Decision Trees

some slides/drawings thanks to Carlos Guestrin@CMU
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. two basic supervised learning algorithms

— decision trees
- linear regression

. two simple datasets

- housing
- spam emails




Module 1 Objectives /Decision Trees

. Decision Trees
. Splitting Criteria
- decision stumps
- how to look for the best splits
- Regression Trees
— regression criteria
- Run a Decision Tree in practice

. Pruning



Data Partition Rules
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Data Partition Rules
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Data Partition Rules
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Decision Trees

. Goal: Learn from training set a decision tree
- initially all training datapoints at root
. Iterative splits:

- pick a terminal node (leaf) with inconsistent labels

- use a split criteria to branch data so that each
resulting child node has [more| consistent labels

- until no terminal nodes are inconsistent
. Use learned tree for prediction on the test set




Walkthrough Decision Tree Example
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. Data (matrix) example : automobiles

. Target : mpg e {good, bad} - 2 class /binary problem



Decision Tree Split

mpg values: bad good

root

22 18

pchance = 0.001

e

cylinders = 3 || cylinders = 4 | cylinders = 5 | cylinders =6 | cylinders = 8

0 0 4 17 1 0 8 0 ¥ 9

Predict bad Predict good Predict bad Predict bad Predict bad

. Split by feature “cylinders”, using feature values
for branches



Decision Tree Splits

mpg values: bad good

root

22 18

pchance = 0.001

e

cylinders = 3 | cylinders = 4 cylinders =5 || cylinders = b || cylinders = 8
00 4 17 10 g 0 9
Predict bad | pchance =0.135 | Predict bad  Predict bad |pchance =0.085

——— / >~

maker = america || maker = asia | maker = europe || horsepower = low | horsepower = medium || horsepower = high

0 10 25 S 00 0 1 90
Predict good 'redict good  Predict bad Predict bad Fredict good Predict bad

Recursively build a tree from the seven (SLmiIar recursion in the
records in which there are four cylinders and other cases)
the maker was based in Asia

. each terminal leaf is labeled by majority (at that
leaf). This leaf-label is used for prediction.



Decision Tree Splits

mpg values: bad good

— The final tree
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Splitting criteria: entropy-based gain

Entropy after split by X feature

1
H(Y|X) = ZP Z ey logz(P(yj':m))

Mutual information (or Information Gain).

IG(X)=H(Y) - H(Y|X)

. Y = labels random variable, H(Y) its entropy
. X Is a feature of the data used for splitting



Entropy gain toy example

At each split we are going to choose the feature that gives the highest information gain.
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Figure 6: 2 possible features to split by

1 1 1,1 1 3 3
H(Y|X' = 5H(Y|X1 =T)+ 5H(Y|X1 =F)=0+ Q(Z logy 7 + 7 log, Z) ~ .405

IG(XY)Y=H(Y) - H(Y|X") = .954 — 405 = .549

1 1 1.1 I 3 3 1.1 1 1 1
2y — — 2 = — 2: = —({ — — — — —{ — — — — ) X
H(Y|X?) = SHY|X? =T) + SH(Y|X? = F) = 5(; logy 7 + 7 logs 1) + 5 (5 1ogs 5 + 5 logs 5) ~ 905

IG(X?) = H(Y) — H(Y|X?) = .954 — .905 = .049



checkpoint: information gain
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. compute the
information gain
for f=cylinders and
for f=displacement

. once a split by
f=cylinders s
performed, for the
branch
“cylinders=4"
compute the
information gain
for f=displacement
and for f=maker



Regression Tree

. same tree structure, split criteria
. assume numerical labels

. for each terminal node compute the node label
(predicted value) and the mean square error

Estimate a predicted value per tree node

ZtEX'rn yt
9m =
|X7n/’

Calculate mean square error

Dt Wt = 9m)°

. o]
m

. choose a split criteria to minimize the weighted
error at children nodes



Regression Tree
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labels: 1, 2, 2, 3

1+2+2+3
g: 4 —

Error = Z (label; — g)* = 2

2

labels: 10, 12, 14, 15

10+ 12+ 14+ 15
g = 1

Error = Z (label; — g)* = 14.75

= 12.75

. choose a split criteria to minimize the weighted
or total error at children nodes

- In the example total error after the split is 14.7/5 +

2=16.75




Prediction with a tree

. for each test datapoint x=(x!x°,....x9) follow the
corresponding path to reach a terminal node n

. predict the value/label associated with node n



Prediction with a tree
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. decision trees can overfit quite badly

- In fact they are designed to do so due to high
complexity of the produced model

- if a decision tree training error doesnt approach
zero, It means that data Is inconsistent

. some ideas to prevent overfitting:

- create more than one tree, each using a different
subset of features; average/vote predictions

- do not split nodes in the tree that have very few
datapoints (for example less than 10)

- only split if the improvement is massive



. done also to prevent overfitting
. construct a full decision tree

. then walk back from the leaves and decide to
“merge” overfitting nodes

- when split complexity overwhelms the gain obtained
by the spit




tree implementation

. perl/python : easy to use a hash
. matlab : use a vector/matrix

. C/Java: use a struct/object with pointers to
children nodes.



Decision Tree Screencast

. http://www.screencast.com/t/JOjLmCdBWOM6



