
Mining Frequent Itemsets
with A-Priori

Market Basket Analysis

 {Milk} --> {Coke}
 {Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Baskets of items

Association Rules

Data to be Mined

Set Data:

Yijun Zhao DATA MINING TECHNIQUES Introduction

Finding Frequent Item Sets
332 Chapter 6 Association Analysis

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

If , how
many possible
itemsets are

there?

M = | I |

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Let be the set of all itemsI

Finding Frequent Item Sets
332 Chapter 6 Association Analysis

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Answer: ; Cannot enumerate all possible sets 2M − 1

Anti-monotone Property

 ∀A, B ∈ 2I : A ⊆ B ⇒ f(A) ≥f(B)

A function (defined on sets) is said to follow
the anti-monotone property if

f

 is the set of all items
 denotes the power set of
I
2I I

Support follows the anti-monotone property
 σ : 2I → N
 , the
set of natural numbers
N = {0,1,…, ∞} σ(A) = |{t ∈ T : A ⊂t} |
 : the set of all transactionsT

Intuition: A-priori Principle
Observation: Subsets of a frequent item set are also frequent334 Chapter 6 Association Analysis

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Frequent
Itemset

Figure 6.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this

itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J = 2I be the power set of I. A measure f is monotone (or upward closed) if

∀X, Y ∈ J : (X ⊆ Y) −→ f(X) ≤ f(Y),

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Intuition: A-priori Principle
6.2 Frequent Itemset Generation 335

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Infrequent
Itemset

Pruned
Supersets

Figure 6.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y , then f(X) must not exceed f(Y). On
the other hand, f is anti-monotone (or downward closed) if

∀X, Y ∈ J : (X ⊆ Y) −→ f(Y) ≤ f(X),

which means that if X is a subset of Y , then f(Y) must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

Corollary: If a set is not frequent, then its supersets are also not frequent

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

A-priori Algorithm

1. Find all frequent itemsets of size  
(only have to check possible sets)

2. For
• Extend frequent itemsets of size  

to create candidate itemsets of size
• Find candidate sets that are frequent

1
M = | I |

k = 1,2,…M
k − 1

k

A-priori Algorithm

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here

Matching Transactions to Candidate Sets

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Generating Candidates Ck

Objectives
1. No Duplicates: A candidate itemsets must be

unique.
2. Completeness: At least, all frequent k-

itemsets should be included.
3. No infrequent subsets: A candidate should

not have any infrequent subset.

Generating Candidates Ck

Questions
1. How many k-itemsets are there?
2. How to reduce number of candidates using the computations

already performed?
1. : combine frequent (k-1)-itemsets with frequent 1-

itemsets to get candidates of size k.

2. : combine frequent (k-1)-itemsets with other frequent
(k-1)-itemsets that differs in only 1 item to get candidates of size
k.

Fk−1 × F1

Fk−1 × Fk−1

 {a, b, c} ∪ {a, b, d} = {a, b, c, d}

{a, b, c} ∪ {d} = {a, b, c, d}

Generating Candidates Ck

 {a, b, c} ∪ {a, b, d} = {a, b, c, d}
{a, b, c} ∪ {a, c, d} = {a, b, c, d}

{a, b, c} ∪ {d} = {a, b, c, d}
{a, b, d} ∪ {c} = {a, b, c, d}

Duplicates
Combining sets arbitrary pairs of sets from
 and will lead to duplicate candidatesFk−1 F1

Combining sets arbitrary pairs of sets from
 will lead to duplicate candidatesFk−1

Each candidate of size k
could be generated k

times

Each candidate of size k
could be generated

 times(k
k − 2)

Generating Candidates Ck

Solution to duplicates

Sort the items
• Item ordering: Define an ordering on all items

• Either by assigning a unique id to each item. The
items are ordered based on their ID.

• Or by a lexicographic ordering on the item string; e.g.
‘coke’ < ‘cookie’

• Assume that the items in the itemsets in are
sorted.

Fk−1
a1 < a2 < … < ak in A = {a1, a2, …, ak}

ID based ordering will
have computational

advantage since
comparing numbers

is cheaper than
comparing strings

Generating Candidates Ck
Solution to duplicates

 : Combine and only if .
• Combine with to give candidate .
• Do not combine with .
• No duplicates: Each candidate has only one way of being

generated. can only be generated by combining
and .

• Completeness: If is indeed frequent, and have
to be present in and . And they would get combined to
generate .

• Subsets of generated candidates might still be infrequent

Fk−1 × F1 A ∈ Fk−1 B = {b} ∈ F1 ∀a ∈ A a < b
{a, c, e} {f} {a, c, e, f}

{a, c, e} {d}

{a, c, e, f} {a, c, e}
{f}

{a, c, e, f} {a, c, e} {f}
F3 F1

{a, c, e, f}

Combine if all
items in are
less than the
only item in B

A

Generating Candidates Ck
Solution to duplicates
 : Combine and only if
 and .

• Combine with to give candidate .
• Do not combine with .
• No duplicates: Each candidate has only one way of being

generated. can only be generated by combining
and .

• Completeness: If is indeed frequent, and
have to be present in . And they would get combined to
generate .

• Subsets of generated candidates might still be infrequent

Fk−1 × Fk−1 A ∈ Fk−1 B ∈ Fk−1
ai = bi, for i = 1,2…k − 2 ak−1 < bk−1

{a, c, e} {a, c, f} {a, c, e, f}
{a, c, e} {a, b, e}

{a, c, e, f} {a, c, e}
{a, c, f}

{a, c, e, f} {a, c, e} {a, c, f}
F3

{a, c, e, f}

Combine if the first
 items in and B
are the same and the

last element of is less
than that of .

k − 2 A

A
B

Generating Candidates Ck
How to efficiently find itemsets that could be combined?
• Itemset Ordering: Use the ordering on items to define an ordering of

itemsets
• Assume that the items in each itemset are presorted.

• if , where is the index of the first item differing in and .

 or

a1 < a2 < … < ak in A = {a1, a2, …, ak}
A < B ai < bi i A B
{apple, bread, coke, sauce} < {apple, bread, cookie, milk} {4,7,21,50} < {4,7,25,40}

Elements of sorted with the itemset ordering

Fk−1
{a, b, c}, {a, b, e}, {a, b, g }, {a, c, d}, {a, c, g }…

 can’t be combined with any
itemset beyond . So no need

to compare beyond

{a, b, c}
{a, b, g }

{a, c, d}

Without exploiting the itemset ordering
 comparisons

need to be made
|Fk−1 | (|Fk−1 | − 1)/2

Fk−1 × Fk−1

Generating Candidates Ck

Pruning candidates with infrequent subsets
• For a candidate of size , one only needs to check

subsets of size .
• Enumerate subsets of size by removing one

element at a time from the candidate.
• Search for the subsets one after the other in until

a subset is not found or the list of subsets is exhausted
• Binary search could be performed if is sorted

under the itemset ordering for an efficient search.
• Alternatively a hash tree could be build to store the

itemsets of for an efficient search.
• If a subset wasn’t found the candidate should be

discarded.

k
k − 1

k − 1

Fk−1

Fk−1

Fk−1

If all size subsets
are frequent so are
subsets of smaller sizes.

Each candidate of size
will give subsets of
size

k − 1

k
k

k − 1
For each candidate

 comparisons
might be needed in the
worst case, if searching

naively.
This can be improved by

binary search
 or

constructing hash table

O(k |Fk−1 |)

O(k log(|Fk−1 |))

Generating Candidates Ck

1. Self-joining: Find pairs of sets in Fk-1  
that have first items in common and
differ by one element.

2. Pruning: Remove all candidates  
with infrequent subsets

k − 2

Example: Generating Candidates Ck

• Frequent itemsets of size 2:  
{b,c}:5, {b,m}:4,{c,j}:3 {c,m}:3

• Self-joining:  
{b,c,m}, {c,j,m}

• Pruning:  
{c,j,m} since {j,m} not frequent

• Frequent items of size 3:
{b,c,m}

 B1 = {b, c, m} B2 = {j, m, p}
 B3 = {b, m} B4= {c, j}
 B5 = {b, c, m} B6 = {b, c, j, m}
 B7 = {b, c, j} B8 = {b, c}

Matching Transactions to Candidate Sets

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

A-priori Algorithm

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here

Problem: Naive Matching is Expensive

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

6.2 Frequent Itemset Generation 333

M

Milk, Diapers, Beer, Coke

Bread, Diapers, Beer, Eggs

Bread, Milk, Diapers, Beer

Bread, Milk, Diapers, Coke

Bread, Milk

Transactions

Candidates

TID Items

N

1

2

3

4

5

Figure 6.2. Counting the support of candidate itemsets.

There are several ways to reduce the computational complexity of frequent
itemset generation.

1. Reduce the number of candidate itemsets (M). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 6.2.4 and 6.6.

6.2.1 The Apriori Principle

This section describes how the support measure helps to reduce the number
of candidate itemsets explored during frequent itemset generation. The use of
support for pruning candidate itemsets is guided by the following principle.

Theorem 6.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 6.3. Suppose {c, d, e} is a frequent itemset. Clearly,
any transaction that contains {c, d, e} must also contain its subsets, {c, d},
{c, e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is frequent, then
all subsets of {c, d, e} (i.e., the shaded itemsets in this figure) must also be
frequent.

Cost: O(N M), where N is number of baskets and M is number of candidates

Strategy 1: Enumerating Transaction SubsetsSubset Operation

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what
are the possible subsets of
size 3?

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

33 / 55

(items are sorted)

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Hash Tree for ItemsetsAssociation Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
1, 4 or 7

Candidate Hash Tree

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

30 / 55adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash on
2, 5 or 8

Hash Function Candidate Hash Tree

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

31 / 55

Hash Tree for Itemsets

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash on
3, 6 or 9

Candidate Hash TreeHash Function

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

32 / 55

Strategy 2: Hashing Itemsets

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes

Strategy 2: Hash Tree for Candidates

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

34 / 55

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

35 / 55

Strategy 2: Hash Tree for Candidates

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

36 / 55

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hash Tree for Candidates

Minor correction: This
branch won’t be reached.
{3,5,6} only reaches the

middle branch

9

A-priori Algorithm

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here

Rule Generation
• Items of each frequent itemset can be partitioned into the

consequent and the the antecedent to give a rule. For an

• could give the six rule

• A frequent k-itmeset can potentially give to rules.
• Not all rules are confident

• How to find confident association rule without enumerating them all?

Y
X ⊂Y

X → Y − X
Y = {a, b, c} {a, b} → {c}, {a, c} → {b},
{b, c} → {a}, {a} → {b, c}, {b} → {a, c}, {c} → {a, b} .

2k − 2

Pick a subset of the
 items as a

consequent. The
remaining items

become the
antecedent. Remove
 and

k

Y → ∅ ∅ → Y

 C(X → Y − X) = σ(Y)/σ(X) < minconf

 is also frequent by anti-
monotonicity. However, the rule

might not meet the minimum
confidence threshold.

X

Rule Generation
Rule Pruning
•

Rule Generation

Compacting the Output
• To number of frequent item

sets can be exponential in
the number of items.

• Might be useful to work with
compact representations

• Maximal frequent itemsets:  
No immediate superset is
frequent
•Gives more pruning

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Compacting the Output
Closed frequent itemsets:
• No immediate superset has same

count
• Stores not only frequent

information, but exact counts
• The counts of non-closed frequent

items can be obtained as the
maximum of its closed frequent
superset

• Redundant association rules are
not generated if using closed
frequent itemsets.

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

 and will have the
same support and confidence

because is not closed, but is

{b} → {a} {b, c} → {a}

{b} {b, c}

Example: Maximal vs Closed

Frequent itemsets:
{m}:5, {c}:6, {b}:6, {j}:4, 
{m,c}:3, {m,b}:4, {c,b}:5, {c,j}:3,  
{m,c,b}:3

 B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, b} B4= {c, j}
 B5 = {m, c, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

Closed
Maximal

Example: Maximal vs Closed
Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

26 / 55

