
Class inheritance,
polymorphism

Inheritance

a dog is an animal

a rose is a plant

a rectangle is a shape

a bus is a vehicle
• a car is also a vehicle

a <special> is a <general>, plus additional properties

Inheritance
class vehicle{
 int maxspeed;
 char* maker;
 void setMaker(char*)
};

class car : public vehicle{
 int rating;
 int mpg;
 int ndoors;
 void setRating(double)
};

class bus : public vehicle{
 int tank_capacity;
 int nseats;
};

class car has now:
• maxspeed
• maker
• rating
• mpg
• ndoors
• setmaker()
• setrating()

a class X that inherits class Z has all its members,
methods, etc;
• and additional members, methods

many classes X, Y can inherit the same class Z

Z=base class

X,Y = derived classes

derived classes can be inherited Z->X->T

protected members

private members <base> = inaccessible to <derived> code
• they can still be accessed through the <base> functions

protected = same as private, but <derived> methods can
use them

the inheritance also has an "access mode"
• class car : public vehicle...

access

constructor call

the <derived> constructor can call the <base>
constructor

default <base> constructor always called first
car(char* maker, double rating, int mpg,
int ndoors) : vehicle(maker)

Multiple Inheritance

a class can inherit 2 other classes
class goods{
 double price;
 int salary;
 char* seller;
}

class car: public vehicle, public goods{...

now class car has all the members of vehicle, and all
members of class goods

Polymorphism

declare an outside function with parameter <base> variable
• parameter is passed by reference

• int myfunction (vehicle &a){ ... }

call the function on a <derived> variable
• car x;

• do something with x...
• myfunction(x);

it works because <derived> variables are also <base>
variables

