Arrays, Vectors Searching, Sorting

Arrays

char s[200]; //array of 200 characters

- different type than class string
can be accessed as $\mathrm{s}[0]$, $\mathrm{s}[1], \ldots, \mathrm{s}[199]$
- $s[0]={ }^{\prime} H^{\prime} ; ~ s[1]=' e^{\prime} ; ~ s[2]=' l^{\prime} ; s[3]=' 1$ '; $s[4]={ }^{\prime} o^{\prime} ;$
- char $\mathrm{a}=\mathrm{s}[3]$;
works for any type
- double d[10]; int i[100];

C++ does not check for array bounds !!

Memory allocation for arrays

indices	0	1	2	3	4				n-2	n-1
values	0.11	-8.6	102	-1.8	9.75	14	1.25	101	-3.1	39.2
memory	8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes $8_{\text {bytes }} 8_{\text {bytes }} 8$ bytes 8 bytes									
	siz	f(d	ub							

Array initialization

complete

- int $A[5]=\{0,1,10,100,1000\}$
partial
- int $A[5]=\{0,1,10\} / / a l l o c a t e s$ int[5]
- only indices $0,1,2$ are initialized with values
implicit size
- int $A[]=\{0,1,-1,2\} / / a l l o c a t e s$ an int[4]

Arrays input to function

Act as reference variable: changes made are reflected to the call array

- in fact, it is a reference variable
- unless defined with const
int function (int $A[10]$, double x)
int function (int A[], double x)
int function (const int $A[]$, double x)
int function (int A[], int array_size, double x)

Partially filled arrays

similar to a stack

- but in here we can use any element, not only the top
$\operatorname{int} A[10]=\{3,-1,3,41,90\}$
int current_size = 5;
the current-top can move
up or down
example: Tower of Hanoi

Array copy

$\operatorname{int} A[5]=\{1,2,3,4,5\}$
int $B[5] ; B=A$; //error
instead copy each element

- for (int i=0;i<5;i++) B[i] = A[i];

Parallel arrays (DB tables)

	D NAME	ID AGE	ID GENDER	ID School Status
	Virgil	034	0 M	$0 \quad \mathrm{PhD}$
	Alex	22	1 F	1 in College
	2 Bob	218	$2 M$	2 HighSchool
	3 Cindy	31	3 F	3 PhD Candidate
	4	4	4	4
	n	n	n	n

requires "join" operations

Array bounds

C++ does not check for array bounds !!
very easy to read/write at the wrong location memory address

- writing particularly bad : can overwrite a variable

Searching Sorting

Brute force/linear search

Linear search: look through all values of the array until the desired value/event/condition found

Running Time: linear in the number of elements, call it $O(n)$
Advantage: in most situations, array does not have to be sorted

Binary Search

Array must be sorted
Search array A from index b to index e for value V
Look for value V in the middle index $m=(b+e) / 2$

- That is compare V with $A[m]$; if equal return index m
- If $V<A[m]$ search the second half of the array
- If $V>A[m]$ search the first half of the array

$A[m]=1<V=3=>$ search moves to the right half

Binary Search Efficiency

every iteration/recursion

- ends the procedure if value is found
- if not, reduces the problem size (search space) by half
worst case : value is not found until problem size=1
- how many reductions have been done?
- $n / 2 / 2 / 2 / \ldots . . / 2=1$. How many $2-s$ do I need?
- if $k 2-s$, then $n=2^{k}$, so k is about $\log (n)$
- worst running time is $O(\log n)$

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does

Search: tree of comparisons

tree of comparisons: essentially what the algorithm does

- each program execution follows a certain path

Search: tree of comparisons

tree of comparisons: essentially what the algorithm does

- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have at least n output nodes... why ?

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does

- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n output nodes... why?
- if tree is balanced, longest path $=$ tree depth $=\log (n)$
- if tree not balanced, path can be longer

Bubble Sort

Simple idea: as long as there is an inversion, swap the bubble

- inversion = a pair of indices $\mathrm{i} j$ with $A[i]>A[j]$
- swap A[i]<->A[j]

$$
\begin{aligned}
& \text { directly swap }(A[i], A[j]) \text {; } \\
& \text { code it yourself: aux }=A[i] ; A[i]=A[j] ; A[j]=\text { aux ; }
\end{aligned}
$$

how long does it take?

- worst case : how many inversions have to be swapped?
- $O\left(n^{2}\right)$

Insertion Sort

partial array is sorted

1	5	8	20	49					

get a new element $V=9$

Insertion Sort

partial array is sorted

get a new element $V=9$
find correct position with binary search $i=3$

Insertion Sort

partial array is sorted

1	5	8	20	49					

get a new element $V=9$
find correct position with binary search $i=3$
move elements to make space for the new element

1	5	8		20	49				

Insertion Sort

partial array is sorted

1	5	8	20	49					

get a new element $V=9$
find correct position with binary search $i=3$
move elements to make space for the new element

1	5	8		20	49				

insert into the existing array at correct position

1	5	8	9	20	49				

Selection Sort

sort array A[] into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Insertion/Selection Running
Time $=O\left(n^{2}\right)$

used	A	C
	10	
	-1	
	-5	
	12	
	-1	
	9	

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used	A	C
	10	-5
	-1	
X	-5	
	12	
	-1	
	9	

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used A	C
10 \boldsymbol{X} -1 \boldsymbol{X} -5 12 -1 	

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used A	C
10 \boldsymbol{X} -1 \boldsymbol{X} -5 12 \boldsymbol{X} -1 	

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used A	C
10 \boldsymbol{X} -1 \boldsymbol{X} -5 12 \boldsymbol{X} -1 \boldsymbol{X} 9	-5

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used	A	C
X	10	-5
X	-1	-1
X	-5	-1
	12	9
X	-1	10
X	9	

Selection Sort

sort array $A[]$ into a new array C[]
while (condition)

- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Running Time $=O\left(n^{2}\right)$

used	A	C
X	10	-5
X	-1	-1
X	-5	-1
X	12	9
X	-1	10
X	9	12

QuickSort - pseudocode

QuickSort(A,b,e)//arrayA, sort between indices bande

- $q=\operatorname{Partition(A,b,e)//returns~pivot~} q, b<=q<=e$
- //PartitionalsorearrangesA sothatif $i<q$ then $A[i]<=A[q]$
- $/$.
- if(b<q-1) QuickSort(A,b,q-1)
- if(q+1<e) QuickSort(A,q+1,e)

After Partition the pivot index contains the right value:

$\mathrm{b}=0$	$\mathrm{q}=3$	$\mathrm{e}=9$							
-3	0	5	7	18	8	7	29	21	10

QuickSort Partition

TASK: rearrange A and find pivot q, such that

- all elements before q are smaller than $A[q]$
- all elements after q are bigger than $A[q]$

Partition (A, b, e)

- $x=A[e] / /$ pivot value
- $i=b-1$
for $\mathrm{j}=\mathrm{b}$ то e-1
if $A[j]<=x$ then
i++; swap A[i]<->A[j]
- swap $A[i+1]<->A[e]$
- $q=i+1$; return q

Partition Example

set pivot value $x=A[e], / / x=4$
(b)
(c)

- $i+1=$ index of first value $>x$
run j through array indices b to e-1 if $A[j]<=x / /$ see steps (d), (e) $\operatorname{swap}(A[j], A[i+1]) ;$
i++; //advance i
move pivot in the right place
- swap (pivot=A[e], A[i+1])
return pivot index
- return i+1
(i)
(d)
(e)
(g)

(h)

b	\boldsymbol{e}						

QuickSort time

Depends on the Partition balance

Worst case: Partition produces unbalanced split $n=(1, n-1)$ most of the time

- results in $O\left(n^{2}\right)$ running time

Average case: most of the time split balance is not worse than $n=(c n,(1-c) n)$ for a fixed c

- for example $c=0.99$ means balance not worse than $\left(1 / 100^{*} n\right.$, 99/100*n)
- results in $O\left(n^{*} \log (n)\right)$ running time

Merge two sorted arrays

two sorted arrays

- $A[=\{1,5,10,100,200,300\} ; B[=\{2,5,6,10\}$;
merge them into a new array C
- index i for array $A[], j$ for $B[], k$ for $C[]$
- init $i=j=k=0$;
- while (what_condition_?)
if $(A[i]<=B[j])\{C[k]=A[i]$, $i++\}$ //advance i in A else $\{C[k]=B[j], j++\} / /$ advance j in B
advance k
- end_while

MergeSort

divide and conquer strategy
MergeSort array A

- divide array A into two halves A-left, A-right
- MergeSort A-left (recursive call)
- MergeSort A-right (recursive call)
- Merge (A-left, A-right) into a fully sorted array
running time : $O\left(n^{*} \log (n)\right)$

Sorting : stable; in place

stable: preserve relative order of elements with same value in place: dont use significant additional space (arrays)

	time	in-place	stable
Bubble	n^{2}	$\boldsymbol{\nearrow}$	$\boldsymbol{\nearrow}$
Insertion	n^{2}	$\boldsymbol{\nearrow}$	$\boldsymbol{\nearrow}$
Selection	n^{2}	\boldsymbol{X}	$?$
QuickSort	$\mathrm{n}^{*} \log (\mathrm{n})$	$\boldsymbol{\nearrow}$	$?$
MergeSort	$\mathrm{n}^{*} \log (\mathrm{n})$	\boldsymbol{X}	$\boldsymbol{\checkmark}$

Sorting : tree of comparisons

tree of comparisons: essentially what the algorithm does

- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n! output nodes... why?
- if tree is balanced, longest path $=$ tree depth $=n \log (n)$
- if tree not balanced, path can be longer

Linear-time Sorting

Counting Sort (A[]) : count values, NO comparisons
STEP 1 : build array C that counts A values

- init $C[]=0$; run index i through A
value $=A[i]$
C[value] ++; //counts each value occurrence
STEP 2: build array D of positions
- init total $=0$; run index i through C
$D[i]=$ total;
total $+=C[i]$;
STEP3: assign values to output array E
- run index i through A
value $=A[i]$; position = D[i];
E[position] = value;

Two Dim Arrays, Vectors, Basic Hashing

Two dimensional array = matrix

double $M[10][20]$; //matrix of real numbers
allocates $10 * 20$ *izeof(double) $=1600$ bytes
as function parameter: must specify the \# of columns

- int myfunction (double $\mathrm{x}[\mathrm{]}[20]$, int rows)
double M[2][5]; //allocates 80 bytes:

values	0.11	-8.6	102	-1.8	9.75	14	1.25	101	-3.1	39.2
memory	8bytes size	$\begin{gathered} 8 \text { byyes } \\ 1 \\ 20 f(d c \end{gathered}$	8bytes	8bytes	yres	8bytes	8 bytes	8bytes	8bytes	

Two dimensional array = matrix

double C[10][20], B[10][20];
C = A + B; //error

- instead compute each element

$$
\begin{aligned}
& \text { for (int } i=0 ; i<10 ; i++ \text {) } \\
& \text { for (int } j=0 ; j<20 ; j++ \text {) } \\
& \quad C[i][j]=A[i][j]+B[i][j] ;
\end{aligned}
$$

double D[20][5],E[10][5];
E = A*D; //error

- instead compute each element

for i (rows of A)

for j (columns of D) C[i][j]=0;
for k (columns of A)
add component $A(i, k) B(k, j)$ to $C[i][j]$;

Matrix determinant

Recursive formula. Fix a row i:
where $M_{i j}$ is the determinant of the matrix obtained from A by removing row i and column j

Matrix determinant

Recursive formula. Fix a row i:
where $M_{i j}$ is the determinant of the matrix obtained from A by removing row i and column j

For example, for a 3×3 matrix, the above formula gives

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \cdot(
$$

Vectors

part of Standard Template Library (STL)

- some compilers do not support it
- some methods work differently on different compilers
\#include <vector>
vector <int> a;//initial size 1 int
vector <int> $\mathrm{b}(10)$; //initial size 10 ints
vector <int> $c(10,1)$;//initial size 10 ints all initialized with value 1
vector <int> $d(b) ; / /$ initial size 10 ints , having the same content as vector b
vectors change size dynamically: they automatically allocate more memory when need it
- $\mathrm{d}[14]=1452$; //this is still out of bounds

Vectors

array syntax works

- more options available
vector <double> $x(20,0)$;
$x[2]=-90.67 ; x[4]=1.46 ; x[6]=0.66$
for (int $i=0 ; i<x . \operatorname{size}() ; i++)$
- cout<<" x["<<i<<"]="<<x[i];

Vector methods

Vectors VS Arrays

vectors are passed by value, while arrays are passed as references parameters to functions

- vectors can be also passed as reference using "\&"
with arrays its easy to read/write wrong memory address
- vectors have some protection mechanism
vectors dynamically allocate more memory when need it
vectors are a class, so they have methods
whenever possible, use vectors for software development

Searching and sorting Vectors

in principle, same algorithms like before

- and more: max, min, median
implementation: by default vectors passed by value
- therefore function-changes to argument does not reflect back to the call vector
- solution: pass by reference
- solution: use global variables
- solution: use return values

Basic hashing

arrays are very nice, but keys have to be integers

- keys from 0 to $\mathrm{N}-1$
hash function: take input any key, returns an index (int)
very useful when natural keys are not integers
- names, words, addresses, phone numbers etc
- even if key=integer (like phone \#) they are not the integers we want as indices
text processing : natural keys are words/n-grams/phrases databases: natural keys can be anything

Hash Tables

key \rightarrow index \rightarrow lookup in array / table

Hash function: two qualities

int hash_function (char[])
quality ONE: one-to-one (injection). Different inputs result in different outputs

- collision: having many words map to same index
- collisions eventually will happen, need to be solved
- collisions should be balanced (uniformly distributed) per output indices
quality TWO: the set of returned indices must be manageable
- for example returns integers from 1 to 100000
- or returns integers in range (0, MAXHASH)

Simple hash function

return a simple combination of characters, modulo MAXHASH int MAXHASH=100000;
int hash_function(char[]) // returns integers between 0 and MAXHASH

- int sum=0,i=0;
- while(char[i]>0) \{sum+=char[i] * ++i*i;\}
- return sum \% MAXHASH;

Hash Tables - Collisions

when several keys (words) map to the same key (index)
have to store the actual keys in a list

- list head stored at the index
key \rightarrow index \rightarrow list_head \rightarrow search for that key

Hash Tables - Collisions

when several keys (words) map to the same key (index)
have to store the actual keys in a list

- list head stored at the index
key \rightarrow index \rightarrow list_head \rightarrow search for that key

keys	buckets				overflow entries	
	000			\times		
	001	Lisa Smith	521-8976	\bullet		
	002			\times		
Lisa Smith	:	:	:	:		
Usa Srre	151			\times		
	152	John Smith	521-1234	\bullet		
Sam Doe	153	Ted Baker	418-4165	-	Sandra Dee	521-9655
ndra Dee	154			\times		
ee	:	:	:	:		
Baker	253			\times		
Saker	254	SamDoe	521-5030	\bullet		
	255			\times		

