Structures
Pointers and Structures
Linked Lists

Abstract data types

Abstraction = model
® present characteristics, model, design
® not the concrete data or objects

Example: design of a database
e tables, fields, properties

Example: many math definitions
e malrix = a table of numbers, etc
® vectorial space = a set with algebraic operators and properties

Abstractions very useful for humans when building "logic”

Combined data = structure

in C++ we can creafe a new "user” type
class person { /lthisis the new defined tybe

int ID; //these are members
int age;

char name [25] ;

int phone;

char* address;

}

person x; /ldeclare variable x of typbe person
® X contfains combined data: ID, age, name, etc

e think of it like a "box™ variable, or "record”

® how much memory X is allocated?

ID

AGE
NAME
PHONE
ADDRESS

Structure Members

person x,y; //declares two struct variables, same type

X.age is an integer variable for record x
® Xx.age is independent of y.age
® Xx.age independent x.ID, etc

Struct variables

What can we do with a struct/record variable?

Answer : everything that we do with normal variables.
declare

initialize

assign

point to

address of

array of

etc

Struct variables

person x ={21, 34, "Virgil", 1234567};

® declares x of type person

@ initializes x.ID=21, x.age=34, x.name="Virgil", x.phone=1234567
® X.address noft initialized - WHY ?

Struct variables

Assignments work !

person X, VY;

x=y; /Nalid: all members of y are copied on x
e BE CAREFUL ABOUT POINTER MEMBERS!
® copy pointer/address VS copy the content(value) of the pointer
® x=y copies the pointer (address), not the value
® deep copy :
allocate x.pointer separately,

copy *(y.pointer) into *(x.pointer)

Array of struct variables

person A[10]; //declares an array of 10 struct objects
A[O] = first object/variable, A[l]= second variable
A[0].ID = member ID of first object

most array operations work like before

Struct object as function parameter

int myfunction (person x) {//regular parameter
® cout << X.ID;

return 0; }

int myfunction (person &x) {//reference parameter
® cout << x.1ID;

® x.ID=25;/Imodifies the original call variable -WHY ?
return 0; }

int myfunction (person* x) {//pointer parameter
® cout << (*x).ID;

return 0; }

Pointers to Struct Objects

person *p; p=memory location of a person object
*p = the "value", or the struct object stored
(*p). ID = the ID member variable of object *p

p->ID = the ID member variable of object pointed by p

® same as (*p).ID

Dereferencing member variables

Table 11-3

Expression

Description

S=>m

*a.p

(*s).m

*s-)p

*(*s).p

s is a structure pointer and m is a member. This expression accesses the m member of the
structure pointed to by s.

a is a structure variable and p, a pointer, is a member. This expression dereferences the
value pointed to by p.

s is a structure pointer and m is a member. The * operator dereferences s, causing the
expression to access the m member of the structure pointed to by s. This expression is
the same as s->m.

s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.
This expression accesses the value pointed to by p. (The -> operator dereferences s and

the * operator dereferences p.)

s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.
This expression accesses the value pointed to by p. (*s) dereferences s and the
outermost * operator dereferences p. The expression *s->p is equivalent.

Array of struct objects

person *p = new person[20]; //declares a pointer,
allocates dynamically space for 20 person objects

® (same as) person p[20]; //but this is static

person* p[20] ; //static array of 20 pointers

Linked Lists

Link List Philosophy

List objects: contain data, and the link fo the next list object

data data data
NULL
next / next / next /

how do we implement this in C++ ?

Linked List

class listobject({
® char* word;

int count; //data section

°
® double testscore;
] char [30] name;

listobject* next; //link to next object

¥

have to "know" the first list object, to have a
way to get tfo it

Traversing a list looking for "value”

case 1: list does not exist
® create the first object, return it

case 2: list exists, but doesnt have an object with
data="value"

® create a new object, append it to the list, return it

case 3: list has an object with data="value"
® return that object

Traversing a list

listobject* GiveMeTheElement (value)
o listobject™ t = <my_list_head>

® if t==0 CASE 1 //create the first object of a new list
® while (t->data != valuef //looking for "value" object

if (t->next==NULL) CASE 2 //create a new object of existing list

t = t->next /lkeep looking
° }
® CASE 3 //found the "value" object

;

Arrays vs Lists

Arrays are a contiguous
block of memory

® no need for "next'-WHY?

Arrays allow for direct
access to n' element Aln]

Arrays have to be allocated

at once
4 V4 V4 VY4 V4 N\
datal|dataldata|data|data
_ AN AN AN AN _J

Lists are sparse locations in

memory

Lists have to be traversed from
beginning in order to access an

element

Lists are allocated "as we go"
one element at a time

data

. nextﬁ._

data

. next j—

fda’ra

next
N

\

data

/

J

NULL)

next

—

S

data

next

Double-linked Lists

Use two link pointers : prev, and next

Thus we can traverse the list in any direction

NULL

data

brev
next

data

brev
next

data

brev
next

NULL

Hash Tables - Collisions

when several keys (words) map to the same key (index)

have to store the actual keys in a list
® list head stored at the HASHTABLE index

key -> index -> list_head -> search for that key

overflow
keys buckets entries
X
: Lsa Smith | 521-8976 | e
JohnSrth -
Usa Srth x
- [@83]| John Smith | 521-1234 |e-
Sam Doe T -
' 153 | TedBaker | 418-4165 |e SandraDee | 521-9635
154 X
Sandra Dee
253 X
Ted Baker
254 SamDoe 521-5030 | e
255 X

Hashing

for each hash value, create a linked list of all strings that

hash to that value

if hfunction (wordl) = hfunction(word?2) =n

then HASHTABLE[n] stores the head of a list containing
objects (wordl, countl) and (word2, count?2)

4)

wordl
count

next /

. J

HASHTABLE[n] —

4)

word?2
count

. J

NULL

next /

Hashing with linked lists

HASHTABLE[n] = listhead of a list with all words that
hash-map to n

when accessing an object “word"
e first get the hash value n = hash-map("word")

e then traverse the list starting at HASHTABLE[n] looking for
the the object that has "word"

® once found, do something with it : for the HW, increase the
word count.

