2 Least mean squares via Gradient descent

2.0.1 Gradient descent

The gradient descent algorithm finds a local minima of the objective function (J) by guessing an initial set of parameters w and then "walking" episodically in the direction of the gradient $\partial J / \partial w$. Since w is vector valued (3 components for our example) we need to perform the update for each component separately

$$
w^{j}=w^{j}-\lambda \frac{\partial J(w)}{\partial w^{j}}
$$

where λ is the learning rate parameter or the step of the update. To see this in practice, lets consider an example (other than the mean square error): say $J(x)=(x-2)^{2}+1$ and the initial guess for a minimum is $x_{0}=3$. The differential of J is

$$
\frac{\partial J(x)}{\partial x}=2 x-4
$$

Assuming a fixed $\lambda=0.25$, the first several episodes of gradient descent are:

$$
\begin{array}{r}
x_{1}=x_{0}-\lambda \frac{\partial J\left(x_{0}\right)}{\partial x}=3-.25(2 * 3-4)=2.5 \\
x_{2}=x_{1}-\lambda \frac{\partial J\left(x_{1}\right)}{\partial x}=2.5-.25(2 * 2.5-4)=2.25 \\
x_{3}=x_{2}-\lambda \frac{\partial J\left(x_{2}\right)}{\partial x}=2.25-.25(2 * 2.25-4)=2.125
\end{array}
$$

Figure1 illustrates the episodic process.

Figure 1: Gradient descent iterations

