lattice for $\mathcal{G} = \{a, b, c, d\}$



Frequent Itemsets & Association Rules

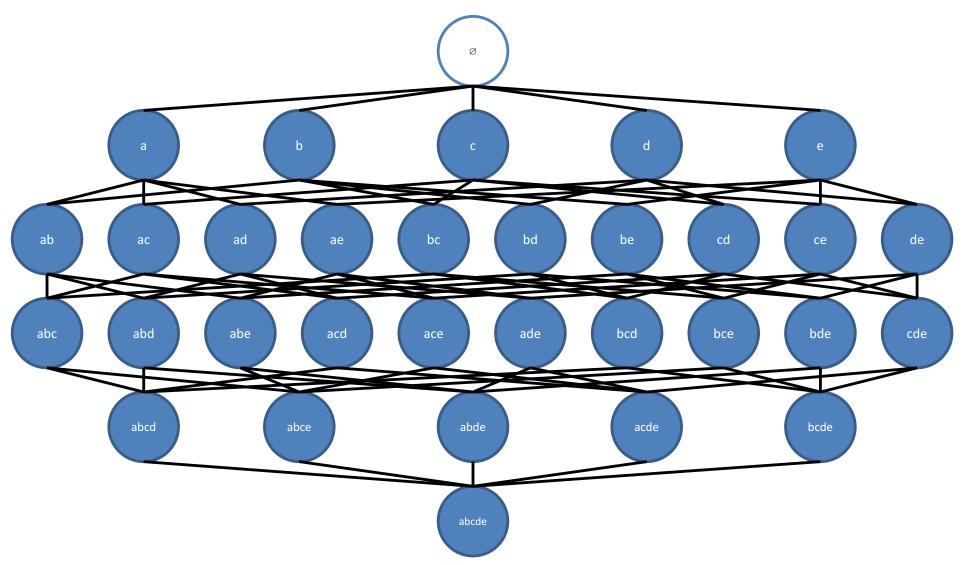
September 16, 2017 22

Focus 1a: "For all distinct itemsets"

Given 5 items (a, b, c, d, e) - how many distinct itemsets are there?

- Size 1 (5): a, b, c, d, e
- Size 2 (10): ab, ac, ad, ae, bc, bd, be, cd, ce, de
- Size 3 (10): abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde
- Size 4 (5): abcd, abce, abde, acde, bcde
- Size 5 (1): abcde
- Total: 31

Itemset Lattice for $\mathcal{F} = \{a, b, c, d, e\}$



Frequent Itemsets & Association Rules

September 16, 2017 24

Focus 1a: "For all distinct itemsets"

In general, given k items – how many distinct itemsets are there?

2^k-1, "Proof": encode presence/absence of each item as a binary variable – count the number of distinct binary strings (excluding all zeros = null)

So generating frequent itemsets is combinatorial in the worst case (i.e. hard). We will revisit this in a bit for algorithms that prune the search space (Apriori) and compress information from repeated item subsets (FP-Growth).

Frequent Itemsets & Association Rules

September 16, 2017

Candidate Association Rules

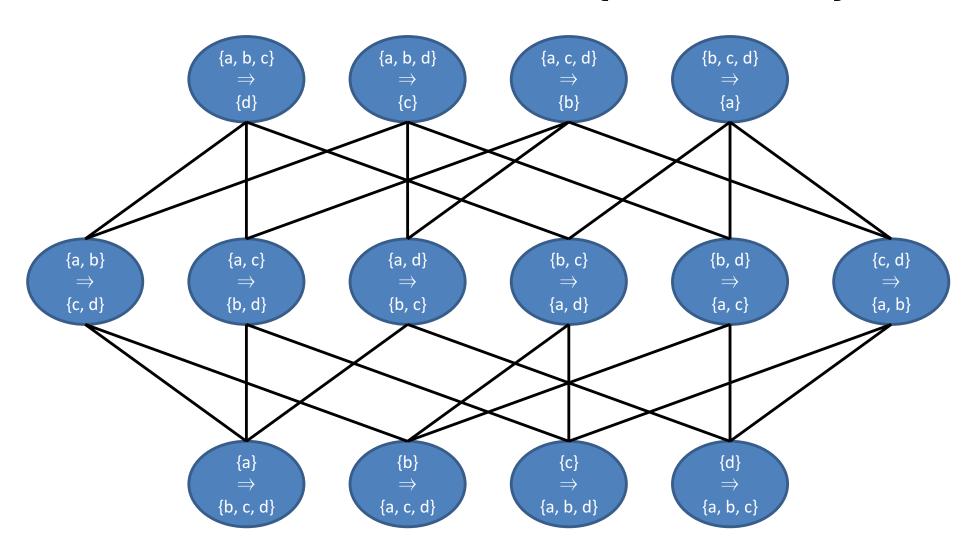
 Given frequent itemset F={a, b, c}, what are all the candidate rules (X \Rightarrow F-X) that could be generated

– Exclude...
$$F \Rightarrow \emptyset, \emptyset \Rightarrow F$$

$$\{a\} \Rightarrow \{b,c\}, \{b\} \Rightarrow \{a,c\}, \{c\} \Rightarrow \{a,b\}, \{a,b\} \Rightarrow \{c\}, \{a,c\} \Rightarrow \{b\}, \{b,c\} \Rightarrow \{a\}$$

In general, given a frequent itemset of size k, how many candidate rules could be generated?

Rule Lattice for F={a, b, c, d}



Frequent Itemsets & Association Rules

September 16, 2017 27

Now Check Confidence

• Quick check: $c(X \Rightarrow Y)=?$

$$c(X \Rightarrow Y) = \frac{s(X \cup Y)}{s(X)} = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

- Algorithm sketch…
 - For each frequent itemset, F
 - Generate all candidate association rules
 - For each candidate association rule R

» If
$$c(R) \ge c_{min}$$
, keep R

Can We Do Better?

Claim

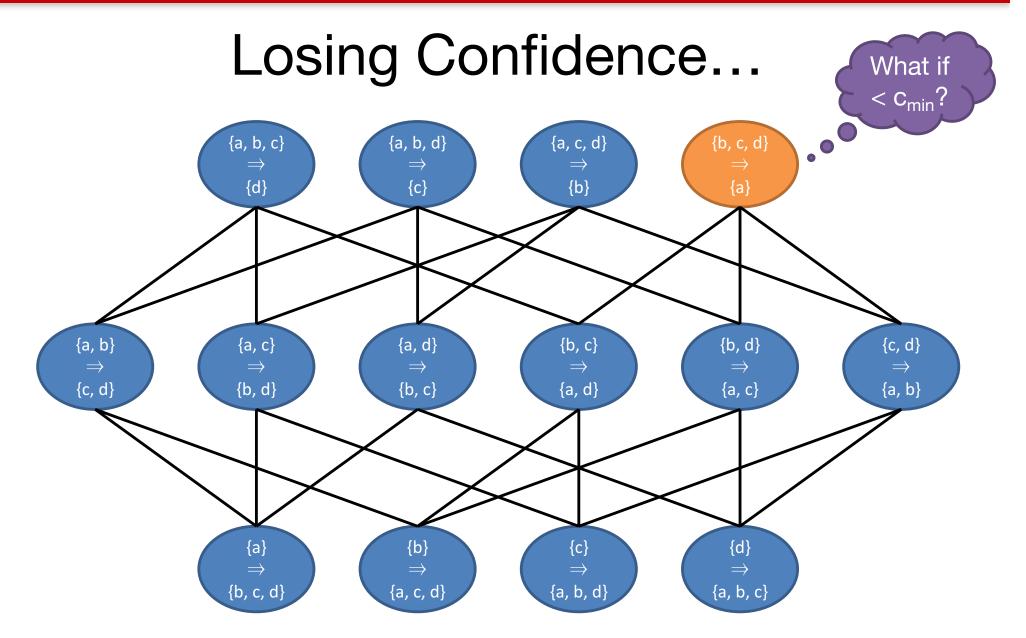
- IF c({a, b, c} \Rightarrow {d}) < c_{min}
- THEN $c({a,b}) \Rightarrow {c,d}) < c_{min}$

Why?

$$c(X \Rightarrow F - X) = \frac{\sigma(F)}{\sigma(X)}$$

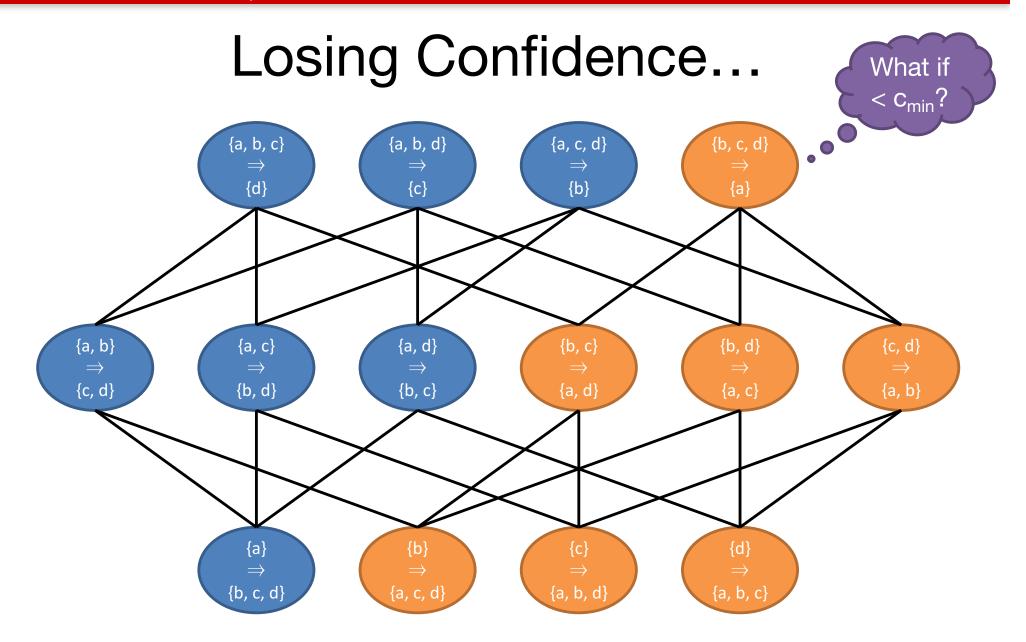
Does this change?

How can this change if $X' \subset X$



Frequent Itemsets & Association Rules

September 16, 2017 30



Confidence-Based Pruning

• If a rule $X \Rightarrow Y - X$ does not satisfy the confidence threshold, then any rule $X' \Rightarrow Y - X'$, where X' is a subset of X, must not satisfy the confidence threshold as well.

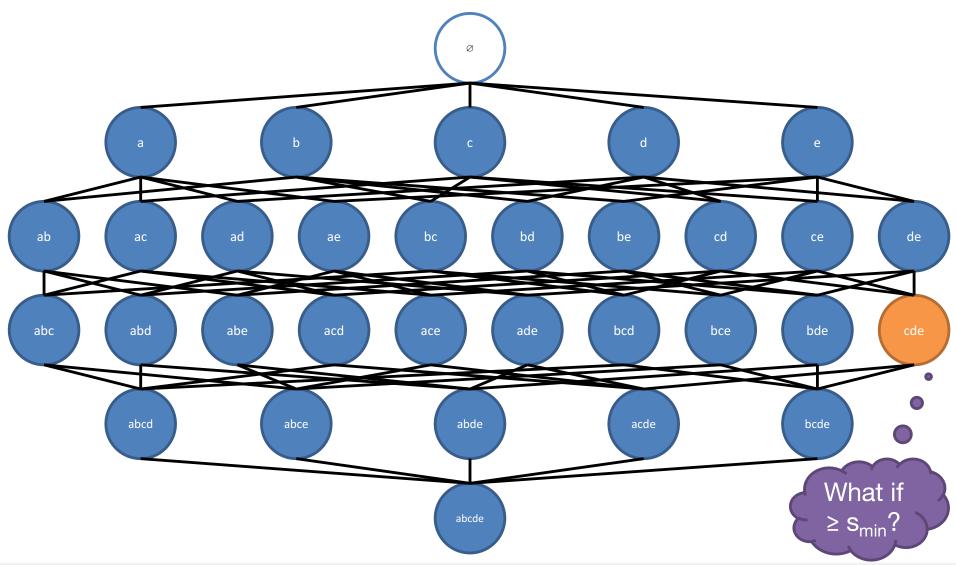
- Start with "big" antecedents (F⇒{})
 - Candidates = antecedent minus each of the single elements
 - Check confidence, if above threshold recurse

Mining Association Rules (3)

- Problem. Given a dataset, find all association rules that have support $\geq s$ and confidence $\geq c$
- Algorithm sketch...
 - 1. Given dataset D, find frequent itemsets F
 - a) For all distinct itemsets, count occurrences

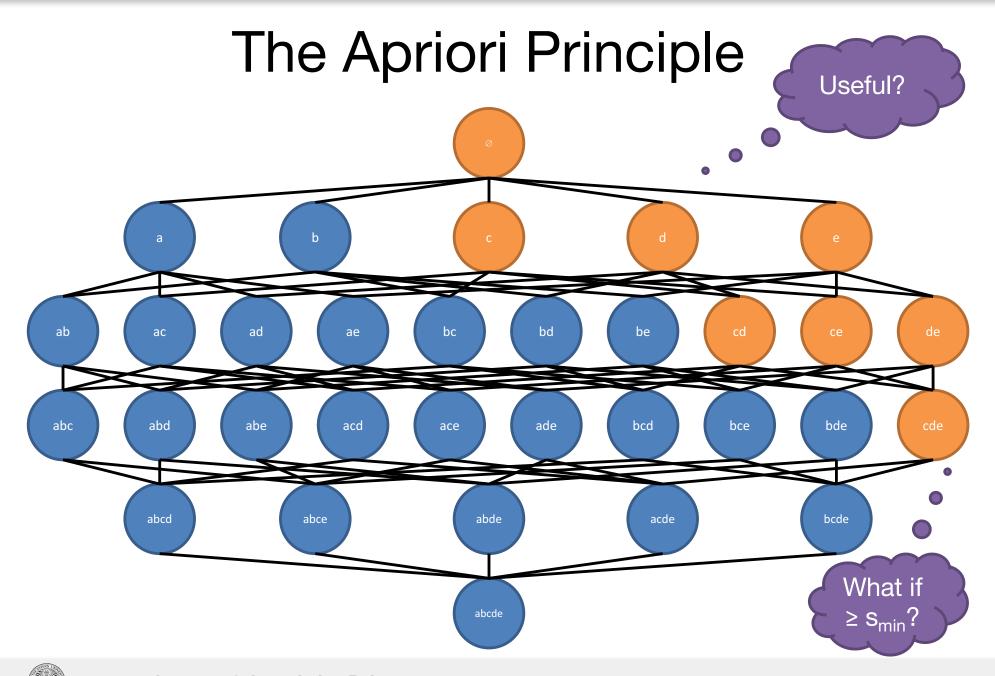
- b) $F = itemsets with support \geq s$
- 2. Given F, find interesting rules R
 - a) For each frequent itemset
 - Keep those with confidence ≥ c (incrementally pruning antecedent subsets on confidence)

Revisiting the Itemset Lattice



Frequent Itemsets & Association Rules

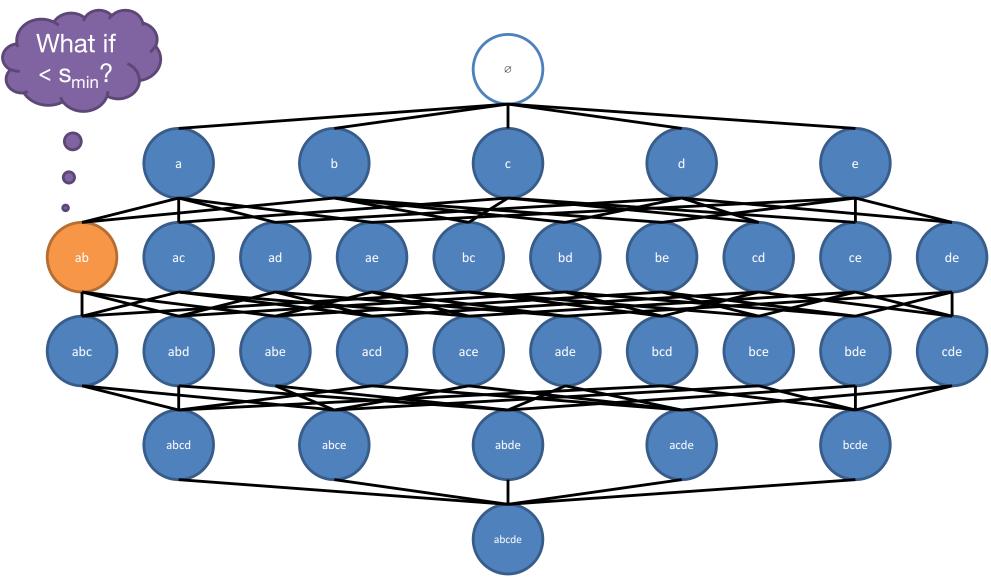
September 16, 2017 34



Frequent Itemsets & Association Rules

September 16, 2017 35

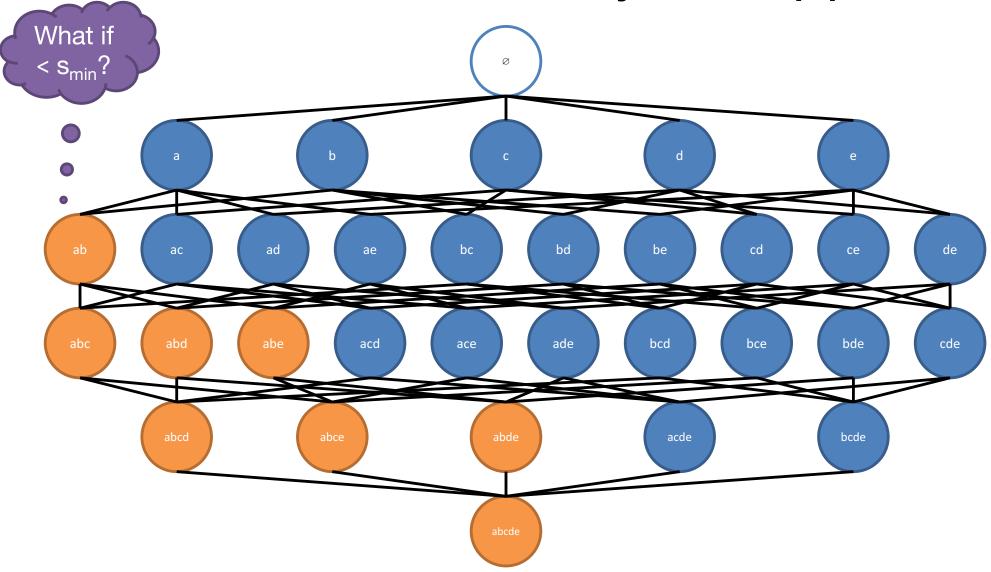
And the Converse?



Frequent Itemsets & Association Rules

September 16, 2017 36

The Anti-Monotonicity of Support



Frequent Itemsets & Association Rules

Derbinsky

The Apriori Algorithm Illustrated

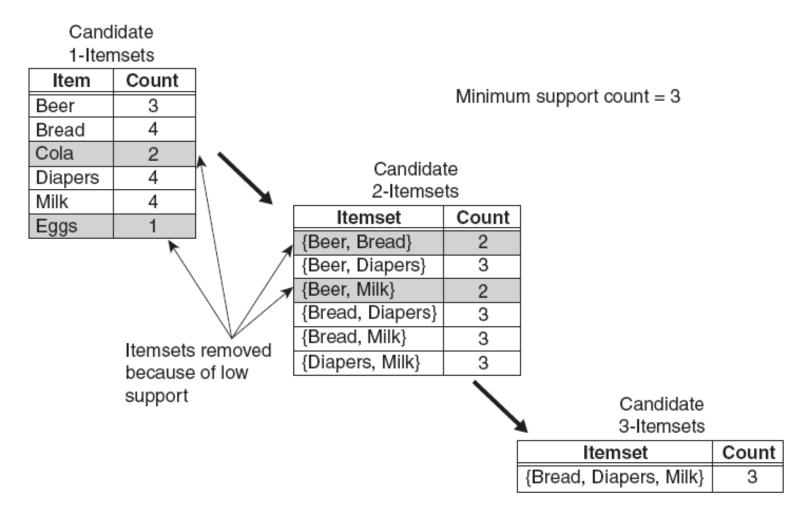


Figure 6.5. Illustration of frequent itemset generation using the *Apriori* algorithm.

September 16, 2017 38

The Apriori Algorithm

Algorithm 6.1 Frequent itemset generation of the *Apriori* algorithm.

```
1: k = 1.
 2: F_k = \{ i \mid i \in I \land \sigma(\{i\}) \geq N \times minsup \}. {Find all frequent 1-itemsets}
 3: repeat
 4: k = k + 1.
 5: C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate itemsets}
      for each transaction t \in T do
    C_t = \text{subset}(C_k, t). {Identify all candidates that belong to t}
 7:
    for each candidate itemset c \in C_t do
           \sigma(c) = \sigma(c) + 1. {Increment support count}
 9:
    end for
10:
    end for
11:
      F_k = \{ c \mid c \in C_k \land \sigma(c) \geq N \times minsup \}. {Extract the frequent k-itemsets}
12:
13: until F_k = \emptyset
14: Result = \bigcup F_k.
```


Frequent Itemsets & Association Rules

Apriori: Basic Flow

- 1. Count transaction occurrence for single items – keep frequent
- 2. Loop
 - a) Generate candidates
 - b) For each candidate
 - **Count transaction occurrence** keep frequent
 - c) Return if no new itemsets generated

Apriori: Generating Candidates

Goals

- Avoid unnecessary candidates
- Avoid duplicate candidates
- Do not miss any frequent itemsets (complete)

Approaches

- **Brute Force**
- $F_{k-1} \times F_1$
- $F_{k-1} \times F_{k-1}$

Brute Force

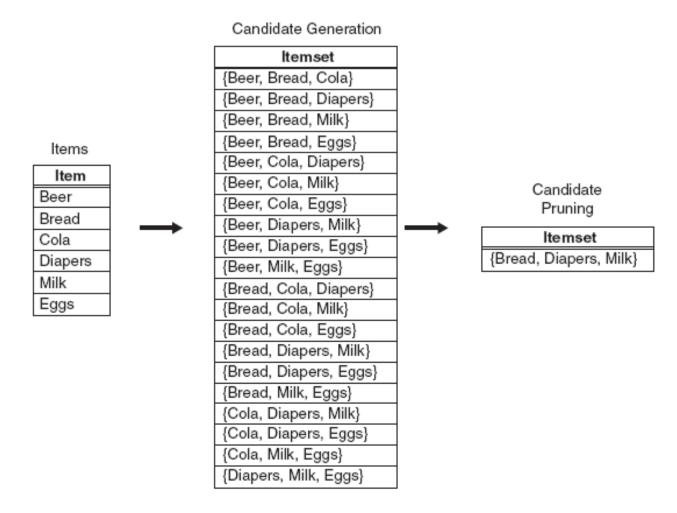
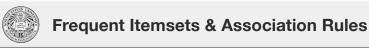


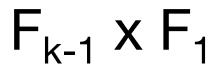
Figure 6.6. A brute-force method for generating candidate 3-itemsets.



September 16, 2017 42

Brute Force Analysis

- Generates C(N, k) candidates
- Some cost in generation, but more so validating of frequency of occurrence



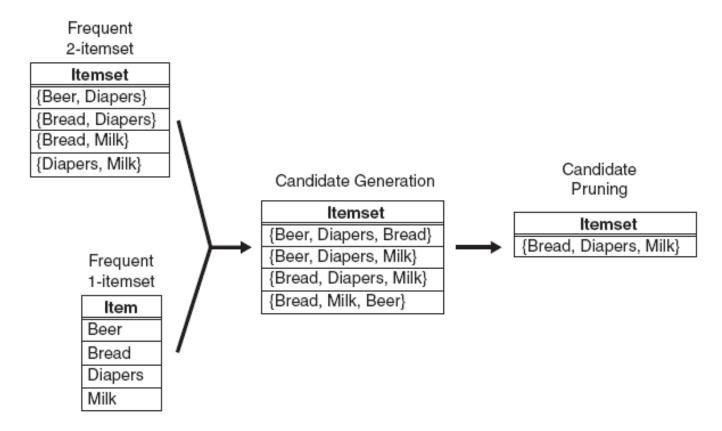


Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Frequent Itemsets & Association Rules

September 16, 2017 44

- Improvement: still potential for large number of unnecessary candidates
- Can produce duplicates
 - Fixed via sorted order of candidate items

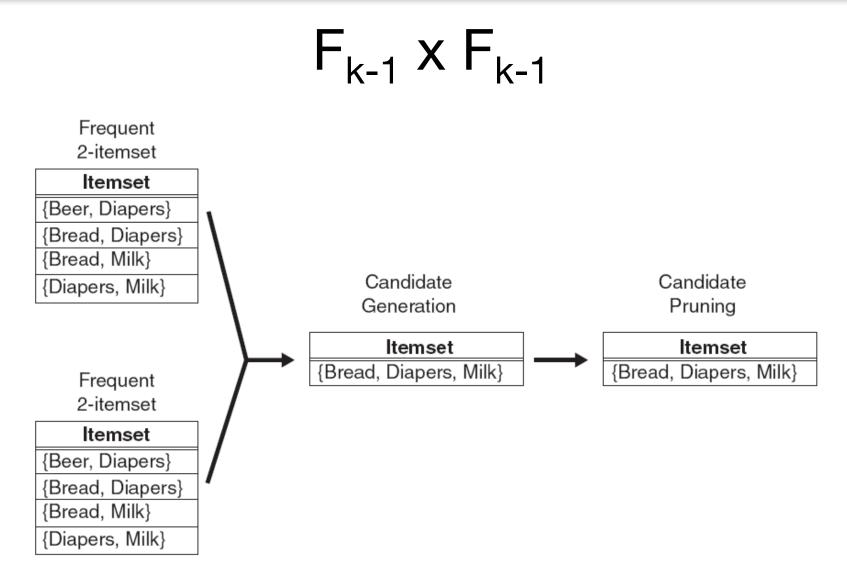


Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Frequent Itemsets & Association Rules

September 16, 2017 46

$F_{k-1} \times F_{k-1}$ Analysis

- Basic: combine if not same & differ by 1
- Improvement: sort items, combine if first (k-2) elements same (but not k-1!)
 - Still need some validation

Apriori: Basic Flow

- Count transaction occurrence for single items – keep frequent
- 2. Loop
 - a) Generate candidates
 - b) For each candidate
 - i. Count transaction occurrence keep frequent
 - c) Return if no new itemsets generated

Support Counting

- Brute Force: transactions x candidates
- Transactions -> k-sets
 - With sorting, can update efficiently
- Hash table (see TSK)
- Trie/Prefix Tree

Apriori Analysis – ALL the DB Scans

- 1. Count transaction occurrence for single items – keep frequent
- 2. Loop
 - a) Generate candidates
 - b) For each candidate
 - Count transaction occurrence keep frequent
 - c) Return if no new itemsets generated

Frequent Pattern Growth Algorithm

- Allows discovery of frequent itemsets
 - Without candidate generation
 - Only 2 passes over transaction dataset
- FP-Growth algorithm sketch…
 - 1. 2-pass over transactions -> builds FP-Tree
 - 2. Multiple passes over FP-Tree -> frequent itemsets

FP-Growth.1: Building an FP-Tree

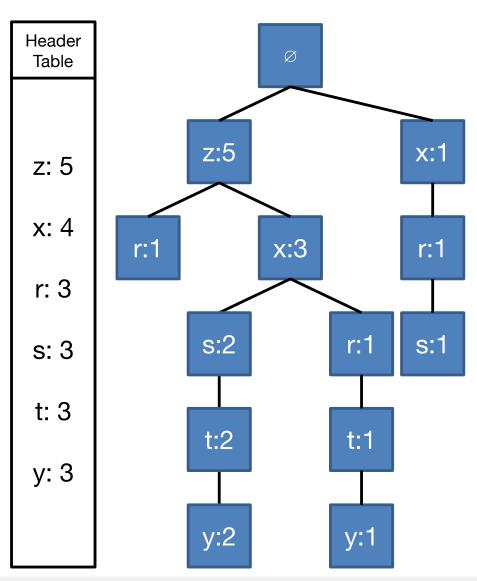
- Stores frequency of occurrence for sets of items in the transaction dataset
 - Set: path in tree

- Common prefixes will share paths
 - Hence: compression!

Example FP-Tree

Transactions*

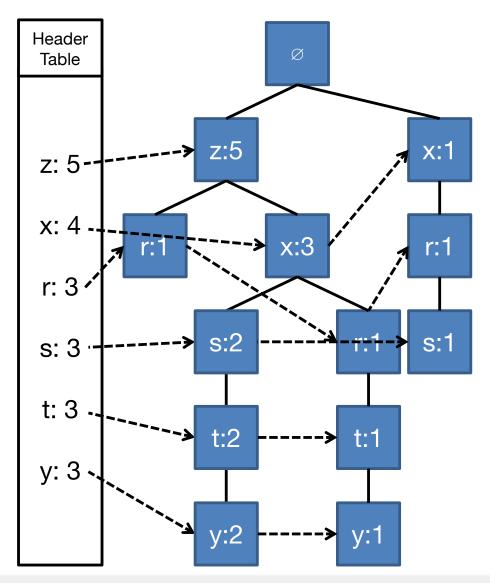
- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y
- z, x, s, t, y



Example FP-Tree (with Item Pointers)

Transactions*

- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y
- z, x, s, t, y



Building an FP-Tree: Pass 1

- 1. for each transaction t
 - a) for each item i in t
 - i. support[i] += 1

Count item support

- 2. for each item i in keys(support)
 - a. if support[i] < s_{min}
 - delete(support[i])

Remove items below threshold

- 3. sort(support, by values decreasing)
- 4. for each transaction t
 - a. delete items not in support
 - b. sort(t, by keys(support))

Sort transactions via increasing support (removing items below threshold)

Example FP-Tree: Pass 1

Original Transactions

- r, z, h, j, p
- z, y, x, w, v, u, t, s
- r, x, n, o, s
- y, r, x, z, q, t, p
- y, z, x, e, q, s, t, m

Filtered & Sorted

- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y
- z, x, s, t, y

Item Counts (s_{min}=3)

r:3, z:5, h: 1, j:1, p:2, y:3, x:4, w:1, v:1, u:1, t:3, s:3, n:1, o:1, q:2, e:1, m:1

• z:5, x:4, r:3, s:3, t:3, y:3

Building an FP-Tree: Pass 2

- 1. for each filtered+sorted transaction t
 - a. add path to tree
 - update counts at each existing node
 - update pointers for each node

Header

Transactions*

• z, r

Table z: 5 x: 4 r: 3 s: 3 y: 3

Next: z, x, s, t, y

Frequent Itemsets & Association Rules

Header **Table**

z: 5

x: 4

Transactions*

- z, r
- z, x, s, t, y

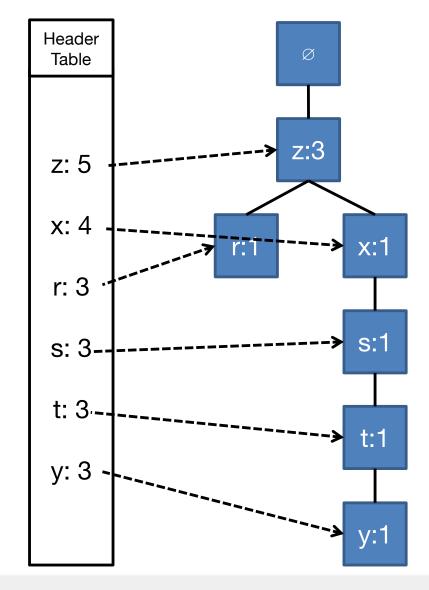
r: 3 s: 3 t: 3.. y: 3

Next: z

Transactions*

- z, r
- z, x, s, t, y

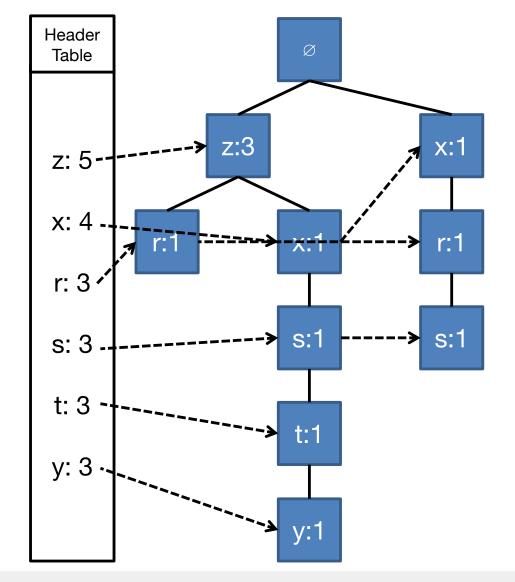
Next: x, r, s



Transactions*

- z, r
- z, x, s, t, y
- x, r, s

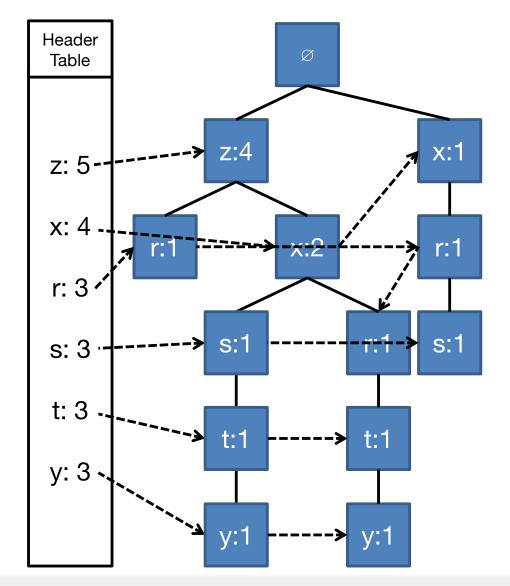
Next: z, x, r, t, y



Transactions*

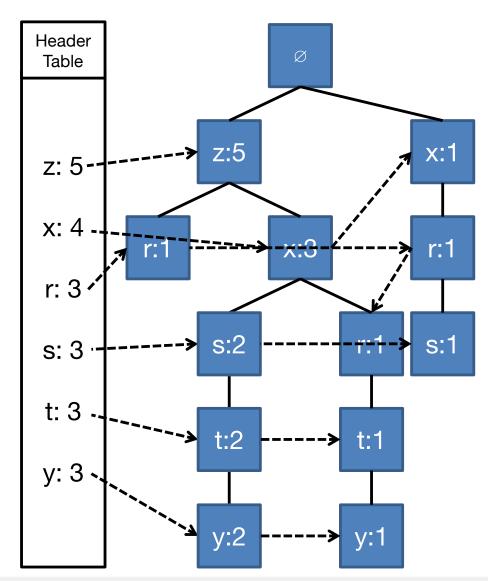
- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y

Next: z, x, s, t, y



Transactions*

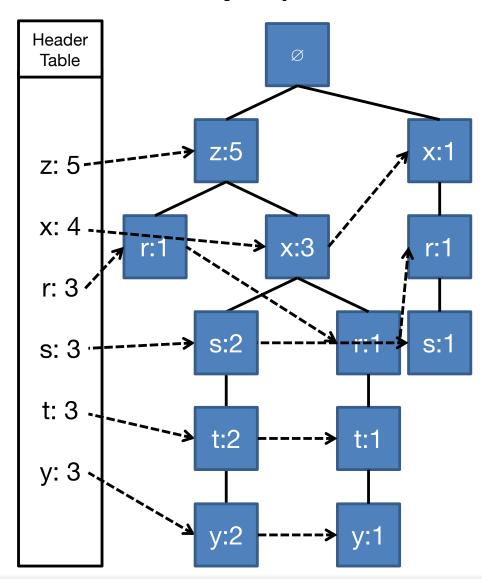
- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y
- z, x, s, t, y



Prettier (for next steps)

Transactions*

- z, r
- z, x, s, t, y
- x, r, s
- z, x, r, t, y
- z, x, s, t, y



Now You Try! (s_{min}=3)

TID	Items Bought
1	a, b, f
2	b, g, c, d
3	h, a, c, d, e
4	a, d, p, e
5	a, b, c
6	a, b, q, c, d
7	a
8	a, m, b, c
9	a, b, n, d
10	b, c, e, m

a: 8

b: 7

f: 1

g: 1

c: 6

d: 5

h: 1

e: 3

p: 1

q: 1

m: 2

n: 1

Now You Try! (s_{min}=3)

TID	Items Bought
1	a, b, f
2	b, g, c, d
3	h, a, c, d, e
4	a, d, p, e
5	a, b, c
6	a, b, q, c, d
7	a
8	a, m, b, c
9	a, b, n, d
10	b, c, e, m
a:8, b:7, c:6, d:5, e:3	

Filtered + Sorted

TID	Items Bought
1	a, b
2	b, c, d
3	a, c, d, e
4	a, d, e
5	a, b, c
6	a, b, c, d
7	a
8	a, b, c
9	a, b, d
10	b, c, e

Frequent Itemsets & Association Rules

Now You Try: T1

Transactions*

a, b

Header **Table** a: 8 → b:1 b: 7 c: 6 d: 5 e: 3

Next: b, c, d

Frequent Itemsets & Association Rules

b:1

Now You Try: T2

Header **Table**

Transactions*

- a, b
- b, c, d

a: 8 b: 7 c: 6 d: 5 e: 3

a:1

Next: a, c, d, e

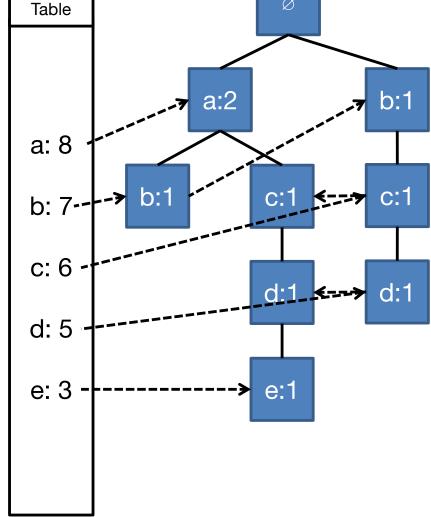
Frequent Itemsets & Association Rules

Now You Try: T3

Header

Transactions*

- a, b
- b, c, d
- a, c, d, e



Next: a, d, e

b:1

Now You Try: T4

Header **Table**

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e

a: 8 C:1 b: 7 c: 6 d: 5 e: 3

a:3

Next: a, b, c

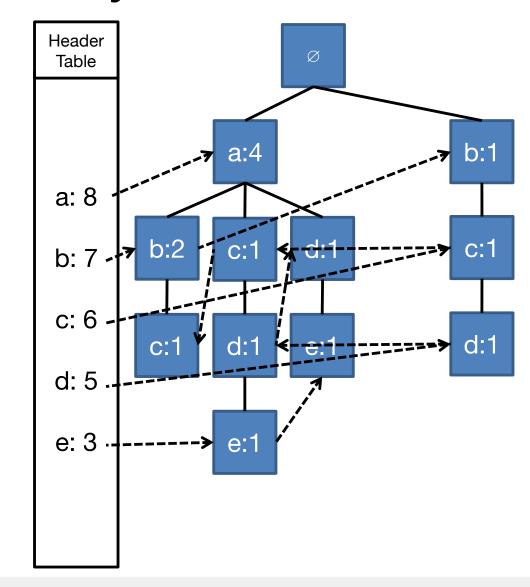
Frequent Itemsets & Association Rules

Now You Try: T5

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c

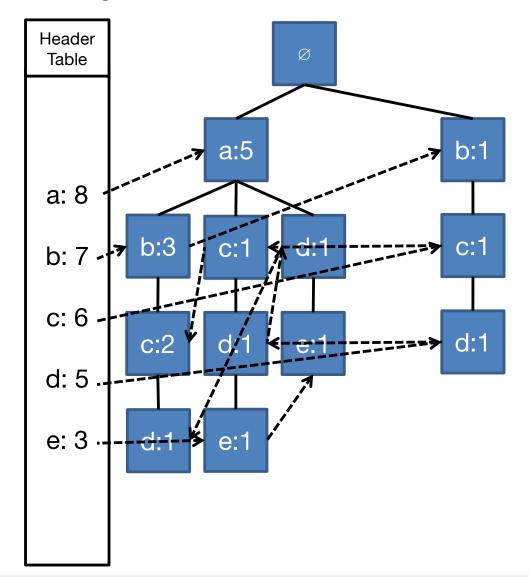
Next: a, b, c, d



Now You Try: T6

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d

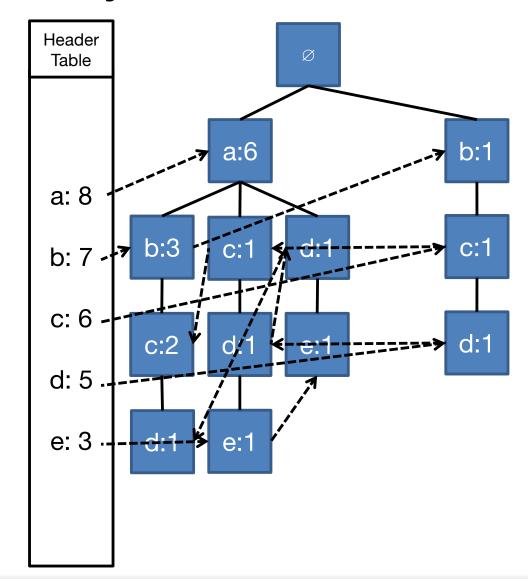


Next: a

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d
- a

Next: a, b, c



Frequent Itemsets & Association Rules

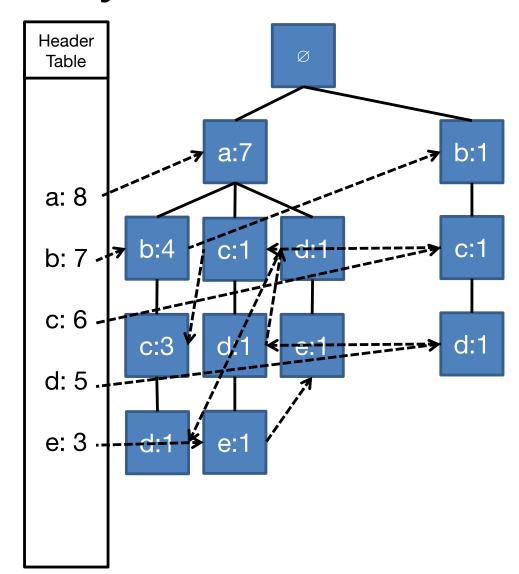
September 16, 2017 73

Now You Try: T8

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d
- a, b, c

Next: a, b, d

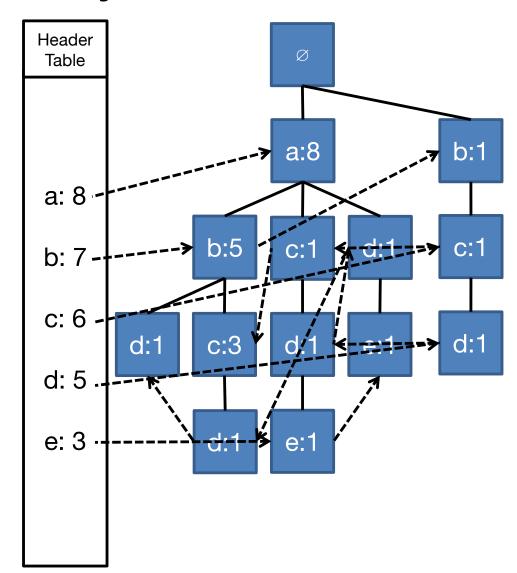


Now You Try: T9

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d
- a
- a, b, c
- a, b, d

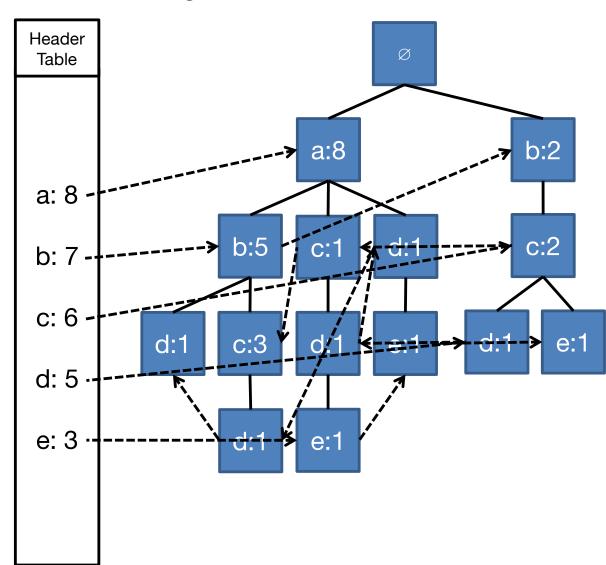
Next: b, c, e



Now You Try: T10

Transactions*

- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d
- a
- a, b, c
- a, b, d
- b, c, e



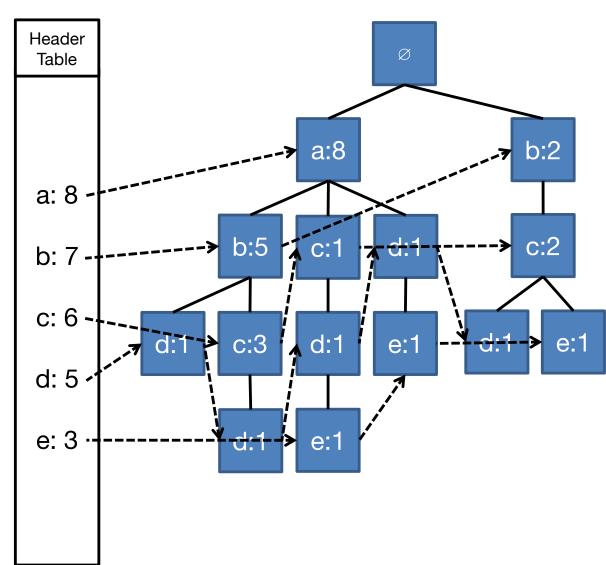
Frequent Itemsets & Association Rules

September 16, 2017 76

Prettier (for next steps)

Transactions*

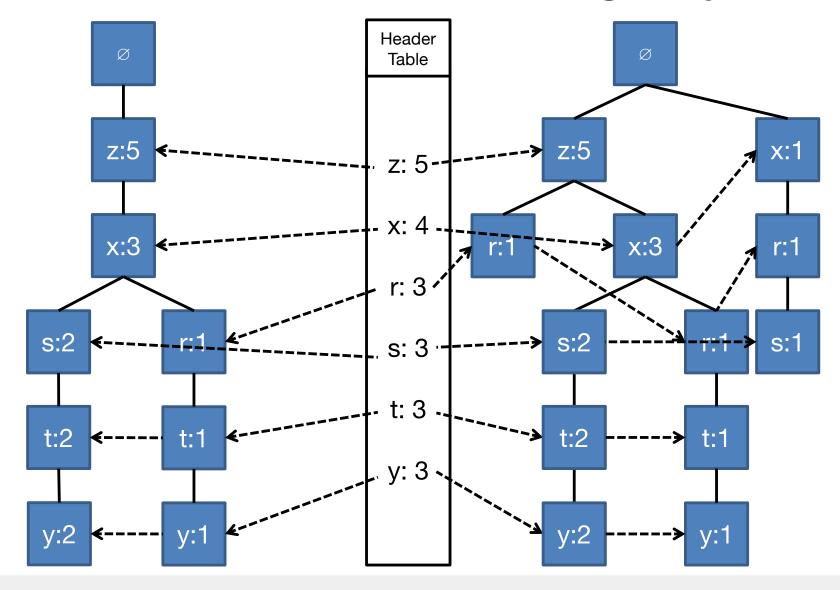
- a, b
- b, c, d
- a, c, d, e
- a, d, e
- a, b, c
- a, b, c, d
- a
- a, b, c
- a, b, d
- b, c, e



Mining Patterns from an FP-Tree

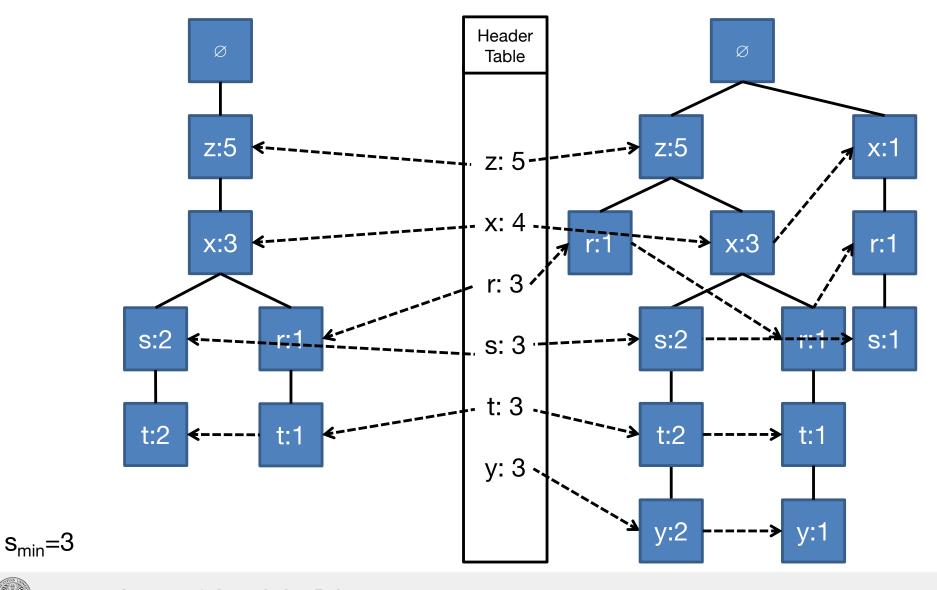
- You now have a more compact data structure that has all the information necessary to extract frequent itemsets
 - Divide and conquer! Look for item, then subsets (i.e. subtrees), recurse!
 - Similar to Apriori, but on the FP-Tree
- Algorithm sketch...
 - 1. For each candidate item i
 - Extract subtrees ending in i
 - "Conditional pattern base"
 - Construct Conditional FP-Tree for i
 - C) Recurse!

Example FP-Tree: Ending in y

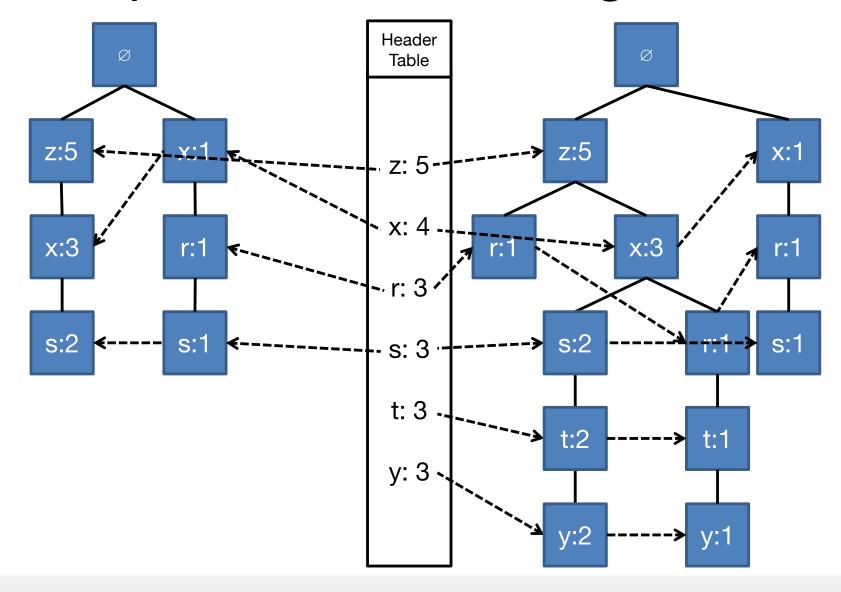


 $s_{min}=3$

Example FP-Tree: Ending in t

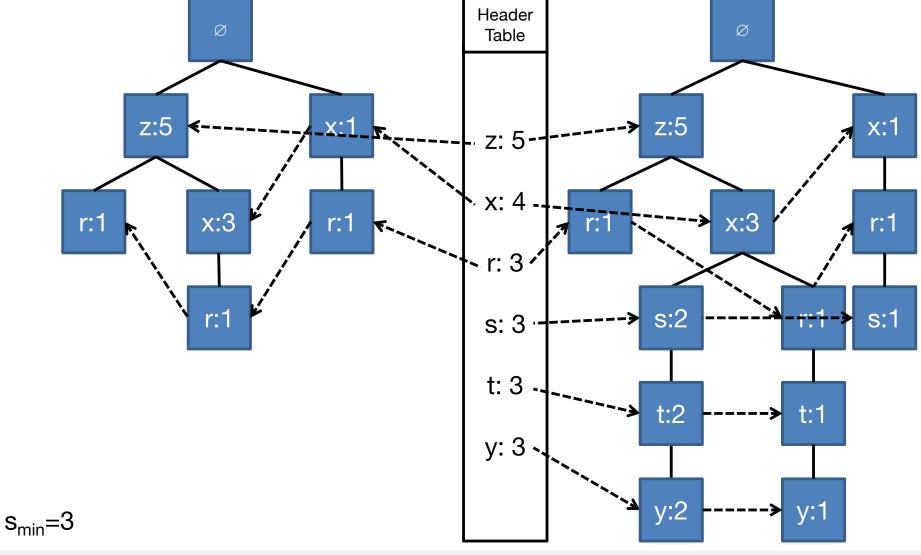


Example FP-Tree: Ending in s

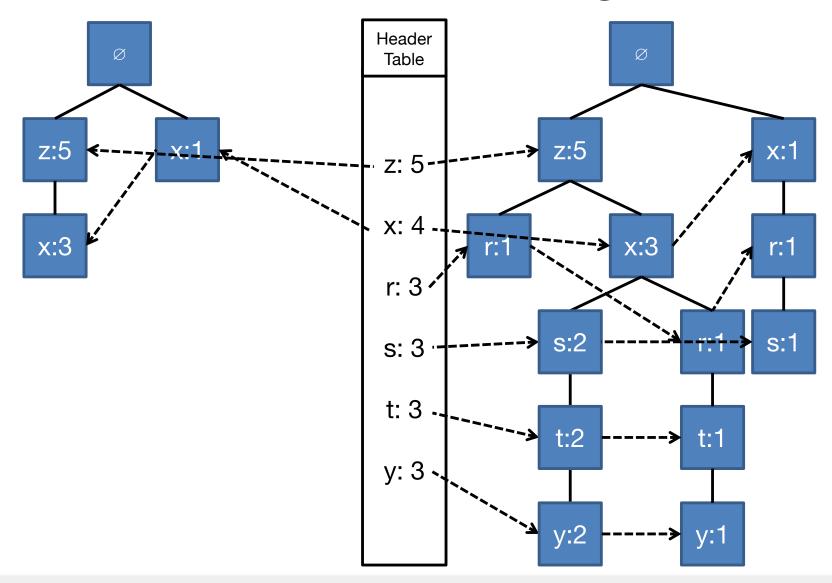


 $s_{min}=3$

Example FP-Tree: Ending in r

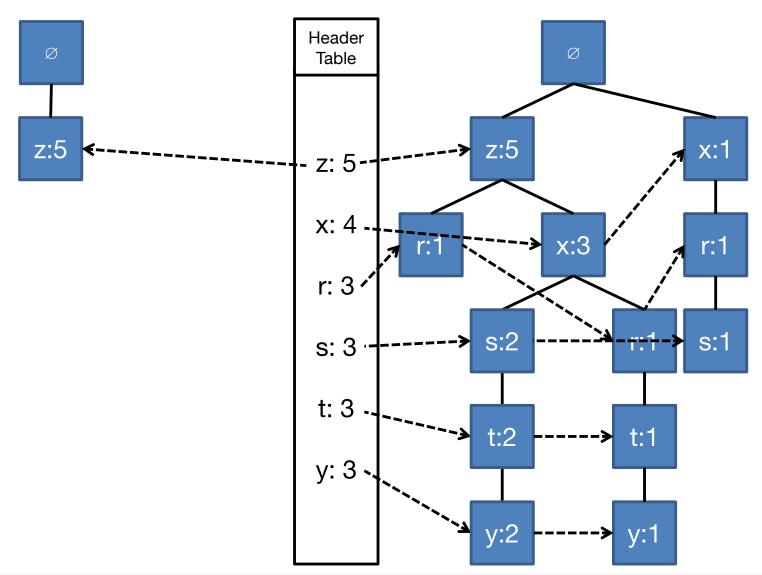


Example FP-Tree: Ending in x



 $s_{min}=3$

Example FP-Tree: Ending in z



 $s_{min}=3$

Before Conditional

- Given a subtree ending in i
 - Follow the pointers for i, add up support
 - If greater than threshold
 - Extract as frequent itemset
 - Continue
- Note: we know this is true for the top level (items would be there otherwise), but may not be the case for recursive subproblems

Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
x	{x}
r	{r}
S	{s}
t	{t}
У	{y}

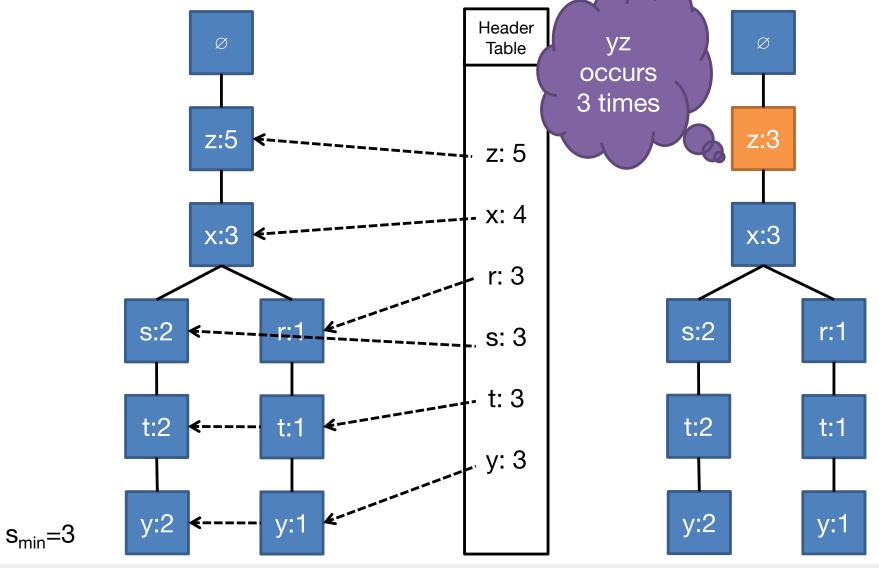
September 16, 2017 86

Conditional FP-Tree

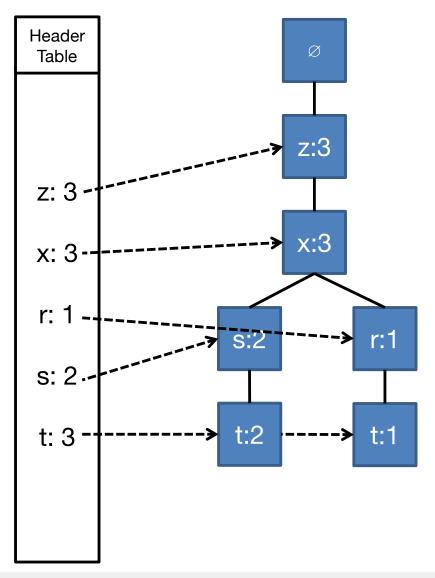
 A new FP-Tree representing prefixes of a removed itemset

- Basic flow
 - Update counts in subtree
 - Remove leaves
 - Remove infrequent nodes

Example FP-Tree: Conditional y (1)

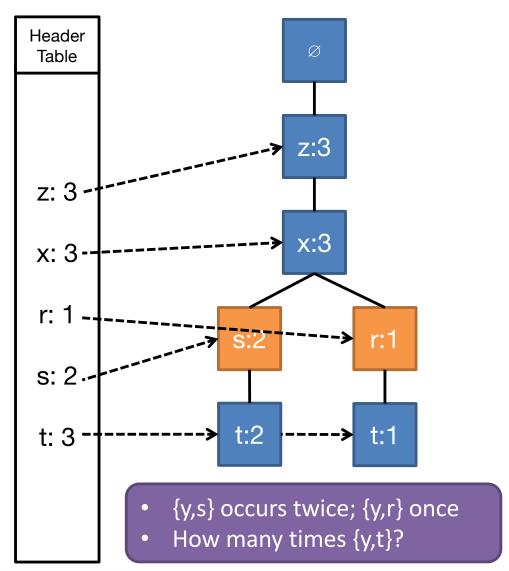


Example FP-Tree: Conditional y (2)



 $s_{min}=3$

Example FP-Tree: Conditional y (2)

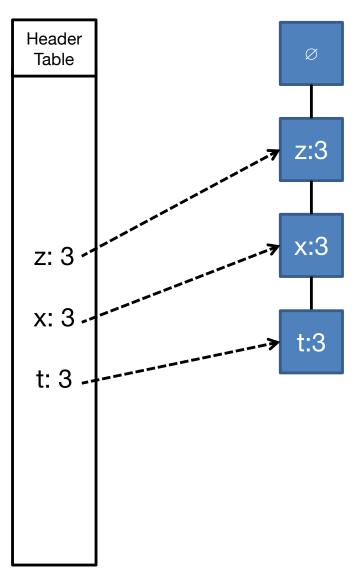


 $s_{min}=3$

91

Example FP-Tree: Conditional y

- Recurse...
 - Prefix: yt, yx, yz



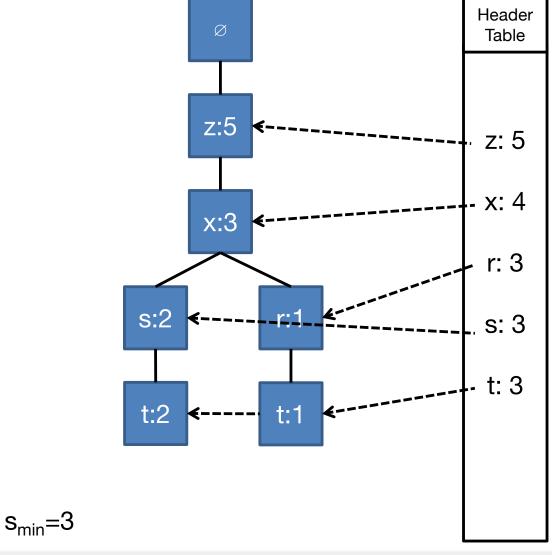
 $s_{min}=3$

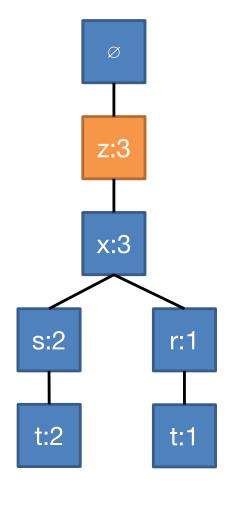
Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
X	{x}
r	{r}
S	{s}
t	{t}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,t,x,z}

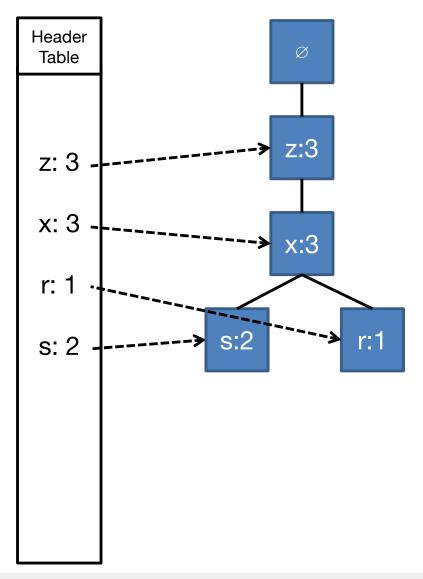
September 16, 2017 92

Example FP-Tree: Conditional t (1)



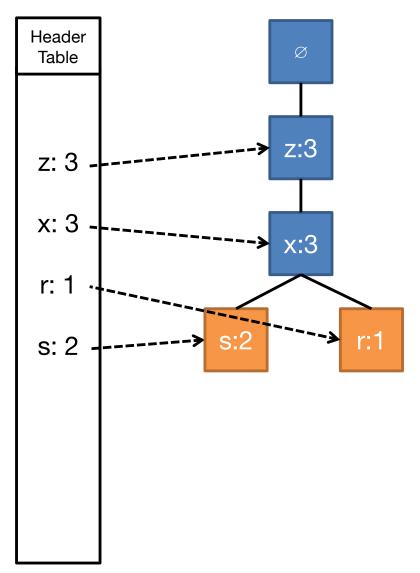


Example FP-Tree: Conditional t (2)



$$s_{min}=3$$

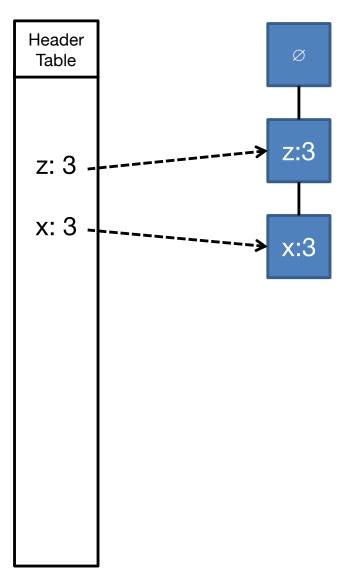
Example FP-Tree: Conditional t (2)



 $s_{min}=3$

Example FP-Tree: Conditional t

- Recurse...
 - Prefix: tx, tz

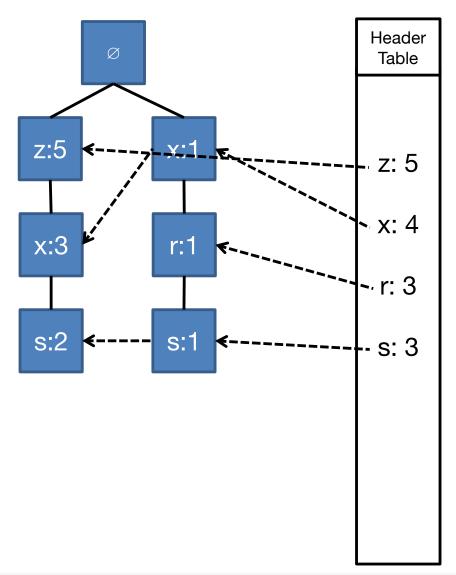


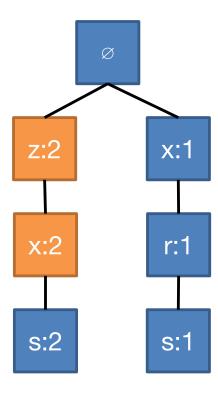
 $s_{min}=3$

Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
x	{x}
r	{r}
S	{s}
t	{t}, {t,x}, {t,z}, {t,x,z}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,t,x,z}

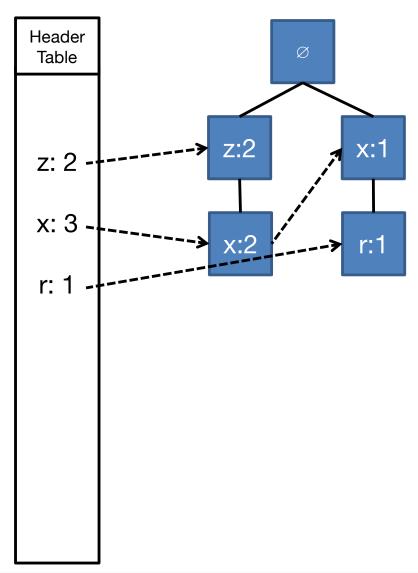
Example FP-Tree: Conditional s (1)





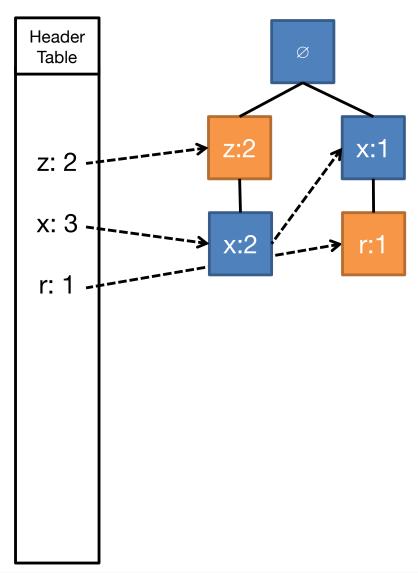
 $s_{min}=3$

Example FP-Tree: Conditional s (2)



$$s_{min}=3$$

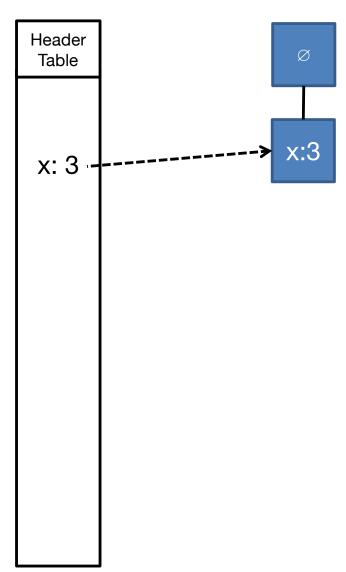
Example FP-Tree: Conditional s (2)



 $s_{min}=3$

Example FP-Tree: Conditional s

- Recurse...
 - Prefix: sx



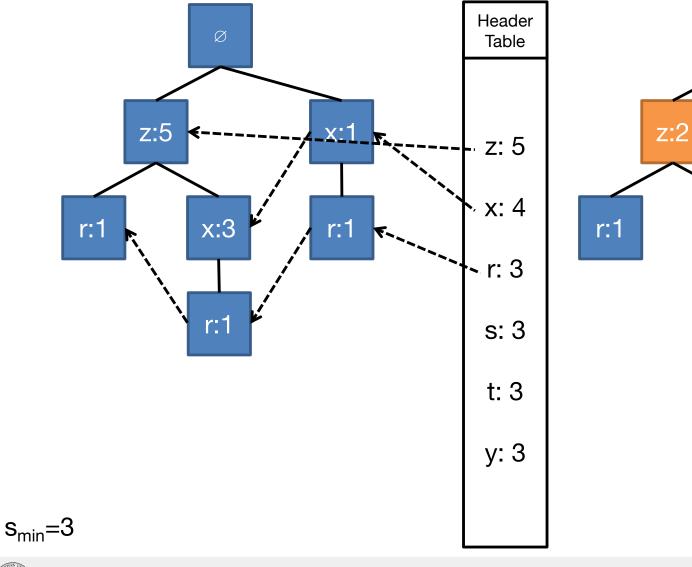
$$s_{min}=3$$

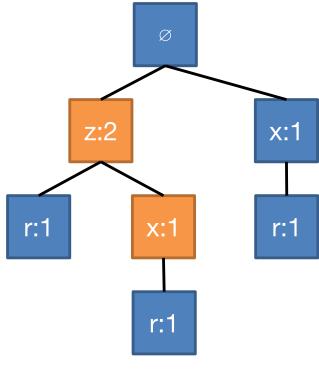
Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
x	{x}
r	{r}
S	{s}, {s,x}
t	{t}, {t,x}, {t,z}, {t,x,z}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,t,x,z}

September 16, 2017 102

Example FP-Tree: Conditional r (1)

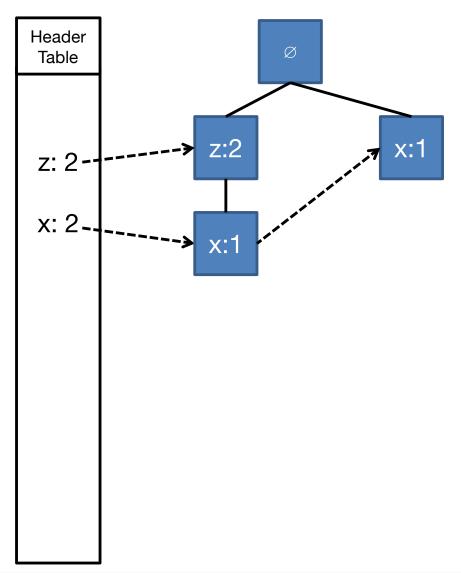




Frequent Itemsets & Association Rules

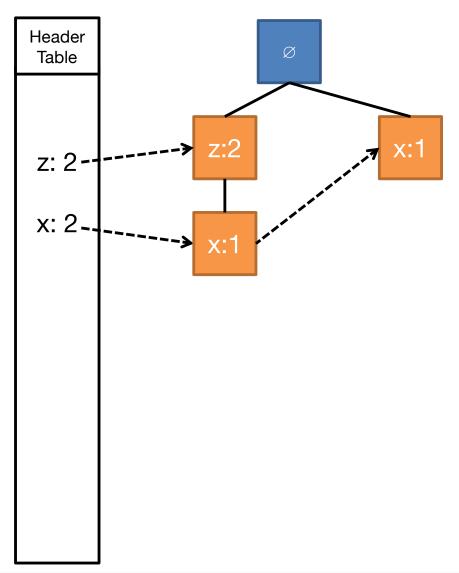
September 16, 2017 103

Example FP-Tree: Conditional r (2)



$$s_{min}=3$$

Example FP-Tree: Conditional r (2)



$$s_{min}=3$$

Example FP-Tree: Conditional r

No recursion

Header **Table**

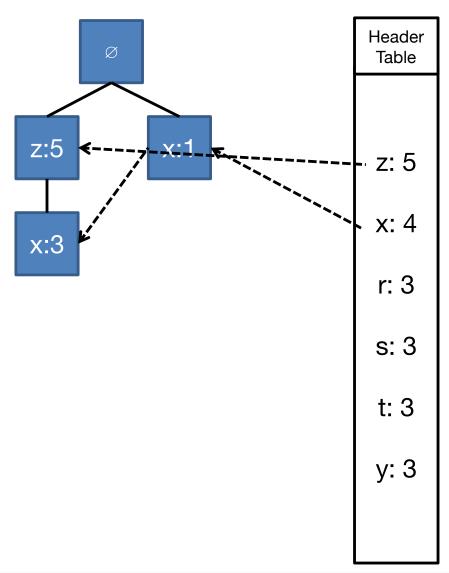
 $s_{min}=3$

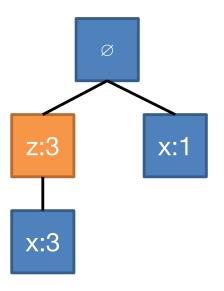
Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
X	{x}
r	{r}
S	{s}, {s,x}
t	{t}, {t,x}, {t,z}, {t,x,z}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,t,x,z}

September 16, 2017 107

Example FP-Tree: Conditional x (1)

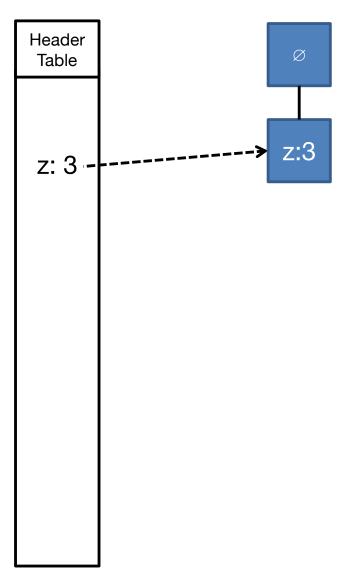




 $s_{min}=3$

Example FP-Tree: Conditional x

- Recurse...
 - Prefix: xz

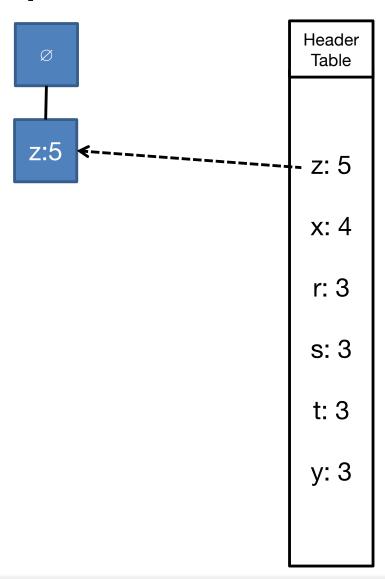


$$s_{min}=3$$

Scorecard:)

Frequent Item	Frequent Itemsets
Z	{z}
X	{x}, {x,z}
r	{r}
S	{s}, {s,x}
t	{t}, {t,x}, {t,z}, {t,x,z}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,t,x,z}

Example FP-Tree: Conditional z



 $s_{min}=3$

Final Scorecard!

Freque nt Item	Frequent Itemsets
Z	{z}
X	{x}, {x,z}
r	{r}
S	{s}, {s,x}
t	{t}, {t,x}, {t,z}, {t,x,z}
У	{y}, {y,t}, {y,x}, {y,z}, {y,t,x}, {y,t,z}, {y,x,z}, {y,x,z},

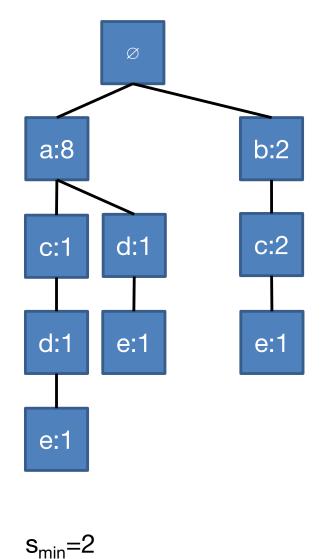
- r, s, t, x, y, z
- sx, tx, tz, xz, yt, yx, yz
- txz, ytx, ytz, yxz
- ytxz

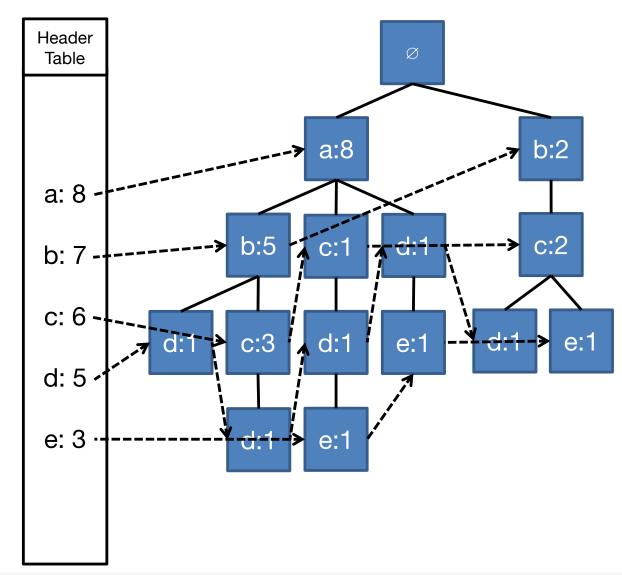
Frequent Itemsets

- Z, r
- z, x, s, t, y
- X, r, s
- z, x, r, t, y
- z, x, s, t, y

- r, s, t, x, y, z
- sx, tx, tz, xz, yt, yx, yz
- txz, ytx, ytz, yxz
- ytxz

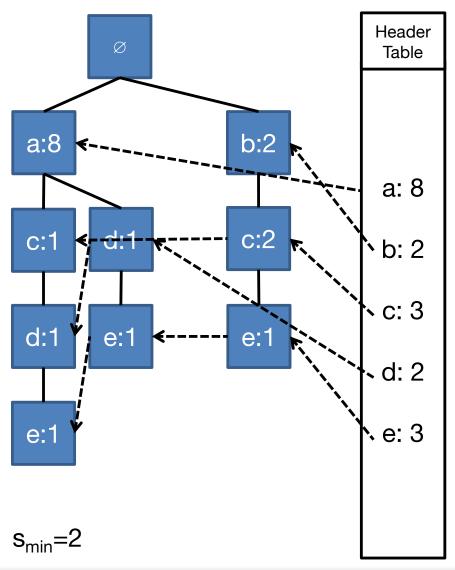
Try: Ending in e

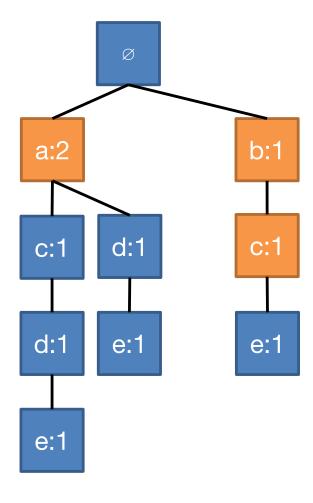




Frequent Itemsets & Association Rules

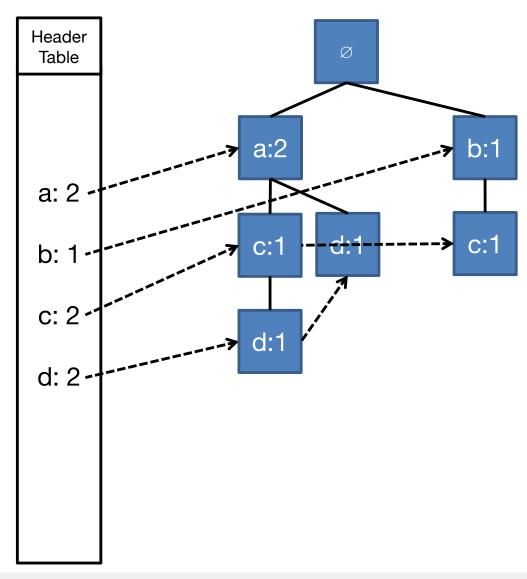
Try: Conditional e (1)





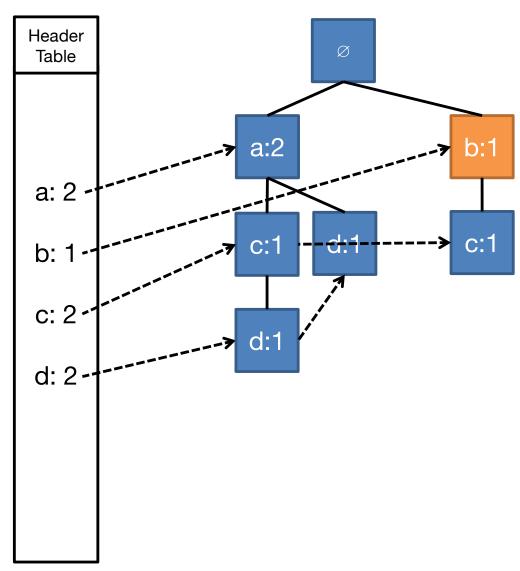
Frequent Itemsets & Association Rules

Try: Conditional e (2)



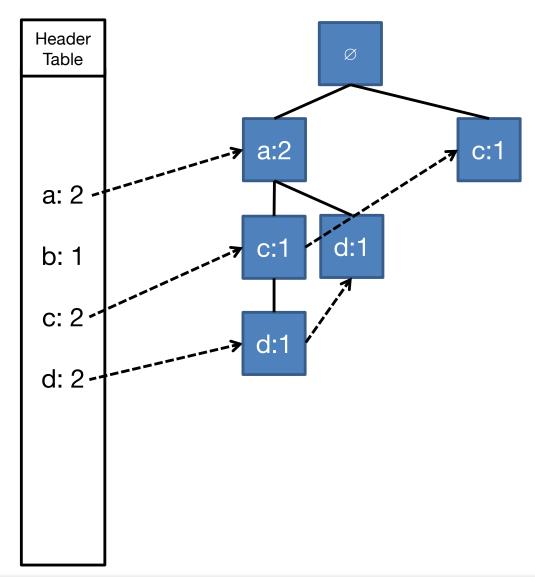
 $s_{min}=2$

Try: Conditional e (2)



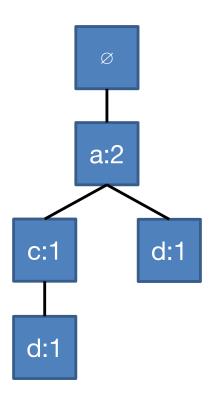
 $s_{min}=2$

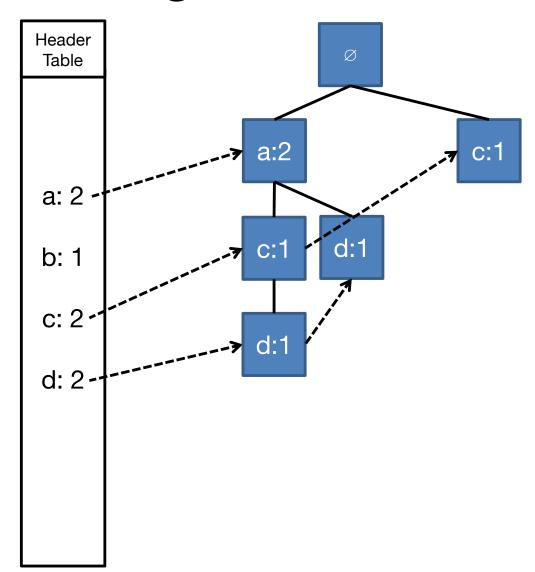
Try: Conditional e



 $s_{min}=2$

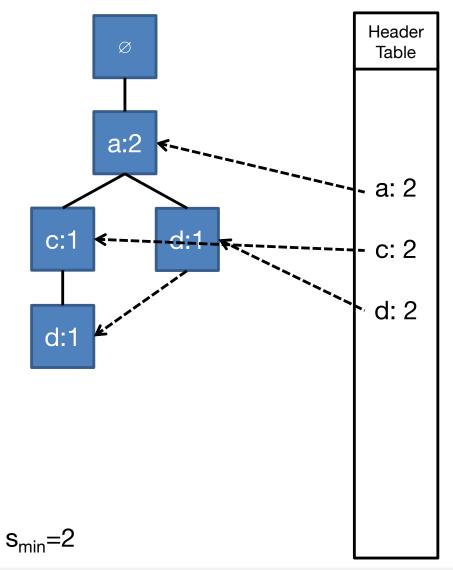
Try: Ending in de

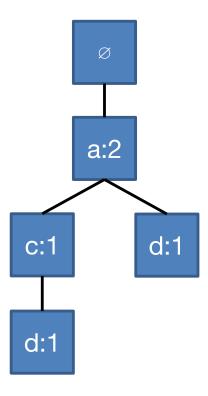




 $s_{min}=2$

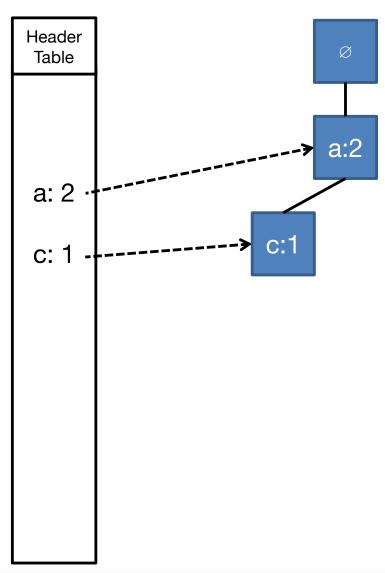
Try: Conditional de (1)





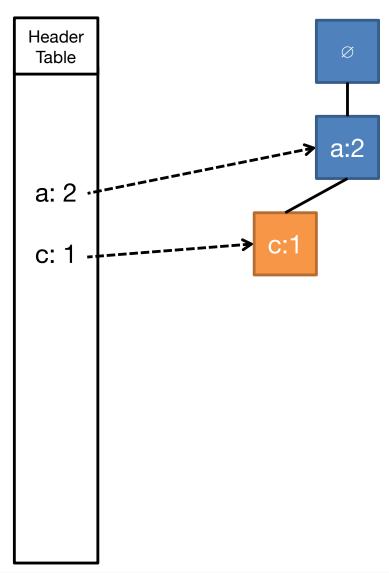
Frequent Itemsets & Association Rules

Try: Conditional de (2)



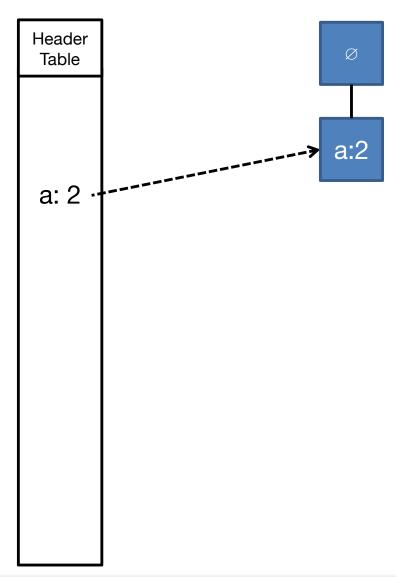
 $s_{min}=2$

Try: Conditional de (2)



 $s_{min}=2$

Try: Conditional de



 $s_{min}=2$

FP-Growth Analysis

Advantages

- 2 passes over dataset (yay I/O!)
- "Compresses" dataset
- No candidate generation
- Typically much faster than Apriori

Disadvantages

- May not fit in memory
 - Distributed version!
- Time wasted to build the FP-Tree if need to change the threshold

Frequent Itemsets & Association Rules

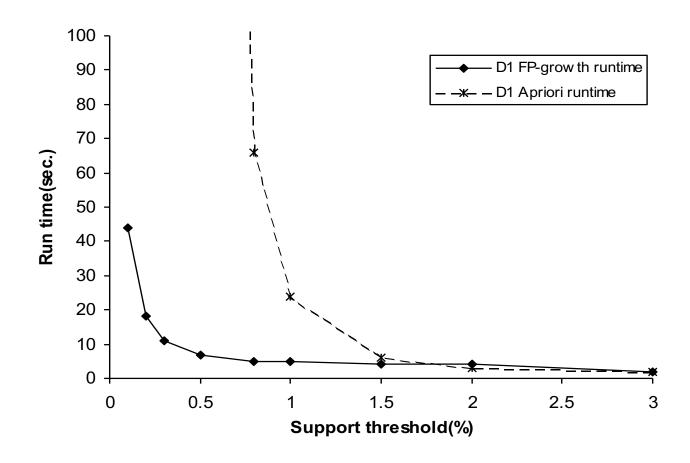
Apriori vs FP-Growth (1)

File	Apriori	FP-Growth
Simple Market Basket test file	3.66 s	3.03 s
"Real" test file (1 Mb)	8.87 s	3.25 s
"Real" test file (20 Mb)	34 m	5.07 s
Whole "real" test file (86 Mb)	4+ hours (Never finished, crashed)	8.82 s

https://www.singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining

Frequent Itemsets & Association Rules

Apriori vs FP-Growth (2)



Jiawei Han, Micheline Kamber and Jian Pei (Chapter 6)

Frequent Itemsets & Association Rules

Compacting Output

- As you have seen, many, often redundant, itemsets can be generated
- As an optional post-processing step, we can output only "representative" itemsets
 - Maximal: no immediate superset is frequent
 - Smallest set from which all other frequent itemsets can be derived
 - Closed: no immediate superset has same count (assuming c>0)
 - Can re-compute not only non-closed frequent itemsets, but also support (see TSK:6.4.2)

Frequent Itemsets & Association Rules

Maximal Frequent Itemsets

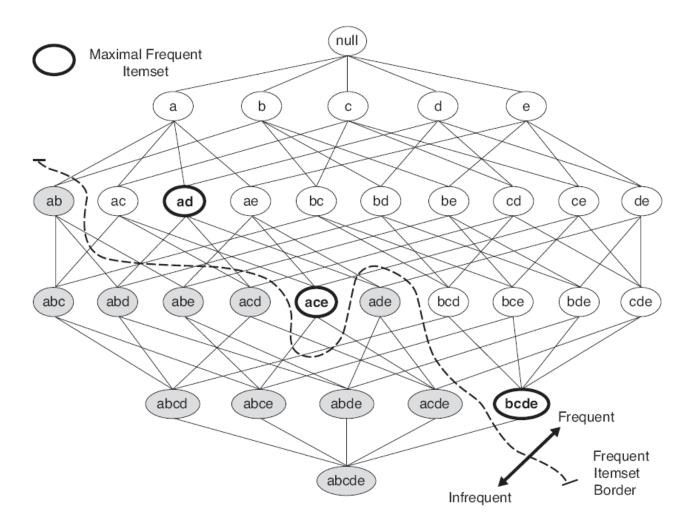


Figure 6.16. Maximal frequent itemset.

Frequent Itemsets & Association Rules

Closed Frequent Itemsets

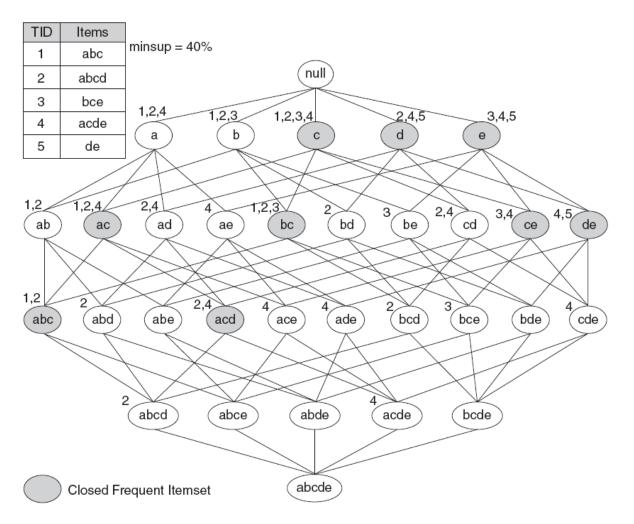


Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

Frequent Itemsets & Association Rules

Relationship

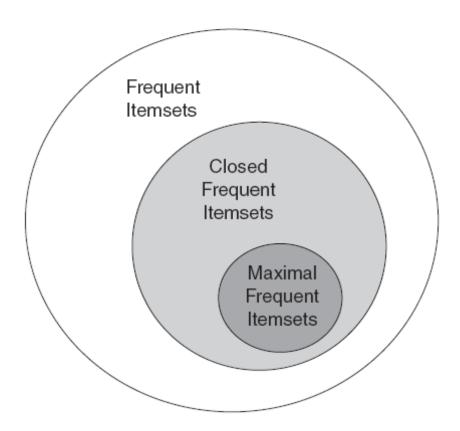


Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent itemsets.

Frequent Itemsets & Association Rules

TID	Itemsets
1	{b, c, d}
2	{a, d, e}
3	{b, d}
4	{a, c}
5	{b, c, d}
6	{a, b, c, d}
7	{a, b, c}
8	{b, c}

Frequent Itemsets

- a(4), b(6), c(6), d(5)
- ac(3), bc(5), bd(4), cd (3)
- bcd(3)

Closed

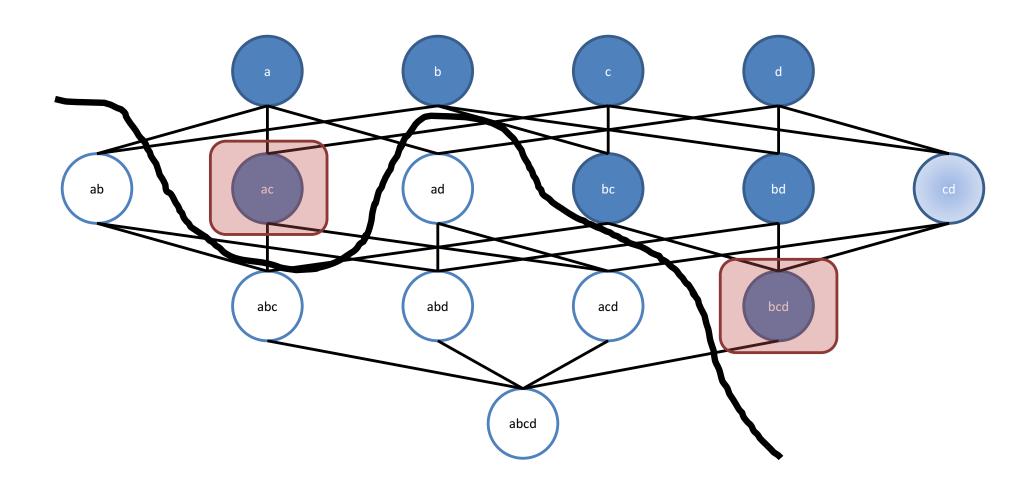
- a, b, c, d
- · ac, bc, bd
- bcd

Maximal

- ac
- bcd

 $s_{min}=3$

Itemset Lattice for $\mathcal{I} = \{a, b, c, d\}$



Frequent Itemsets & Association Rules

Summary (1)

- Association analysis attempts to find "interesting" rules associating co-occurring sets of items
- The typical approach is to find frequent itemsets, then interesting rules
- There are many metrics, each with tradeoffs in content and efficiency
 - Confidence leads to rule-generation pruning
 - Support leads to Apriori principle

Frequent Itemsets & Association Rules

- Apriori exploits non-monotonicity in support to prune itemset search, but must scan the dataset for each iteration
- FP-Growth improves upon Apriori by building a data structure (FP-Tree) with just 2 searches across the dataset
- Maximal and Closed itemsets more compactly represent frequent itemsets

Frequent Itemsets & Association Rules