Intro to graphs

Minimum Spanning Trees

Graphs

- nodes/vertices and edges between vertices
- set V for vertices, set E for edges
- we write graph $G=(V, E)$
- example : cities on a map (nodes) and roads (edges)

Adjacency matrix stoer IVVㄹ

- $a_{i j}=1$ if there is an edge from vertex i to vertex j
- if graph is undirected, edges go both ways, and the adj. matrix is symmetric

- if the graph is directed, the adj. matrix is not necessarily symmetric

Adjacency lists Stores $\mathbb{E} \mid$

- linked list marks all edges starting off a given vertex

revesed Adj List
(1)
(2) $\leftarrow 1 \leftarrow 4$
(3)
(4) $<1<1<5$
$(5)<2<3$
(b) $<3<6$

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle $=a$ path that ends in the same vertex it started
- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle $=$ a path that ends in the same vertex it started
- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started
- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle $=$ a path that ends in the same vertex it started
- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started
- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs

paths and cycles

path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs

paths and cycles

- path: a sequence of vertices $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ such that all $\left(v_{i}, v_{i+1}\right)$ are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs

Traverse/search graphs : BFS

- $\mathrm{BFS}=$ breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
- proceed in waves
- computes $d[v]=$ number of edges from s to v. If v not reachable from s, we have $d[v]=\infty$.

Traverse/search graphs : BFS

- $B F S=$ breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
- proceed in waves
- computes $d[v]=$ number of edges from s to v. If v not reachable from s , we have $\mathrm{d}[\mathrm{v}]=\infty$.
exar rise

can I start BFS

$$
\begin{aligned}
& \text { with initial quewe } \\
& \text { wore than I node? }
\end{aligned}
$$

Traverse/search graphs: BFS

- $\mathrm{BFS}=$ breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
- proceed in waves
- computes $d[v]=$ number of edges from s to v. If v not reachable from s, we have $d[v]=\infty$.

Traverse/search graphs: BFS

- $\mathrm{BFS}=$ breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
- proceed in waves
- computes $d[v]=$ number of edges from s to v. If v not reachable from s , we have $\mathrm{d}[\mathrm{v}]=\infty$.

Traverse/search graphs: BFS

- $\mathrm{BFS}=$ breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
- proceed in waves
- computes $d[v]=$ number of edges from s to v. If v not reachable from s, we have $d[v]=\infty$.

$\frac{\text { exerase }}{\text { produce }}$ min hoops (i, j)
$\forall i, j$
obvivars : Run BFS (i) Hi
BES $\Rightarrow O(\forall+e) v$

$$
=O(V E)
$$

use a queue to store processed vertices

- for each vertex in the queue, follow adj matrix to get vertices of the next wave
- BES $(\mathrm{V}, \mathrm{E}, \mathrm{S})$
- for each vertex $\mathrm{v} \neq \mathrm{s}$, set $\mathrm{d}[\mathrm{v}]=\infty$ = ware \#
- init queue Q; enqueue $(2, s) / / p u t s s$ in the queue while Q not empty
- $u=$ dequeue (S) // takes the first elem available from the queue
for each vertex $v \in A d j[u]$
if $\frac{(d[v]==\infty) \text { then }}{d[v]=d[u]+1}$
end if
end for

Running time $O(\checkmark+E)$ since each edge and vertex is considered once.
$\rightarrow 0(\max (V, E))$

Traverse/search graphs : DFS

DFS = depth-first search

- once a vertex is discovered, proceed to its adj vertices, or "children"(depth) rather than to its "brothers" (breadth)

DFS-wrapper (V, E)

- foreach vertex $u \in V$ \{color[u] = white\} end for //color all nodes white foreach vertex $u \in V$
- if (color[u]==white) then DFS-Visit(u) end for

DFS-Visit(u) //recursive function

- color $[u]=$ gray; //gray means "exploring from this node"
- time++; discover_time[u] = time; //discover time
- if (color[v]==white) then DFS-Visit(v)//explore from u end for
color $[\mathrm{u}]=$ black; finish_time[u]=time; //finish time

DFS

DFS

DFS edge classification

\int| $\begin{array}{c}\text { adrauncing } \\ \text { tree" edge }\end{array}$ | \vec{F} from vertices gray to white new node |
| :---: | :---: |

- a tree edge advances the graph exploration/traversal
- "back" edge: from vertices gray to gray
- a back edge points to a cycle within the current exploration nodes
- "forward" edge : from vertices a(gray) to b(black), if a discovered first
- discovery_time[a] < discovery_time[b]
- points to a different part of the tree, already explored from a
- "cross" edge : from vertices $a($ gray $)$ to b(black), if b discovered first
- discovery_time[a] > discovery_time[b]
- points to a different part of the tree, explored before discovering a

Checkpoint

- on the animated example, label each edge as "tree","back", "cross", or "forward"
- do the same on the following example (DFS discovery and finish times marked for each node)

Checkpoint

- almost same example, with a small modification: one edge was reversed

DFS observations

- Running time $O(V+E)$, same as BFS
- vertex v is gray between times discover[v] and finish[v]
- gray time intervals (discover[v], finish[v]) are inclusive of each other
- ($d[v], f[v]$) can include $(d[u], f[u]): d[v]<d[u]<f[u]<f[v]$

- (d[v],f[v]) can separate from (d[u],f[u]):d[v]<f[v]<d[u]<f[u], (d)

- (d[v],f[v]) cannot intersect $(d[u], f[u]): d(v)<d(u)<f[v]<f[u]$
- graph $G=(V, E)$ is acyclic (does not have cycles) if DFS does not find any "back" edge

Undirected graphs cycles

- graph $G=(V, E)$ is acyclic (does not have cycles) if DFS does not find any "back" edge
- since G is undirected, no cycles implies $|E| \leqslant|V|-1$
- running DFS, if we find more than $|V|-1$ edges, there must be a cycle
- Undirected graphs: find-cycles algorithm takes $O(V)$

Directed graphs cycles

- graph $G=(V, E)$ is acyclic (does not have cycles) if DFS does not find any "back" edge
- for directed graphs, even without cycles they can have more edges, $|E|>|V|-1$
- algorithm to determine cycles: run DFS, look for back edges - $O(V+E)$ time
- DAG $=$ directed acyclic graph

watch shurt tie undersh punts
Check Point

*

how can we use DFS to determine if there is epath from (4)to v ?
prove that by sorting vertices in the reverse order of finishing times, we obtained a topological sort

- assuming no cycles
- in other words, all edges point in the same direction

Strongly connected components

- $S C C=$ a set of vertices $S \subset V$, such that for any two $(u, v) \in S$, graph G contains a path $u \sim v$ and a path $v \sim u$
- trivial for undirected graphs
- all connected vertices are in fact strongly connected
- tricky for directed graphs
- graph below has the DFS discover/finish times and marked 4 strongly connected components; "tree" edges highlighted
- between two SCC, A and B, there cannot exists paths both ways ($A \ni u, v \in B$ and $B \ni v^{\prime} \sim u^{\prime} \in A$)
- paths both ways would make A and B a single SCC

Transitive Closure $=$ matrix M
$M_{i j}= \begin{cases}L & \text { if } i \rightarrow j \text { path } \\ 0 & \text { if } w \text { path }\end{cases}$
(1) If M =trams cloture given $\Rightarrow S C C$?

(2) Hon to get the trunative closure?

Strongly connected components

- run 1st DFS on G to get finishing times $f[u]$
- run 2nd DFS on G-reversed (all edges reversed -see picture), each DFS-visit in reverse order of f[u]
- finishing times marked in red for the DFS-visit root vertices
- output each tree (vertices reached) obtained by $2 n d$ DFS as an SCC

Strongly connected components

- why 2nd DFS produces precisely the SCC -s?
- SCC-graph of G: collapse all SCC into one SCC-vertex, keep edges between the SCC-vertices
- - SCC graph is a DAG;
- contradiction argument: a cycle on the SCC-graph would immediately collapse the cycle's SCC-s into one SCC
- reversed edges (shown in red); reversed-SCC-graph also a DAG
- second DFS runs on reversed-edges (red); once it starts at a high-finish-time (like 16) it can only go through vertices in the same SCC (like abe)

(76) max fiushtime ((st Dos) \Rightarrow starts in the Right most Minimum Spanning Trees Lesson 2

Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
- necessary this set of edges A has size $=|V|-1$
- spanning tree: the tree formed by the set of spanning edges together with vertex set $T=(V, F)$

Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
- necessary this set of edges A has size $=|V|-1$
- spanning tree: the tree formed by the set of spanning edges together with vertex set $T=(V, F)$

A spanning tree
=a set of edges $|v|-1$

Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
- necessary this set of edges A has size $=|V|-1$
- spanning tree: the tree formed by the set of spanning edges together with vertex set $T=(V, F)$

Minimum Spanning Tree (MST)

- context : undirected graph, edges have weights
- edge ($u, v) \in E$ has weight $w(u, v)$
- MST is a spanning tree of minimum total weight (of its edges)
- must span all vertices
- exactly |V|-1 edges

$$
\text { weight (tree) }=\sum_{e=\text { edge }} \operatorname{meight}(e)
$$

- sum of edges weight be minimum among spanning trees

(1) sulttree $(u) \backslash V \Rightarrow$ OPT MST \&r custree (v) $\backslash u=$ those nodes (LS)
(2) ant edge wot used across LS (u)-RS(v) $\geqslant \operatorname{edse}(u, v)$

(3) wother und edge can cross us-RS Growing Minimum Spanning Trees

- "safe edge" (u,v) for a given set of edges A : there is a MST that uses A and (u,v)
- that MST may not be unique

```
- GENERIC-MST (G)
- A = set of tree edges, initially empty
    while A does not form a spanning tree // meaning while |A|< |V|-1
    - find edge (u,v) that is safe for A
    - add (u,v) to A
    end while
```

- how to find a safe edge to a given set of edges A ?
- Prim algorithm
- Kruskal algorithm

Cuts in the graph

- "cut" is a partition of vertices in two sets : V=S $\cup V . S$
- an edge (u, v) crosses the cut ($S, V-S$) if u and v are on different partitions (one in S the other in $V-S$)
- cut ($S, V-S$) respects set of edges A if A has no cross edge
- "min weight cross edge" is a cross edge for the cut, having minimum weight across all cross edges
- Cut Theorem: if A is a set of edges part of some MST, and $(S, V-S)$ a cut respecting A, then a min-weight cross edge is "safee" for A (can be added to A towards an MST)

$A=\{a b, i c, c f, h g, f g\}$
cut : $S=\{a, b, d, e\} \quad V-S=\{h, i, c, g, f\}$ respects A
safe crossing edge : cd, weight(cd)=7

Prim algorithm

- grows a single tree $A, S=$ set of vertices in the tree
- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
- connecting one more node to the current tree

Prim algorithm

- grows a single tree $A, S=$ set of vertices in the tree
- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
- connecting one more node to the current tree
- define cut $(S, V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A

Prim algorithm

- grows a single tree $A, S=$ set of vertices in the tree
- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
- connecting one more node to the current tree
- define cut ($S, V-S$), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
- edge gf in the picture is added to A, vertex g added to the tree

Prim algorithm

- grows a single tree $A, S=$ set of vertices in the tree
- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
- connecting one more node to the current tree
- define cut ($S, V-S$), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
- edge gf in the picture is added to A, vertex g added to the tree

Prim algorithm

- add another(next) safe edge
- connecting one more node to the current tree

Prim algorithm

- add another(next) safe edge
- connecting one more node to the current tree
- define cut $(S, V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A

Prim algorithm

- add another(next) safe edge
- connecting one more node to the current tree
- define cut $(S, V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
- edge hg in the picture is added to A , vertex h added to the tree

Prim algorithm

- add another(next) safe edge
- connecting one more node to the current tree
- define cut ($S, V-S$), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
- edge hg in the picture is added to A , vertex h added to the tree

Prim MST algorithm

- Prim simple
- but implementation a bit tricky
- Running Time depends on implementation of ExtractMin from the Queue
- best theoretical implementation
uses Fibonacci Heaps uses Fibonacci Heaps
- also the most complicated
- only makes a practical difference for very large graphs
$\operatorname{MST-PRIM}(G, w, r)$
1 for each $u \in G . V$

2
3
4

$$
\begin{array}{cc}
2 & u . k e y=\infty \\
3 & u . \pi=\text { NIL } \\
4 & r . k e y=0 \\
5 & Q=G . V \\
6 & \text { while } Q \neq \emptyset \\
7 & u=\operatorname{EXTRACT}-\operatorname{Min}(Q) \\
8 & \text { for each } v \in G . \operatorname{Adj}[u] \\
9 & \text { if } v \in Q \text { and } w(u, v)<v . k e y \\
10 & v . \pi=u \\
11 & v . k e y=w(u, v)
\end{array}
$$

$$
10
$$

$$
11
$$

Kruskal MST algorithm

Grows a forest of trees Forrest $=(\mathrm{V}, \mathrm{A})$

- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

Kruskal MST algorithm

- Grows a forest of trees Forrest $=(\mathrm{V}, \mathrm{A})$
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)

Kruskal MST algorithm

- Grows a forest of trees Forrest $=(V, A)$
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
- find the minimum weight edge (u, v) across two components, say connecting trees $T 1 \ni v$ and $T 2 \ni u$ (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)

Kruskal MST algorithm

- Grows a forest of trees Forrest $=(\mathrm{V}, \mathrm{A})$
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
- find the minimum weight edge (u, v) across two components, say connecting trees $T 1 \ni v$ and $T 2 \ni u$ (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
- define cut ($S, V-S$); $S=$ vertices of $T 1$ (in red). This cut respects set A

Kruskal MST algorithm

- Grows a forest of trees Forrest $=(V, A)$
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
- find the minimum weight edge (u, v) across two components, say connecting trees $T 1 \ni v$ and $T 2 \ni u$ (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
- define cut ($\mathrm{S}, \mathrm{V}-\mathrm{S}$); $\mathrm{S}=$ vertices of Tl (in red). This cut respects set A
- edge (u, v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree

Kruskal algorithm

```
MST-Kruskal(G,w)
    A=\emptyset
    for each vertex v\inG.V
        Make-Set(v)
    sort the edges of G.E into nondecreasing order by weight w
    for each edge (u,v) \inG.E, taken in nondecreasing order by weight
            if FIND-SET (u)\not=FIND-SET(v) edge valud
                        UNION(u,v)
    return }
```

- Kruskal is simple
- implementation and running time depend on FINDSET and UNION operations on the disjoint-set forest.
- chapter 21 in the book, optional material for this course
- running time $O(E \log V)$

MST algorithm comparison

if you know graph density (edges to vertices)

	Kruskal	Prim with array implement.	Prim w/ binomial heap	Prim w/ Fibonacci heap	in practice
sparse graph $\mathrm{E}=\mathrm{O}(\mathrm{V})$	$\mathrm{O}(\mathrm{Vlog} \mathrm{V})$	$\mathrm{O}\left(\mathrm{V}^{2}\right)$	$\mathrm{O}(\mathrm{Vlog} \mathrm{V})$	$\mathrm{O}(\mathrm{Vlog} \mathrm{V})$	Kruskal, or Prim+binom heap
dense graph $\mathrm{E}=\Theta\left(\mathrm{V}^{2}\right)$	$\mathrm{O}\left(\mathrm{V}^{2} \log \mathrm{~V}\right)$	$\mathrm{O}\left(\mathrm{V}^{2}\right)$	$\mathrm{O}\left(\mathrm{V}^{2} \log \mathrm{~V}\right)$	$\mathrm{O}\left(\mathrm{V}^{2}\right)$	Prim with array
avg density $\mathrm{E}=\Theta(\mathrm{Vlog} \mathrm{V})$	$\mathrm{O}\left(\mathrm{Vlog}^{2} \mathrm{~V}\right)$	$\mathrm{O}\left(\mathrm{V}^{2}\right)$	$\mathrm{O}\left(\mathrm{Vlog} \mathrm{V}^{2}\right)$	$\mathrm{O}(\mathrm{Vlog} \mathrm{V})$	Prim with Fib heap, if graph is large

