
Arrays, Vectors
Searching, Sorting

Arrays

char s[200]; //array of 200 characters

• different type than class string

can be accessed as s[0], s[1], ..., s[199]
• s[0]=’H’; s[1]=’e’; s[2]=’l’; s[3]=’l’; s[4]=’o’;

• char a = s[3];

works for any type
• double d[10]; int i[100];

C++ does not check for array bounds !!

Memory allocation for arrays
int A[n]//allocates n*size(int) bytes

21 -56 0 -1 109 4 5 11 -3 -23
0 1 2 3 4 n-2 n-1

4bytes 4bytes 4bytes 4bytes 4bytes 4bytes 4bytes 4bytes 4bytes 4bytes

indices

values

memory

sizeof(int)

0.11 -8.6 102 -1.8 9.75 14 1.25 101 -3.1 39.2
0 1 2 3 4 n-2 n-1

8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes

indices

values

memory

sizeof(double)

Array initialization

complete
• int A[5]={0, 1, 10, 100, 1000}

partial
• int A[5] = {0,1,10} //allocates int[5]

• only indices 0,1,2 are initialized with values

implicit size
• int A[] = {0,1,-1,2} //allocates an int[4]

Arrays input to function

Act as reference variable : changes made are reflected to the
call array
• in fact, it is a reference variable
• unless defined with const

int function (int A[10], double x)

int function (int A[], double x)

int function (const int A[], double x)

int function (int A[], int array_size, double x)

Partially filled arrays

similar to a stack
• but in here we can use any

element, not only the top

int A[10] = {3, -1, 3, 41, 90}

int current_size = 5;

 the current-top can move
up or down

example: Tower of Hanoi

?

?

?

35

120

43

-1

10

current top

2

1

0

{declared, not
currently used

Array copy

int A[5] = {1,2,3,4,5}

int B[5]; B=A; //error

instead copy each element
• for (int i=0;i<5;i++) B[i] = A[i];

Parallel arrays (DB tables)

requires "join" operations

ID NAME
0 Virgil
1 Alex
2 Bob
3 Cindy
4

n

ID AGE
0 34
1 22
2 18
3 31
4

n

ID GENDER
0 M
1 F
2 M
3 F
4

n

ID School Status
0 PhD
1 in College
2 HighSchool
3 PhD Candidate
4

n

Array bounds

C++ does not check for array bounds !!

very easy to read/write at the wrong location memory
address
• writing particularly bad : can overwrite a variable

Searching
Sorting

Brute force/linear search

Linear search: look through all values of the array until
the desired value/event/condition found

Running Time: linear in the number of elements, call it O(n)

Advantage: in most situations, array does not have to be
sorted

Binary Search

Array must be sorted

Search array A from index b to index e for value V

Look for value V in the middle index m = (b+e)/2
• That is compare V with A[m]; if equal return index m
• If V<A[m] search the second half of the array
• If V>A[m] search the first half of the array

-4 -1 0 0 1 1 3 19 29 47
b m e

A[m]=1 < V=3 => search moves to the right half
V=3

Binary Search Efficiency

every iteration/recursion
• ends the procedure if value is found
• if not, reduces the problem size (search space) by half

worst case : value is not found until problem size=1
• how many reductions have been done?
• n / 2 / 2 / 2 / / 2 = 1. How many 2-s do I need ?
• if k 2-s, then n= 2k, so k is about log(n)
• worst running time is O(log n)

Search: tree of comparisons
compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree of comparisons : essentially what the algorithm does

•

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does
• each program execution follows a certain path

•

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does
• each program execution follows a certain path
• red nodes are terminal / output
• the algorithm has to have at least n output nodes... why ?

•

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does
• each program execution follows a certain path
• red nodes are terminal / output
• the algorithm has to have n output nodes... why ?
• if tree is balanced, longest path = tree depth = log(n)
• if tree not balanced, path can be longer

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree
depth=5

Bubble Sort

Simple idea: as long as there is an inversion, swap the
bubble
• inversion = a pair of indices i<j with A[i]>A[j]
• swap A[i]<->A[j]

directly swap (A[i], A[j]);
code it yourself: aux = A[i]; A[i]=A[j];A[j]=aux;

how long does it take?
• worst case : how many inversions have to be swapped?
• O(n2)

Insertion Sort
partial array is sorted

get a new element V=9

1 5 8 20 49

Insertion Sort
partial array is sorted

get a new element V=9

find correct position with binary search i=3

1 5 8 20 49

Insertion Sort
partial array is sorted

get a new element V=9

find correct position with binary search i=3

move elements to make space for the new element

1 5 8 20 49

1 5 8 20 49

Insertion Sort
partial array is sorted

get a new element V=9

find correct position with binary search i=3

move elements to make space for the new element

insert into the existing array at correct position

1 5 8 20 49

1 5 8 20 49

1 5 8 9 20 49

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Insertion/Selection Running
Time = O(n2)

10

-1

-5

12

-1

9

used A C

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

10

-1

✘ -5

12

-1

9

used A C
-5

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

10

✘ -1

✘ -5

12

-1

9

used A C
-5

-1

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

10

✘ -1

✘ -5

12

✘ -1

9

used A C
-5

-1

-1

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

10

✘ -1

✘ -5

12

✘ -1

✘ 9

used A C
-5

-1

-1

9

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

✘ 10

✘ -1

✘ -5

12

✘ -1

✘ 9

used A C
-5

-1

-1

9

10

Selection Sort

sort array A[] into a new
array C[]

while (condition)
• find minimum element x in A at

index i, ignore "used" elements
• write x in next available position

in C
• mark index i in A as "used" so it

doesn't get picked up again

Running Time = O(n2)

✘ 10

✘ -1

✘ -5

✘ 12

✘ -1

✘ 9

used A C
-5

-1

-1

9

10

12

QuickSort - pseudocode

QuickSort(A,b,e) //array%A%,%sort%between%indices%b%and%e
• q = Partition(A,b,e) //%returns%pivot%q,%b<=q<=e
• %//%Partition%also%rearranges%A%so%that%if%i<q then A[i]<=A[q]
• //%%and%if%i>q then A[i]>=A[q]%
• if(b<q-1) QuickSort(A,b,q-1)
• if(q+1<e) QuickSort(A,q+1,e)

After Partition the pivot index contains the right value:

-3 0 5 7 18 8 7 29 21 10

b=0 q=3 e=9

QuickSort Partition

TASK: rearrange A and find pivot q, such that
• all elements before q are smaller than A[q]
• all elements after q are bigger than A[q]

Partition (A, b, e)

• x=A[e]//pivot value

• i=b-1

• for j=b TO e-1

• if A[j]<=x then

• i++; swap A[i]<->A[j]

• swap A[i+1]<->A[e]

• q=i+1; return q

Partition Example
set pivot value x = A[e], // x=4
• i =index of last value < x
• i+1 = index of first value > x

run j through array indices b to e-1
• if A[j] <= x //see steps (d),(e)

swap (A[j] , A[i+1]);
i++; //advance i

move pivot in the right place
• swap (pivot=A[e] , A[i+1])

return pivot index
• return i+1

QuickSort time

Depends on the Partition balance

Worst case: Partition produces unbalanced split n = (1, n-1)
most of the time
• results in O(n2) running time

Average case: most of the time split balance is not worse
than n = (cn, (1-c)n) for a fixed c
• for example c=0.99 means balance not worse than (1/100*n,

99/100*n)
• results in O(n*log(n)) running time

Merge two sorted arrays
two sorted arrays
• A[] = { 1, 5, 10, 100, 200, 300}; B[] = {2, 5, 6, 10};

merge them into a new array C
• index i for array A[], j for B[], k for C[]
• init i=j=k=0;
• while (what_condition_?)

if (A[i] <= B[j]) { C[k]=A[i], i++ } //advance i in A
else {C[k]=B[j], j++} // advance j in B
advance k

• end_while

MergeSort

divide and conquer strategy

MergeSort array A
• divide array A into two halves A-left, A-right
• MergeSort A-left (recursive call)
• MergeSort A-right (recursive call)
• Merge (A-left, A-right) into a fully sorted array

running time : O(n*log(n))

Sorting : stable; in place

stable: preserve relative order of elements with same value

in place: dont use significant additional space (arrays)

time in-place stable

Bubble n2 ✔ ✔

Insertion n2 ✔ ✔

Selection n2 ✘ ?
QuickSort n*log(n) ✔ ?
MergeSort n*log(n) ✘ ✔

Sorting : tree of comparisons

tree of comparisons : essentially what the algorithm does
• each program execution follows a certain path
• red nodes are terminal / output
• the algorithm has to have n! output nodes... why ?
• if tree is balanced, longest path = tree depth = n log(n)
• if tree not balanced, path can be longer

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree
depth

Linear-time Sorting
Counting Sort (A[]) : count values, NO comparisons

STEP 1 : build array C that counts A values
• init C[]=0 ; run index i through A

value = A[i]
C[value] ++; //counts each value occurrence

STEP 2: build array D of positions
• init total =0; run index i through C

D[i] = total;
total += C[i];

STEP3: assign values to output array E
• run index i through A

value = A[i];
position = D[i];
E[position] = value;

Two Dim Arrays,
Vectors,

Basic Hashing

Two dimensional array = matrix
double M[10][20]; //matrix of real numbers

allocates 10*20*sizeof(double) = 1600 bytes

as function parameter: must specify the # of columns
• int myfunction (double X[][20], int rows)

double M[2][5]; //allocates 80 bytes:

0.11 -8.6 102 -1.8 9.75 14 1.25 101 -3.1 39.2
0 0 0 1 0 2 0 3 0 4 1 0 1 1 1 2 1 3 1 4

8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes 8bytes

indices

values

memory

sizeof(double)

Two dimensional array = matrix
double C[10][20],B[10][20];
C = A + B; //error
• instead compute each element

for (int i=0; i<10; i++)
for (int j=0; j<20; j++)

C[i][j] = A[i][j] + B[i][j];

double D[20][5],E[10][5];
E = A*D; //error
• instead compute each element

for i (rows of A)
for j (columns of D)

C[i][j]=0;
for k (columns of A)

add component A(i,k)B(k,j) to C[i][j] ;

Matrix determinant
Recursive formula. Fix a row i:

where Mij is the determinant of the matrix obtained from
A by removing row i and column j

|A| =
m�

j=1

(�1)i+jaijMij

Matrix determinant
Recursive formula. Fix a row i:

where Mij is the determinant of the matrix obtained from
A by removing row i and column j

|A| =
m�

j=1

(�1)i+jaijMij

Vectors
part of Standard Template Library (STL)
• some compilers do not support it
• some methods work differently on different compilers

#include <vector>
vector <int> a;//initial size 1 int

vector <int> b(10);//initial size 10 ints

vector <int> c(10,1);//initial size 10 ints all initialized with value 1

vector <int> d(b);//initial size 10 ints, having the same content as
vector b

vectors change size dynamically: they automatically
allocate more memory when need it
• d[14]=1452; //this is still out of bounds

Vectors

array syntax works
• more options available

vector <double> x(20,0);

x[2]=-90.67; x[4]=1.46; x[6]=0.66

for (int i=0;i<x.size();i++)
• cout<<" x["<<i<<"]="<<x[i];

Vector methods

.at(index), [index]

.push_back(value)

.pop_back()

.size()

.clear()

.empty()

.reverse()

.resize(extra, value)

.swap()

returns the element

adds a value as last element

removes last element

returns the size

removes all elements

returns true if vector is empty, false if not

reverse the order of elements

adds extra new elements, all init with value

swap content of two vectors

Vectors VS Arrays

vectors are passed by value, while arrays are passed as
references parameters to functions
• vectors can be also passed as reference using "&"

with arrays its easy to read/write wrong memory address
• vectors have some protection mechanism

vectors dynamically allocate more memory when need it

vectors are a class,so they have methods

whenever possible, use vectors for software development

Searching and sorting Vectors

in principle, same algorithms like before
• and more: max, min, median

implementation: by default vectors passed by value
• therefore function-changes to argument does not reflect back to

the call vector
• solution: pass by reference
• solution: use global variables
• solution: use return values

Basic hashing

arrays are very nice, but keys have to be integers
• keys from 0 to N-1

hash function: take input any key, returns an index (int)

very useful when natural keys are not integers
• names, words, addresses, phone numbers etc
• even if key=integer (like phone #) they are not the integers we

want as indices

text processing : natural keys are words/n-grams/phrases

databases: natural keys can be anything

Hash Tables
key -> index -> lookup in array / table

Hash function: two qualities

int hash_function (char[])

quality ONE: one-to-one (injection). Different inputs result in
different outputs
• collision: having many words map to same index
• collisions eventually will happen, need to be solved
• collisions should be balanced (uniformly distributed) per output indices

quality TWO: the set of returned indices must be manageable
• for example returns integers from 1 to 100000
• or returns integers in range (0, MAXHASH)

Simple hash function

return a simple combination of characters, modulo MAXHASH

int MAXHASH=100000;

int hash_function(char[]) // returns integers
between 0 and MAXHASH
• int sum=0,i=0;

• while(char[i]>0) {sum+=char[i] * ++i*i;}

• return sum % MAXHASH;

Hash Tables - Collisions
when several keys (words) map to the same key (index)

have to store the actual keys in a list
• list head stored at the index

key -> index -> list_head -> search for that key

Hash Tables - Collisions
when several keys (words) map to the same key (index)

have to store the actual keys in a list
• list head stored at the index

key -> index -> list_head -> search for that key

