
Functions
Recursion

C++ functions

Declare/prototype
int myfunction (int);

Define
int myfunction (int x){

 int y = x*x;

 return y;

}

Call
int a;

a = myfunction (7);

function call flow

types

type of function (of the return value)
• double myfunction (....)

type of arguments
• double myfunction (int a, double b, char c)

the types have to be consistent between declaration,
definition and call

function arguments

CALL

DEFINITION

arguments by value

value is copied to parameter/argument

parameters have the scope the function

• same as a local variable

return

returns the function output value to the call
instruction

• has to match function output type

 int myfunction (int x){

 int y = x*x;

 return y;

 }

terminates the function

• even if there are more statements to exectute

Argument default value

• if no argument is given at the call, use a default value

• default value given in function definition

double log5(double x=125){...

 ...

}

Scope: local and global

global : define outside any function

• visible everywhere (preserve value)

local : define inside a function (or block)

• invisible outside the definition block

Static variables

static local variables do not get erased when function/
block terminates

the next time the function is called, a static variable still
has the previous value

• initialized only one time

int function (int param){

 static double myvar=0;//initialization

happens only at the first function call

 ... do something ...

}

Overload function names

myfunction does y = 2*x1 - 3*x2

• I want it to work for doubles and int types

int myfunction (int, int)

double myfunction (double, double)

double myfunction (int, double)

double myfunction (double, int)

Arguments by reference

usually (call by value), if the
argument passed to the
function changes value
inside the function, the
variable used as argument
does not.

 to modify the variable used
as argument at the call,
pass the argument by
reference

//call

int a=0,b=0;

b = f1(a);//now a=0, b=1

//function definition

int f1 (int x){

x = x +1;

return x;

}

//call

int a=0,b=0;

b = f2(a); //now a=1, b=1

//function definition

int f2 (int& x){

x = x +1;

return x;

}

Recursive calls

Recursion of a function

A function that calls itself

• OR cyclic: function f calls function g; function g calls function f

Creates a stack of calls

Calls terminate in the reverse order of calling

Local variables are defined independently for each call

Recursion: flow

void message(int times){

 if (times>0){

 cout<<“call t=”<<times<<“\n”;

 message(times-1);

 }

}

Solving a problem recursively
recognize recursive/inductive nature

• many problems easier to solve with a loop

build up the recursion mechanism

follow the principle of mathematical induction

most often, find an “invariant” operation

• can be a math formula

• can be an inductive form

• do one step of it, then call the recursion (or the other way)

look carefully at the base cases

Sum of first n integers
S(n) = 1 + 2 + 3 + 4 + .. + n = n(n+1)/2

induction : S(n) = S(n-1) + n = (n-1)*n/2 + n
= n(n+1)/2

Sum of first n integers
S(n) = 1 + 2 + 3 + 4 + .. + n = n(n+1)/2

induction : S(n) = S(n-1) + n = (n-1)*n/2 + n
= n(n+1)/2

recursion
int sum (int n){
 if (n<0) {
 cout<<“ERROR, negative”;
 return -1;
 }
 if (n==0) return 0;
 return n + sum(n-1);
}

Factorial

n! = 1 * 2 * 3 * ... * n

induction: n! = n* (n-1)!

• 1!=0!=1

can be very very large

• 10! = 3628800

• 50! ! 3.0414* 10^64

Factorial

long factorial (long n){
cout<< “call: factorial(“<<n<“)\n”;
int out;
if(n<=1) out=1;
else out = n*factorial(n-1);
cout<<“return: factorial(“<<n<“)\n”;
return out;

}

Tower of Hanoi

three towers/rods A, B, C

A contains pegs 1 to n, in order, n at the bottom

B, C empty

TASK: move all pegs to A such that

• a peg at a time

• only top peg of a tower can move

• peg can “sit” only on higher value pegs

Tower of Hanoi

Tower of Hanoi

Tower of Hanoi

Tower of Hanoi

Tower of Hanoi

function f: moves top k pegs from tower X to tower Y

• leaves all pegs existing on Z and Y unmoved

• leaves all pegs on tower X below top k unmoved

function f is recursive

• moves top k-1 pegs from X to Z (recursive call)

• moves k peg from X to Y

• moves top k-1 pegs from Z to Y (recursive call)

Euclid GCD

given positive integers a and b

• find d=GCD(a,b)

• find integers m,n such that a*m + b*n = d. Do they always
exist?

recursion: if a>b and a=q*b+r then
• GCD(a,b) = GCD(b,r)

• what about m and n?

Euclid GCD: find linear coefficients

given positive integers a and b

• find d=GCD(a,b)

• find integers m,n such that a*m + b*n = d. Do they always
exist?

recursion: if a>b and a=q*b+r then
• GCD(a,b) = GCD(b,r)

• m(ab) = n(br)

• n(ab) = m(br)-q*n(br)

Fibonacci numbers

Problem defined with recursion

F(n+2) = F(n) + F(n+1)
F(0) = 0; F(1) = 1

int Fibonacci (int n){

 if (n<=1) return n;

 else return Fibonacci(n-1) + Fibonacci(n-2);

}

Count characters
preview the notion of ARRAY

char s[200]; //array of 200 characters

• different type than class string

can be accessed as s[0], s[1], ..., s[199]
• s[0]=’H’; s[1]=’e’; s[2]=’l’; s[3]=’l’; s[4]=’o’;

• char a = s[3];

works for any type
• double d[10]; int i[100];

C++ does not check for array bounds !!

Count characters

start counting at position 1

• record 1 if character find,

• keep looking at next position

can be a loop

can be a recursion

Binary search

Find a specific value V in a sorted array A[]

Start with array indices i=0, j=last, m=middle

Compare A[m] to V and decide where in the array to
look next

• recursive call
• or a loop
Why binary search and not simply check all elements ?

Binary search
How long is going to take? (worst case)

In algorithms, how long means how many steps/instructions

• as a function of input n = size of array

we dont want an exact time/value

• “linear” = like n = about CONSTANT * n

• “quadratic” = like n2 = about CONSTANT * n2

• CONST*log n, CONST*n*log n, etc

Binary Search takes CONSTANT*log(n) steps, in worst case

