Functions Recursion

C++ functions

```
Declare/prototype
int myfunction (int );
Define
```

```
int myfunction (int x){
```

int myfunction (int x){
int y = x*x;
int y = x*x;
return y;
return y;
}
}
Call
int a;
a = myfunction (7);

```

\section*{function call flow}


\section*{types}
type of function (of the return value)
- double myfunction (....)
type of arguments
- double myfunction (int \(a\), double b, char c)
the types have to be consistent between declaration, definition and call

\section*{function arguments}

CALL


\section*{arguments by value}
value is copied to parameter/argument
parameters have the scope the function
- same as a local variable

\section*{return}
returns the function output value to the call instruction
- has to match function output type
```

int myfunction (int x){

```
        int \(y=x * x\);
        return \(y\);
\}
terminates the function
- even if there are more statements to exectute

\section*{Argument default value}
- if no argument is given at the call, use a default value
- default value given in function definition
double log5(double \(x=125\) ) \{...
...
\}

\section*{Scope: local and global}
global : define outside any function
- visible everywhere (preserve value)
local : define inside a function (or block)
- invisible outside the definition block

\section*{Static variables}
static local variables do not get erased when function/ block terminates
the next time the function is called, a static variable still has the previous value
- initialized only one time
int function (int param) \{
static double myvar=0;//initialization happens only at the first function call
... do something ...
\}

\section*{Overload function names}
myfunction does \(y=2 * x_{1}-3 * x_{2}\)
- I want it to work for doubles and int types
int myfunction (int, int)
double myfunction (double, double)
double myfunction (int, double)
double myfunction (double, int)

\section*{Arguments by reference}
usually (call by value), if the argument passed to the function changes value inside the function, the variable used as argument does not.
to modify the variable used as argument at the call, pass the argument by reference
```

//call
int a=0,b=0;
b = f1(a);//now a=0, b=1
//function definition
int f1 (int x){
x = x +1;
return x;
}
//call
int a=0,b=0;
b = f2(a); //now a=1, b=1
//function definition
int f2 (int\& x){
x = x +1;
return x;
}

```

\section*{Recursive calls}

\section*{Recursion of a function}

A function that calls itself
- OR cyclic: function \(f\) calls function \(g\); function \(g\) calls function \(f\) Creates a stack of calls

Calls terminate in the reverse order of calling
Local variables are defined independently for each call

\section*{Recursion: flow}
```

```
void message(int times) {
```

```
void message(int times) {
    if (times>0){
    if (times>0){
    cout<<"call t="<<times<<"\n" ;
    cout<<"call t="<<times<<"\n" ;
    message(times-1);
    message(times-1);
    }
    }
}
```

```
}
```

```

    call of the function
        value of times: 5


\section*{Solving a problem recursively}
recognize recursive/inductive nature
- many problems easier to solve with a loop
build up the recursion mechanism
follow the principle of mathematical induction most often, find an "invariant" operation
- can be a math formula
- can be an inductive form
- do one step of it, then call the recursion (or the other way)

\section*{Sum of first \(n\) integers}
\[
\begin{aligned}
& S(n)=1+2+3+4+\ldots+n=n(n+1) / 2 \\
& \text { induction: } S(n)=S(n-1)+n=(n-1)^{*} n / 2+n \\
& =n(n+1) / 2
\end{aligned}
\]

\section*{Sum of first \(n\) integers}
```

 S(n)=1+2+3+4+..+n=n(n+1)/2
 induction:S(n)=S(n-1)+n=(n-1)* n/2 + n
 = n(n+1)/2
 recursion
 int sum (int n){
if (n<0) {
cout<<"ERROR, negative";
return -1;
}
if (n==0) return 0;
return n + sum(n-1);
}

```

\section*{Factorial}
\[
n!=1^{*} 2^{*} 3^{*} \ldots \text { * } n
\]
\[
\text { induction: } n!=n^{*}(n-1)!
\]
- 1!=0!=1
can be very very large
- \(10!=3628800\)
- 50! \(\approx 3.0414^{*} 10^{\wedge} 64\)

\section*{Factorial}
```

long factorial (long n){
cout<< "call: factorial("<<n<")\n";
int out;
if(n<=1) out=1;
else out = n*factorial(n-1);
cout<<"return: factorial("<<n<") \n";
return out;
}

```

\section*{Tower of Hanoi}
three towers/rods A, B, C
A contains pegs 1 to \(n\), in order, \(n\) at the bottom
B, C empty
TASK: move all pegs to \(A\) such that
- a peg at a time
- only top peg of a tower can move
- peg can "sit" only on higher value pegs


Tower of Hanoi


First move: Move disc 1 to peg 3.

\section*{Tower of Hanoi}


Second move: Move disc 2 to peg 2.


First move: Move disc 1 to peg 3.


Third move: Move disc 1 to peg 2.

\section*{Tower of Hanoi}


Original setup.


Second move: Move disc 2 to peg 2.


Fourth move: Move disc 3 to peg 3.


First move: Move disc 1 to peg 3.


Third move: Move disc 1 to peg 2.


Fifth move: Move disc 1 to peg 1.

\section*{Tower of Hanoi}


Original setup.


Second move: Move disc 2 to peg 2.


Fourth move: Move disc 3 to peg 3.


First move: Move disc 1 to peg 3.


Third move: Move disc 1 to peg 2.


Fifth move: Move disc 1 to peg 1.


\section*{Tower of Hanoi}
function f: moves top \(k\) pegs from tower \(X\) to tower \(Y\)
- leaves all pegs existing on \(Z\) and \(Y\) unmoved
- leaves all pegs on tower \(X\) below top \(k\) unmoved
function \(f\) is recursive
- moves top \(k-1\) pegs from \(X\) to \(Z\) (recursive call)
- moves \(k\) peg from \(X\) to \(Y\)
- moves top \(k-1\) pegs from \(Z\) to \(Y\) (recursive call)

\section*{Euclid GCD}
given positive integers \(a\) and \(b\)
- find \(d=G C D(a, b)\)
- find integers \(m, n\) such that \(a^{*} m+b^{*} n=d\). Do they always exist?
recursion: if \(a>b\) and \(a=q^{*} b+r\) then
- \(\operatorname{GCD}(a, b)=\operatorname{GCD}(b, r)\)
- what about \(m\) and \(n\) ?

\section*{Euclid GCD: find linear coefficients}
given positive integers \(a\) and \(b\)
- find \(d=G C D(a, b)\)
- find integers \(m, n\) such that \(a^{*} m+b^{*} n=d\). Do they always exist?
recursion: if \(a>b\) and \(a=q^{*} b+r\) then
- \(\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{b}, \mathrm{r})\)
- \(\mathrm{m}_{(\mathrm{ab})}=\mathrm{n}_{(\mathrm{br})}\)
- \(\mathrm{n}_{(\mathrm{ab})}=\mathrm{m}_{(\mathrm{br})}-\mathrm{q}^{*} \mathrm{n}_{(\mathrm{br})}\)

\section*{Fibonacci numbers}

Problem defined with recursion
\(F(n+2)=F(n)+F(n+1)\) \(F(0)=0 ; F(1)=1\)
int Fibonacci (int n) \{
if ( \(n<=1\) ) return \(n\);
else return Fibonacci \((n-1)+\) Fibonacci \((n-2)\); \}

\section*{Count characters}
preview the notion of ARRAY
char s [200]; //array of 200 characters
- different type than class string
can be accessed as s[0], s[1], ..., s[199]
- s[0]='H'; s[1]='e'; s[2]='1'; s[3]='1'; s[4]='o';
- char a = s[3];
works for any type
- double d[10]; int i[100];

C++ does not check for array bounds !!

\section*{Count characters}
start counting at position 1
- record 1 if character find,
- keep looking at next position
can be a loop
can be a recursion

\section*{Binary search}

Find a specific value \(V\) in a sorted array \(A[]\)
Start with array indices \(\mathrm{i}=0, \mathrm{j}=\) last, \(\mathrm{m}=\) middle
Compare \(\mathrm{A}[\mathrm{m}]\) to V and decide where in the array to look next
- recursive call
- or a loop

Why binary search and not simply check all elements?

\section*{Binary search}

How long is going to take? (worst case)
In algorithms, how long means how many steps/instructions
- as a function of input \(n=\) size of array
we dont want an exact time/value
- "linear" = like \(n=\) about CONSTANT * \(n\)
- "quadratic" \(=\) like \(n^{2}=\) about CONSTANT * \(n^{2}\)
- CONST* \(\log n, C O N S T *{ }^{*} * \log n\), etc

Binary Search takes CONSTANT* \(\log (n)\) steps, in worst case```

