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1 Introduction

Information theory is concerned with two main tasks. The sk is calleddata compression (source coding)
This is concerned with removing redundancy from data soritlma represented more compactly (either exactly, in
a lossless way, or approximately, in a lossy way). The sec¢askl iserror correction (channel coding), which
means encoding data in such a way that it is robust to erroeswlnt over a noisy channel, such as a telephone line.
It turns out that the amount by which you can compress dathttzen amount of redundancy you need to add to a
message before transmission, are both closely relatedighedictable the source of data is, i.e., to its probability
distribution. Hence there is a deep connection betweemrrdtion theory and statistics/ machine learning (indeed,
there is an excellent book on this topic [Mac03]). In thismtes, we introduce some of the key information-theoretic
measures of uncertainty and statistical dependence, susthti@py and mutual information.

2 Basic concepts

2.1 Data encoding

Suppose we want to encode some data, such as a text docuroanmiith space (i.e., number of bits) does this take?
It depends on the encoding scheme which we use for words,rahdw often each word occurs (on average).

Let us consider a simple example. Suppose we want to encag@tehce” that consists of the 5 lettéasb, ¢, d, e}.
We need/log, 5] = 3 bits to represent each letter. A simple encoding schemefidlaws:

a—000, b—001, c—010,d—011, e—100 D

So the string “abcd” gets encoded as
abed—000, 001,010,011 (2)

Itis clear that we needN bits to encode a string of length. (Note that to decode this, it is critical that we know
each codeword has length 3, since in practice we write thettitg without the commas. We will discuss this more

below.)
Now suppose some letters are more common than others. loyartsuppose we have the distribution

p(a) = 0.25,p(b) = 0.25,p(c) = 0.2, p(d) = 0.15,p(e) = 0.15 3)

Intuitively, we can use fewer bits by assigning short codelspsuch as 00 and 10, to common letters suchasdb,
and long codewords, such as 011, to rare letters suehlagarticular, consider the following encoding scheme:

a—00,b—10,c—11,d—010,e—011 (4)
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Figure 1: An illustration of a prefix-free code.

This encoding scheme [gefix-free, which means that no codeword is a prefix of any other: seedledn Figure 1.
Hence when we concatenate any sequence of codewords, waigaely decode the answer by repeatedly traversing
paths in the tree, e.qg.

001011010—00, 10, 11, 010—abed (5)

The average number of bits that are used by this encodingreztsegiven by
0.25%2+025%24+0.2%2+0.15%x3+0.15% 3 = 2.30 (6)

Since 2.3 is less than 3, we have produced a shorter codd) gdwes space (and transmission time). How low can we
go? Shannon proved that the expected number of bits neederttale a message is lower bounded byethteopy

of the probability distribution governing the data. (Thiscialled thesource coding theoremn) We discuss what we
mean by entropy below.

2.2 Huffman coding*

There is a very simple and elegant algorithm for generatptiral symbol codes. The idea is to assign code words to
symbols in the alphabet by building the binary tree up fromlgaves. Start by simply taking the least two probable
symbols in the alphabet and assinging them the longest ardewvhich differ by O or 1; then merge these two
symbols into a single symbol and repeat. Figure 2 gives ampba

In the example above, the Huffman code gives an expected ewafitbits of 2.30, whereas the entropyHis =
2.2855 bits (as we will see below). To achieve this lower bound rezgiihat we give up the notion of using an integer
number of bits per symbol; this results in what is caleidhmetic coding. In practice this means we must encode
group of symbols at a time (since we can’t send fractiona)bee [Mac03] for details.

2.3 Entropy

Consider a discrete random variabtee {1,..., K}. Suppose we observe the event that= k. We define the
information content of this event as

h(k) = logy 1/p(X = k) = —logy p(X = k) (7)

The idea is that unlikely events (with low probability) ceywmore information. Thentropy of a distributionp is
defined as the average information content of a random varfalwith distributionp:

K

H(X) ==Y p(X = k)logy p(X = k) ®)
k=1



Let Ax={a, b, ¢ d e }

and Py =1{0.25,0.25,0.2,0.15,0.15 }
T step 1 step 2 step b step 4
) . .. 0 __ 0
a 0.25 0.25— 0.25— (l.q57 1.0
(] O 0 -_,L =
b 0.25 (].2-)7 0.45 7 0.4571
c 02 —02"7 /
) 0 ) /1
d (1.157 0.3 — 0.3
e 0.1571
a; i h[f—’-i) L ('["-'fz)
a 0.25 20 2 00
b 0.25 20 2 10
c 02 23 2 11
d 0.15 27 3 o010
e 0.15 27 3 011

Figure 2: An example of Huffman coding. Source: [Mac03] p99.
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Figure 3: Some probability distributions ot € {1, 2, 3,4}. Left: a uniform distributiorp(x = k) = 1/4. Right: a
degenerate distributiop(z) = 1if « = 1 andp(z) = 0if z € {2,3,4}.

For example, ifX € {1, ..., 5} with distribution
p(a) =0.25,p(b) = 0.25,p(c) = 0.2, p(d) = 0.15,p(e) = 0.15 9

we find H = 2.2855. For aK-ary random variable, the entropy if maximizedpifr = k) = 1/K, i.e, the uniform
distribution. In this casell (X) = log, K. The entropy is minimized{{ = 0) if p(z) = §(z — =*) for somez*, i.e.,
for a deterministic distribution. See Figure 3.

For the special case of binary random variablss {0, 1}, we can writep(X = 1) =6 andp(X =0) =1 — 6.

Hence the entropy becomes
H(X) = —[p(X =1)logyp(X = 1)+ p(X = 0)log, p(X =0)] (10)
= —[flogy 6+ (1 —0)logy(1l — 6)] (12)
This is called the binary entropy function, and is also itk (9), to emphasize that it is a function of the distribution

(parametery, rather than the random variablé. We plot this in Figure 4. We see that the maximum value is
H(X) = 1 which occurs when the distribution is unifotin= 0.5:

1
_[5 log, % +(1 - %)Ing(l - %)] = —log, % =1 (12)
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Figure 4: Entropy of a Bernoulli random variable as a functidp(X = 1) = 6. The maximum entropy &g, 2 = 1.
Sourcehttp://en. w ki pedi a. org/w ki /I nformati on_entropy.

2.4 Joint entropy

The joint entropy of two random variablés andY is defined as

H(X,Y)==> p(z,y)log,p(z,y) (13)

‘/1:7y
If X andY are independent, theli(X,Y) = H(X) + H(Y). In general, one can show (see Section 2.7.3) that
H(X,Y) < H(X)+H(Y) (14)

For example, consider choosing an integer from 1 te & {1,...,8}. Let X(n) be the event that is even, and
Y (n) be the event that is prime.

n 1 2 3 4 5 6 7 8
X 01 01 01 01
Yy 01 1 01 0 10
Clearlyp(X = 1) = p(X = 0) = 0.5, soH(X) = 1; similarly H(Y) = 1. However, we will show that

H(X,Y) < H(X)+ H(Y), since the events are not independent.
The joint probability distribution is
p(X,Y) |
0
1

ooleoolH O
ool—0ld =

so the joint entropy is given by

1 1 3 3 3 3 1 1
H(X,Y)= _[§ log, 3 + 3 log, 3 + 3 log, 3 + 3 log, §] =1.8113 (15)
SoH(X,Y)< H(X)+ H(Y).
What is the lower bound oH (X, Y")? Clearly
H(X,Y)> H(X)>H(Y) >0 (16)

whereH(X,Y) = H(X) iff Y is a deterministic function ok . Intuitively this says that combining two systems can
never reduce the overall uncertainty.



2.5 Conditional entropy

Theconditional entropy of Y given X is the expected uncertainty we haveyirafter seeingX :

H(Y|X) = Z (2)H(Y|X = z) (17)
= —Zp Zp ylz) log p(y|z) (18)
= = plx,y)logp(y|z) (19)
_ _;p@,y) log p;”w (20)
- —Zpa:ylogpxy Zp (21)
_ H(X.Y) - H(X) (22)

If X completely determine¥’, then H(Y'|X) = 0. If X andY are independent, theH(Y|X) = H(Y). Since
H(X,Y)<H(Y)+ H(X), we have
H(Y|X) < H(Y) (23)

with equality iff X andY are independent. This shows that conditioning on data awlagreases (or rather, never
increases) ones uncertainby, average.

2.6 Mutual information

Themutual informatio n betweenX andY is how much our uncertainty aboltdecreases when we obset¥e(or

vice versa). Itis defined as
ZZ p(z,y) log (() ()) (24)

yeY zeX

It can be shown (exercise: just plug in the definitions) tha iis equivalent to the following:

I(X,Y) = H(X)-H(X|Y) (25)
= HY)-H{YI|X) (26)

Subsitutingd (Y| X) = H(X,Y) = H(X) yields

I(X,Y)=H(X)+H(Y) - H(X,Y) 27)
Hence
HX)Y) = HXY)-HY)+(HX,)Y)-HX))+(HX)+H(Y)-H(X,Y)) (28)
H(X|Y)+ H(Y|X)+I(X,Y) (29)
See Figure 5.

Mutual information measures dependence between randaabies in the following sensef(X,Y) > 0 with
equality iff X 1 Y. (The proof that/(X,Y) = 0 if X andY are independent is easy; the proof tfiaX,Y) =
0 = X 1 Y is harder: see Section 2.7.3. ) ¥f = X, then the mutual information is maximal, and equal
to H(X) < log, K. Mutual information is similar in spirit to @orrelation coefficient, but is much more general,
because correlation only captures linear dependenciess fito variables may have a correlation coefficient of O,
even though they are (nonlinearly) related. However, timeitual information will never be zero in this case. (We will
study correlation coefficients later in the context of linesgression.)
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Figure 5: The relationship between joint entropy, margiatropy, conditional entropy and mutual information..
Source: [Mac03].

Let us continue with the example above concerning prime &rd aumbers. Recall thdf (X) = H(Y) = 1.
The conditional distributiop(Y| X) is given by normalizing each row:

p(Y|X) |0 1

0 I3

i1

" . 1 4 4

Hence the conditional entropy is
1 1 3 3 3 3 1 1
and the mutual information is
I(X,)Y)=H(Y) - H(Y|X)=1-0.8113 = 0.1887 (31)

Note that it is sometimes useful to use ttanditional mutual information , defined as

I[(X:Y|2) = H(X|Z) - H(X|Y, Z) (32)

2.7 Relative entropy (KL divergence)

If X represents all possible (fixed-length) sentences in BEmglisall possible (fixed-sized) images, the true probabilit
distributionp(X') will be quite complicated. But the more accurate our mod#hisf call itq(X ), the fewer the number

of bits we will need to encode data from this source. (Henaeiag better models of data results in better codes.)
The quality of our approximation is captured in the notioiaflback-Leibler (KL) divergence , also calledelative

entropy.
The KL divergence is very important “distance” measure leetwtwo distributionsp andq. It is defined as

follows et -
€
D(pllg) = Y prlog = (33)
% qk
It is not strictly a distance, since it is asymmetric. The Kdnde rewritten as

D(pllg) = prlogpe — Y prlogage = — Y prlogqr — H(p) (34)
k k k

where) ", pi log gy is called thecross entropy. This makes it clear that the KL measures the extra numbetie
would need to use to encodéif we thought the distribution wagbut it was actually.



2.7.1 Minimizing KL divergence to the empirical distributi on is maximizing log likelihood

SinceD(p||q) measures the distance between the true distribytenmd our approximation, we would like to mini-
mize this. Letp be the empirical distribution of the dafa

N

p(x) = %I(az eD)= % Z O(x — xp) (35)

n=1

which assigns masiy/N if = equals one of the training points, and 0 mass otherwise. Then the KL becomes

1/N
L(pllg) = Z N = Z log q(x) + const (36)
z€D :EED
Hence
7 = argmin K L(p||q) = ar maleIO (zn) (37)
q g p pllq g XN 8 g4(Tn

In otherwords, the distribution that minimizes the KL to #rapirical distribution is the maximum likelihood distri-
bution. In practice, instead of optimizing the functigrwe optimize its parametets

A 1
0 = arg max - Zn: log q(x,,|0) (38)

2.7.2 Mutual information as KL divergence

The KL can be used to compare a joint distribution with a feediadistribution. This quantity is called tmeutual
information betweenX andY’, and is defined as

I(X,Y) E D(P(X,Y)||P(X)P(Y)) (39)
It is easy to show (exercise) that this gives the same reasiltefore, namely

I(X,Y)=H(X)- HX|Y)=HY) - HY|X)= HX)+ HY) - HX,Y) (40)

2.7.3 KL is always non-negative *

KL satisfiesD(p||q) > 0 with equality iff p = ¢. The fact thatD(p||q) = 0 if p = ¢ is easy to see, since we have
terms of the formog p(z)/q(x) = log 1 = 0. We will now show KL is always positive.
Recall that asoncavefunction f is one which lies above any chord

fAzy + (1= Nxz2) > Af(x1) + (1 = N) f(x2) (41)

where0 < A < 1. Intuitively this an inverted bowl: see Figure 6. A functifis convexif — f is concave (&7 bowl).
Jensen’s inequalitystates that, for angoncave functionf,

E[f(X)] < f(E[X]) (42)

> p@)f(@) < £ pl) (43)

x

This can be proved by induction by setting= p(x = 1) andl — )\ = ZfZQp(x); the base case uses the definition
of concauvity.



Figure 6: An illustration of a concave functiolog ).

To prove thatD(pl||q) > 0, letu(x) = p(x)/q(x) and f(u) = log 1/u be a convex function. Then

D(pllg) = E[f(q(z)/p(z))] (44)
2@)
> f (;pu)p@)) (45)
1
From this it follows that
I(X,Y) = D(p(z,y)|lp(x)p(y)) > 0 (47)
and hence
H(X)+H(Y)> H(X,Y) (48)

as claimed above.

2.7.4 Forward and reverse KL divergences *

If g = 0thenD(p|lg) = oo unlessp, = 0 also. Hence to minimiz®(p||q), ¢ should “cover’p. For example, if
p is the empirical distribution of the training set, theishould not assign zero probability to anything in the tragni
set. When studying variational inference, it is more comrtmptimize D(q||p) with respect tog, since this is
computationally cheaper (by assumption we can take exji@esanrtq but not wrtp). But to minimizeD(q||p), we
needy, = 0 whenevep; = 0; henceg should be “under” one gf's modes. See Figures 7 and 8 for an illustration of
these differences, which will become important later inlibek.

Note that finding a distributio to minimize D(p||q) is hard, since it requires computing expectations yyrt
which by assumption is a complex distribution (otherwisenealldn’t need to approximate it). Findingto minimize
the “reverse” KLD(g||p) is relatively straightforward, however.

2.8 Information theoretic quantities for continuous data *

If X is a continuous random variable with paf:), we define thaifferential entropy as
() = = [ pla)logpla)ds (49)

whereS' is the support of the random variable. (We assume this iategists.)
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Figure 7: Left: MinimizingD(q||p) picks one of the modes @f Right: minimizingD(p||q) tries to globally “cover”
D
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Figure 8: Blue: the true distributignis a mixture of 2 Gaussians. Red: the approximating dididbuy;. Left: mini-
mizing D(p||¢) leads to a broad distribution. Middle: minimizidg(g||p) picks the bottom mode; Right: minimizing
D(q||p) can also pick the top mode. Source: [Bis06] Fig 5.4.




For example, supposE ~ U(0,a). Then

1 1
h(X) = —/0 Elog de =loga (50)

Unlike the discrete case, differential entropy can be negaif « < 1, we haveh(X) < 0.
As another example, suppoie~ N (0,0?), so

p(z) = (1/V2r0?) exp(—2* /20?) (51)
Hence the differential entropy is
hx) = = [ ) (52)
2
= [ @)y~ logVERa? (53)
EX? 1 )
= o552 + B log 2mo (54)
= 1 g one? (55)
= 313 og2no
1 1 )
= —loge+ =log2noc (56)
2 2
= %log 2mea? (57)
= log(ov2me) (58)

If we use log base, the units are called “nats”. If we use log base 2, the uniéscalled bits. A list of dif-
ferential entropies for various univariate distributioten be found ahtt p: // en. wi ki pedi a. or g/ wi ki /

Di fferential _entropy. However, in general, for non-standard distributions eefgily multivariate ones, the
most common approach is thiscretize (quantize)the data (we discuss techniques to do this later), and then us
discrete entropy. (See [LM04] for an interesting altenmthat bypasses the density estimation step.)

2.9 Entropy rates of a stochastic process *

A stochastic procesds an indexed sequence of random variablé¥,, ..., Xp). A Markov chain is a simple
example. In this case,
D
p(X1,..., Xp) = p(X1) [ [ p(Xil Xi-1) (59)

=2

Theentropy rate of a stochastic procegsX; } is a measure of its predictability, and is defined as

1
H(X) = lim S H(X1,...,Xp) (60)

when the limit exists. For example, suppdse ..., Xp are iid. Then

H(X) = Jim_ %H(Xl, xp) = 2R ) (61)

which is just the entropy rate per symbol.
An alternative definition of the entropy rate is

H’(X):Dli_r)nooH(XD|X1,...,XD,1) (62)

10



One can show that for a stationary stochastic process,ttits lin both definitions exist and are equal, i E.(X) =
H'(X) (see [CT91]). For example, suppo§&;} is a stationary Markov chain with stationary distributiorand
transition matrixI’. Then the entropy rate is

H(X) = hmH(XD|XD_1,...,XD) (63)
= limH(Xp|Xp_1) (64)
= H(X2[Xy) (65)
= ZP X1 = j)H(Xo| X1 = j) (66)
= Z Zp (X2 = k[ Xy = j)log p(Xa = k[ X = j)] (67)
= —Z ZT 7, k)logT(j, k) (68)
k
For example, for a 2 state chain with transition matrix
11—« «
T= 69
(5" %) (69
and stationary distribution
I} o«
7T1_Oé+ﬁ7 7T2_Oé+ﬁ7 (70)
we have that the entropy rate is
16} «
H(X) = H 71
(¥) = S5 H() + 5 H ) (72)

whereH («) is the binary entropy function.

3 Applications of information theory in machine learning

3.1 Model selection using minimum description length (MDL)

To losslessly send a message about an ewvavith probabilityp(x) takesL(z) = — log, p(x) bits. Suppose instead
of sending the raw data, you send a moHeand then send the residual errors (the parts of the data edicped by
the model). This take& (D, H) bits:

L(D,H) = —logp(H) —logp(D|H) (72)

The best model is the one with the overall shortest messdge.isTcalled thaminimum description length (MDL)
principle, and is essentially the sameG@scam’s razor. See Figure 9 for an illustration, and [RY0O0] for more detail

Note that MDL is essentially equivalent to MAP estimatiorh{gh is an approximation to full Bayesian inference),
since the MAP model is given by the one with maximum (log) past

logp(h|D) = logp(h) + logp(D|h) + const (73)

Since there is a 1:1 mapping between coding length and pildlest) choosing between the MDL approach and the
Bayesian approach it is mostly a question of convenienceefample, sometimes it is easier to think of the cost of
encoding a model than to define a prior on models. HoweveherBayesian approach one can perform Bayesian
model averaging, which, in terms of predictive accuracgiugays better than (or at least as good as) picking the single
best model.

11
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Figure 9: Anillustration of the MDL principle. We plot numbef bits versus model complexity. The model for which
the total number of bitsl.(D, H) is minimal, is assumed to have lowest generalization error.
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Figure 10: An illustration of active learning. Left: curteénformation state, with A, B, C and D unlabeled. Right:
possible “true” state, where the positives are “sandwitbetiveen negative examples.

3.2 Active learning

Consider the problem of learning a classifier. Suppose sdrfealata points are labeled, but others are unlabeled.
(This is an example addemi-supervised learning) Now suppose we are allowed to ask for the labels of one oemor
points. (This is calle@ctive learning.) Which points should we query?

Consider the example in Figure 10(left). Suppose we cansghtioget the label for points A,B,C or D. Intuitively,
it seems likely that A is positive (since iteearest neighborsare positive) and that C is negative. We might imagine
there is a “dividing line” (separating hyper-plane) betwélge positive and negative points, in which case B would be
positive and D negative. In this case, we don’t need to asknfe labels, we have correctly learned the “concept”.

But what if the true situation is more like Figure 10(right)here the positives are “sandwiched” between the
negatives? If this kind of hypothesis is also in our hypohelass (i.e., we entertain the possibility that the datdato
be separated into +-, or could be sandwiched -+-), then wieb&ilvery uncertain about the labels Bf since our
prediction will be a mixture of these two hypotheses. Hehesentropy of our prediction d will be higher than at
any other point:

H(p(ylz = B,D)) > H(p(y|x’,D)),x’ €{A,C D} (74)

wherep(y|x = B, D) is the probability distribution over labels at locati@hgiven the training dat®. (Arguably we
are equally uncertain aboilt's label.) Hence a reasonable heuristic is to query the peihbse entropy is highest.

3.3 Feature selection

In many classification and regression problems, where tla¢igdo computey(y|z), the inputz;., may be a high
dimensional vector. Not all of the components (dimensiofig)may be relevant for predicting Feature selection is
the task of finding the relevant components. This resultssimgler model that may be easier to understand and may
even perform better than using alfeatures.

12



There are two main approaches to feature selection (see3|3&0a good review)filter methods preprocess the
featuresr; and then build a classifier using theelevant featuregi(y|z1.x ); wrapper methods try all subsefgy|z)
and pick the subset that performs the best. It is clear that fihnethods are much more comptuationally efficient,
since they only have to train the classifier once. A commonsmesof relevance is mutual information: we compute
I(X;,Y) for each featureX; and keep thé features with highest mutual information.

For example, referring to Figure 10, each input can be desddy its horizontal and vertical coordinate; call these
components 1 and 2. It seems clear that the vertical codedisi@relevant for predicting the class laél Hence we
would expect to find (X1,Y) > I(X,,Y).

As another example, consider a naive Bayes classifier @ittlasses and binary features, € {0,1}. Let

=p(y = ¢), bic = p(z; = 1|y = ¢) and

0; = p(x Zpa:z—1|y—c p(y = ¢) 29“77“ (75)

The mutual information between featurand the class label is given by

.= - p(Xi =zly = o)py = ¢)
I, = ;;P(XZ x,y = c)log (K = 2y = ¢ (76)
1 (X, = aly =
= ;}Z:P(Xi = zly = o)p(y = ¢) 1og% (77)
= Z:P(Xi =1y = c)p(y = ¢) 10g% + (78)
X, =0y =
Y p(Xi=0ly=c)ply=c) 1og% (79)
= Z |:0i(:7'r(: log 99 + (1 —b;c)m.log 11__%: (80)

c

This can be used to select relevant features before fittimgalive Bayes model.

References

[BisO6] C. Bishop.Pattern recognition and machine learning. Springer, 2006. Draft version 1.21.
[CT91] T. M. Cover and J. A. Thomaglements of Information Theory. John Wiley, 1991.

[GEO3] 1. Guyon and A. Elisseeff. An introduction to variabdnd feature selectionJ. of Machine Learning
Research, 3:1157-1182, 2003.

[LMO4] Erik Learned-Miller. Hyperspacings and the estifoatof information theoretic quantities. Technical Report
04-104, U. Mass. Amherst Comp. Sci. Dept, 2004.

[Mac03] D. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

[RYO0] Jorma Rissanen and Bin Yu. Coding and compressio@payunion of theory and practicé. of the Am.
Sat. Assoc., 95:986-988, 2000.

13



