Mining Frequent ltemsets
with A-Prior

Market Basket Analysis

Baskets of items

TID Items
Bread, Coke, Milk

Which items are frequently
purchased together by my customers?

Beer, Bread

Shopping Baskets

Beer, Coke, Diaper, Milk

L, [[

Beer, Bread, Diaper, Milk

N| & W N[=

bread | // | |milk bread| // . bread | 1/ " "
\ | milk Iy R [\ | milk
U cereal sugar cggs \ butter /] COke, Dlapel‘, Mllk
Customer | Customer 2 Customer 3

Assoclation Rules

Market Analyst

.b Customer n. | {Milk} "> {COke}
{Diaper, Milk} --> {Beer}

Finding Frequent ltem Sets

e the set of all items

1= |1I|, how
any possible

emsets are
there?

Finding Frequent ltem Sets

Answer: 2" — 1: Cannot enumerate all possible sets

Anti-monotone Property

A function f (defined on sets) is said to follow
the anti-monotone property it

VA,Be?2': ACB= f(A) > f(B)

Support follows the anti-monotone property

cA)=|{treT:ACt}|

oriori Principle

INntuition: A-

Observation: Subsets of a frequent item set are also frequent

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Intuition: A-priori Principle

llary: It a set is not frequent, then its supersets are also not freg

Infrequent
ltemset

Pruned >~
N
Supersets So

~
~
~
—
-~
_~—
 —

~
N ———

http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”,

A-priori Algorithm

1. Find all frequent itemsets of size 1
(only have to check M = |I| possible sets)

2. Fork=1)2,..M

. Extend frequent itemsets of size k — 1
to create candidate itemsets of size k

 Find candidate sets that are frequent

A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Aprior: algorithm.

1: k=1.
2: Fp={i|ielNno({i}) > N xminsup}. {Find all frequent 1-itemsets}
3: repeat
4. k=k+1.
5. Cy = apriori-gen(F%_1). {Generate candidate itemsets}
6: for each transaction t € T' do
7: Cy = subset(Ck, t). {Identify all candidates that belong to ¢}
8: for each candidate itemset ¢ € C; do
9: o(c)=0(c)+1. {Increment support count}
10: end for
11: end for

122 Fry={c|lceCrNo(c) >N xminsup}. {Extract the frequent k-itemsets}
13: until Fi, =0
14: Result = | Fy.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Aprior: algorithm.

k=1.
Frp={i|lielNo({i}) > N xminsup}. {Find all frequent 1-itemsets}
repeat

k=Fk+1.

C) = apriori-gen(Fj_1). {Generate candidate itemsets}
for each transaction ¢ € T' do
Cy = subset(Ck, t). {Identify all candidates that belong to ¢}
for each candidate itemset ¢ € C; do
o(c)=0(c)+1. {Increment support count}
end for
end for
Frp,={c|lceCyNa(c) >N x minsup}. {Extract the frequent k-itemsets}
until F, =0
Result = | F.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Generating Candidates Ck

Objectives

1. No Duplicates: A candidate itemsets must be
unigue.

2. Completeness: At least, all frequent k-
itemsets should be included.

3. No infrequent subsets: A candidate should
not have any infrequent subset.

Generating Candidates Ck

stions
W many k-itemsets are there?

W to reduce number of candidates using the computations
eady performed?

F,_, X F,: combine frequent (k-1)-itemsets with frequent 1-
itemsets to get candidates of size K.

F,_| X F,_{: combine frequent (k-1)-itemsets with other freque

(k-1)-itemsets that differs in only 1 item to get candidates of siz
K.

Generating Candidates Ck

Iplicates

Combining sets arbitrary pairs of sets from
F,_, and F; will lead to duplicate candidates

{a,b,c} U {d} ={a,b,c,d}
la,b,d} U {c} ={a,b,c,d}

Combining sets arbitrary pairs of sets from
F;_, will lead to duplicate candidates

{a,b,c} U{a,b,d} ={a,b,c,d}
la,b,c}U{a,c,d} ={a,b,c,d}

Generating Candidates Ck

tion to duplicates

Sort the items
* ltem ordering: Define an ordering on all items
e Either by assigning a unique id to each item. The
items are ordered based on their ID.
* Or by a lexicographic ordering on the item string; e.Q.
‘coke’ < ‘cookie’
e Assume that the items in the itemsets Iin F,_, are
sorted. a, < a, < ...<a,in A={a,a,,...,a,}

Generating Candidates Ck

lon to duplicates

X I';: Combine AeF,_,andB={b} eF,onlyifVaeA a<b.
ombine {a,c,e} with {f} to give candidate {a,c,e,f}.

0 not combine {a,c, e} with {d}.

0 duplicates: Each candidate has only one way of being
enerated. {a,c,e,f} can only be generated by combining {a,c,e
nd {f}.

ompleteness: It{a,c,e,f} is indeed frequent, {a,c,e} and {f} hav
) be present in F; and F,. And they would get combined to
enerate {a,c,e,f}.

ubsets of generated candidates might still be infrequent

Generating Candidates Ck
lon to duplicates

X I, _1: Combine A € F,_,and B € F,_, only if
Sfori=12...k—2anda,_, <b,_;.

ombine {a,c,e} with {a, c,f} to give candidate {a,c,e,f}.

0 not combine {a,c, e} with {a, b, e}.

0 duplicates: Each candidate has only one way of being
enerated. {a,c,e,f} can only be generated by combining {a,c,e
nd {a,c,f}.

ompleteness: It{a,c,e,f} is indeed frequent, {a,c, e} and {a,c,f}
ave to be present in F;. And they would get combined to
enerate {a,c,e,f}.

ubsets of generated candidates might still be infrequent

Generating Candidates Ck

to efficiently find itemsets that could be combinec

set Ordering: Use the ordering on items to define an ordering «
sets

sume that the items in each itemset are presorted.
<a,<...<a inA={a,a,....q}

. B if a; < b, where 1 is the index of the first item differing in A an
ple, bread, coke, sauce} < {apple, bread, cookie, milk} or {4,7,21,50} < {4,7

ements of F,_, sorted with the itemset ordering
{a,b,c},{a,b,e},{a,b,g},{a,c,d},{a,c,g}...

N

b, c} can’t be combined with any
1set beyond {a, b, g}. So no need
to compare beyond {a, ¢, d}

Generating Candidates Ck

19 candidates with infrequent subsets

or a candidate of size k, one only needs to check
lbsets of size k — 1.

numerate subsets of size k — 1 by removing one
ement at a time from the candidate.

sarch for the subsets one after the other in £,_; until
subset is not found or the list of subsets is exhausted
Binary search could be performed if F,_; is sorted
under the itemset ordering for an efficient search.
Alternatively a hash tree could be build to store the
itemsets of F,_, for an efficient search.

a subset wasn’t found the candidate should be
iIscarded.

Generating Candidates Ck

Self-joining: Find pairs of sets in Fx-1
that have first k — 2 items in common and
differ by one element.

Pruning: Remove all candidates
with infrequent subsets

2quent itemsets of size 2.
c}:5, {b,m}:4,{c,/}:3 {c,m}:3

olf-joining:
c,m}, {¢,j,m}

uning:

A} since H} not frequent

2gquent items of size 3:

),C,m}

Example: Generating Candidates Ck

tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Aprior: algorithm.

k=1.
Frp={i|lielNo({i}) > N xminsup}. {Find all frequent 1-itemsets}
repeat

k=Fk+1.

C) = apriori-gen(Fj_1). {Generate candidate itemsets}
for each transaction ¢t € T' do
Cy = subset(Ck, t). {Identify all candidates that belong to ¢}
for each candidate itemset ¢ € C; do
o(c)=0(c)+1. {Increment support count}
end for
end for
Frp,={c|lceCyNa(c) >N x minsup}. {Extract the frequent k-itemsets}
until F, =0
Result = | F.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Aprior: algorithm.

1: k=1.
2: Fp={i|ielNno({i}) > N xminsup}. {Find all frequent 1-itemsets}
3: repeat
4. k=k+1.
5. Cy = apriori-gen(F%_1). {Generate candidate itemsets}
6: for each transaction t € T' do
7: Cy = subset(Ck, t). {Identify all candidates that belong to ¢}
8: for each candidate itemset ¢ € C; do
9: o(c)=0(c)+1. {Increment support count}
10: end for
11: end for

122 Fry={c|lceCrNo(c) >N xminsup}. {Extract the frequent k-itemsets}
13: until Fi, =0
14: Result = | Fy.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

‘oblem: Nalve Matching Is Expensi\

J(N M), where N is number of baskets and M is number of canc

Candidates
A
Transactions
TID Iltems
A [1 [Bread, Milk M
2 Bread, Diapers, Beer, Eggs
N I3~ [Milk, Diapers, Beer, Coke
4 Bread, Milk, Diapers, Beer
v |5 Bread, Milk, Diapers, Coke
Y

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

egy 1: Enumerating Transaction Sul

Given a transaction t, what
are the possible subsets of
size 3? 12356

Transaction, t

(items are sorted)

235

536 256 356

Level 3 Subsets of 3 items

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Hash Tree for [temsets

Hash Function Candidate Hash Tree

14,7 3,69
2,58
145
Hash on
1,4o0r7
124

15 candidate 3-itemsets, distributed across 9 leaf nodes

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Hash Tree for [temsets

Hash Function Candidate Hash Tree

14,7 3,69
258
145
Hash on
2,50r8 it
124

15 candidate 3-itemsets, distributed across 9 leaf nodes

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hashing ltemsets

Hash Function

14,7

25,8

Hash on
3,6or9

3,6,9

145

124

457

125 |

458

Candidate Hash Tree

__

15 candidate 3-itemsets, distributed across 9 leaf nodes

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hash Tree for Candidates

1+

2356

124
457

12356

l

transaction

2

356

1235

458

159

689

Hash Function

14,7 3,6,9
258

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hash Tree for Candidates

12+

356

13+

56

15+

1+

145

124

457

Hash Function

12356 | transaction
2151916 241356 14,7 3,69
258
3+156
4/
234
567
136
345 356 367
357 368
195 159 689
458

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hash Tree for Candidates

12356

l

(\®)

transaction

356

(U]
~

1+/2356
12+/356 \
13+|56
15+|6°
145 136
124 125 159
457)1458

345

3+56

Hash Function

14,7 3,6,9

2,58

«— Minor correction: This
branch won't be reached.
{3,5,6} only reaches the

/middle branch

356

357

689

367

368

Match transaction against 1 out of 15 candidates

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Aprior: algorithm.

1: k=1.
2: Fp={i|ielNno({i}) > N xminsup}. {Find all frequent 1-itemsets}
3: repeat
4. k=k+1.
5. Cy = apriori-gen(F%_1). {Generate candidate itemsets}
6: for each transaction t € T' do
7: Cy = subset(Ck, t). {Identify all candidates that belong to ¢}
8: for each candidate itemset ¢ € C; do
9: o(c)=0(c)+1. {Increment support count}
10: end for
11: end for

122 Fry={c|lceCrNo(c) >N xminsup}. {Extract the frequent k-itemsets}
13: until Fi, =0
14: Result = | Fy.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Rule Generation

>ms of each frequent itemset Y can be partitioned into the
onsequent and the the antecedent to give arule. Foran X C Y
X—->Y-X

= {a, b, c} could give the six rule {a,b} — {c},{a,c} - {b},
,ct = {a}, {a} - {b,c}, {b} — {a,c}, {c} - {a,b}.

frequent k-itmeset can potentially give to 2¥ — 2 rules.
ot all rules are confident

CX—->Y—-X)=o0Y)/o(X) < minconf

ow to find confident association rule without enumerating them all?

Rule Generation

> Pruning

Theorem 6.2. [f a rule X — Y —X does not satisfy the confidence threshold,

then any rule X' — Y — X', where X' is a subset of X, must not satisfy the
confidence threshold as well.

Low-Confidence

(_ abed=>{})
g __———\\
//’ S
P e -

-~ S N ” ~\ 7 B N 7 - ~\
(bed=>a) '\ _(_acd=>b) (_ abd=>c) (_abc=>d)
/ \‘ g \ . o /
. — - :)
/\ N\

. \ < N . _r'
/S \

\ /
|
.

T —— N\ .
- - o I ™\
() (imaed (emed) (o

“ad=>bc) Cac=sbd) (ab=>cd)
/ [N p B
\ / \\ \
\ / << N) \
\ f) < X
\ ||. . . . N - \ -
\ \) RN \
\ . N]

C e ™ ' SN a N
\ G (o) Cmedt\ (ambod)
\
\ Pruned _-7
\ Rules -
~

—
———
——
~— - ———
T ————————

Figure 6.15. Pruning of association rules using the confidence measure.

Rule Generation

Algorithm 6.2 Rule generation of the Apriori algorithm.
I: for each frequent A-itemset fi. k> 2 do
22 Hy={i|i€ fi} { 1-item consequents of the rule.}
3: call ap-genrules(f,. H,.)
1: end for

Algorithm 6.3 Procedure ap-genrules(fi., H,,).

1: k= |fi| {size of frequent itemset.}
2: m = |H,,| {size of rule consequent.}
3: if £ >m + 1 then

| H,, ., = apriori-gen(H,,,).

5. for each h,,,, € H,,,, do

6: conf = o(fi)/o(fi — hmi1).

T if conf = minconf then

8: output the rule (fi — hyi1) — 1.
0: else

10: delete h,,+1 from H,, ;1.

11: end if

12: end for
13: call ap-genrules(fi.. H,,,11.)
14: end if

Compacting the Output

u m b e r Of f re q u e nt i te m O Maxima:nFSr:q uent %'
can be exponential in oo OoOO
wumber of items. LN

1t be useful to work with XS
pact representations B © ® 0 @ o

{

N /I N\ \
- —
—— |

imal frequent itemsets:
mmediate superset is ® = <a.bfe;: EN

Jent md /

Infrequent

eS maore pruning Figure 6.16. Maximal frequent itemset.

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Compacting the Output

‘equent itemsets:

nediate superset has same

not only frequent
ation, but exact counts

)unts of non-closed frequent
>an be obtained as the

um of its closed frequent

et

dant association rules are
nerated if using closed
nt itemsets.

TID | ntems

1 abce

2
3 bce
4

W
(=
@

=

minsup = 40%

(‘null)

L __> Closed Frequent Itemset 'i_'__'f}findf_:_:'

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Maximal vs Closed

Bi={m,c,b} Bz={m, p,jj
Bs = {m, bj Bs={C,]}
Bs={m,c, b} Bg={m,c,b,j}
Bz={c,b,}} Bg={b, cj

Frequent itemsets:

{m}:5, {c}:6, {b}:6, {j}:4, Closed

{m,c}:3, {m,b}:4, {c,b}:5, {c,j}:3, Maximal
{m,c,b}:3

Example: Maximal vs Closed

Frequent
ltemsets

Closed
Frequent
ltemsets

