Class inheritance,
polymorphism

Inheritance

a dog is an animal
a rose is a plant
a rectangle is a shape

a bus is a vehicle

® a car is also a vehicle

a <specials is a <generals>, plus additional properties



Inheritance

class vehicle

int maxspeed;
char* maker;
void setMaker (char¥)
bi class car has now:
® maxspeed
class car : public vehicle{ e maker
int rating; .
int mpg; ® rating
int ndoors; ® mpg
void setRating(double)
}. ® ndoors
® setmaker()
e setrating()

class bus : public vehicle{
int tank capacity;
int nseats;

4

a class X that inherits class Z has all its members,
methods, efc;

@ and additional members, methods

many classes X, Y can inherit the same class Z
Z=base class

X,Y = derived classes

derived classes can be inherited Z->X->T



protected members

private members <base> = inaccessible to <derived> code
® they can still be accessed through the <base> functions

protected = same as private, but <derived> methods can
use them

the inheritance also has an "access mode"
® class car : public vehicle...

access

How base class
members appear

Base class members in the derived class
, private = ,
private: Xx base class x IS inaccessible.

protected: y —»- | private: y
public: z private: z i
protected — .
private: x base class x IS Inaccessible.
protected: y - | protected: y
public: z protected: z
public e .
private: x base class X Is inaccessible.
protected: y > | protected: y
public: 2z public: z




constructor call

the <deriveds> constructor can call the <base>
constructor

default <base> constructor always called first

car (char* maker, double rating, int mpg,
int ndoors) : vehicle (maker)

Multiple Inheritance

a class can inherit 2 other classes

class goods{
double price;
int salary;
char* seller;

class car: public vehicle, public goods{...

now class car has all the members of vehicle, and all
members of class goods



Polymorphism

declare an outside function with parameter <base> variable
@ parameter is passed by reference
e int myfunction (vehicle &a){ ... }

call the function on a <derived> variable
® car X;

® do something with x..
e myfunction (x) ;

it works because <derived> variables are also <base>
variables



