Construct a minimum spanning tree covering a specific subset of the vertices

Asked 12 years, 2 months ago Modified 6 years, 4 months ago Viewed 13k times

I have an undirected, positive-edge-weight graph (V, E) for which I want a minimum spanning tree covering a subset k of vertices V (the Steiner tree problem).

I'm not limiting the size of the spanning tree to k vertices; rather I know exactly which k vertices must be included in the MST.

Starting from the entire MST I could pare down edges/nodes until I get the smallest MST that contains all k.

I can use Prim's algorithm to get the entire MST, and start deleting edges/nodes while the MST of subset k is not destroyed; alternatively I can use Floyd-Warshall to get allpairs shortest paths and somehow union the paths. Are there better ways to approach this?

```
algorithm tree graph-theory graph-algorithm
```

Share Improve this question edited Aug 7, 2017 at 10:18
Follow

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| $30.4 k$ | 48 | 125 | 187 |

Join Stack Overflow to find the best answer to your technical question, help others answer theirs.

4 If I remove the unwanted vertices I might also lose intermediate edges that connect k vertices that are far apart. For example if I have: k--o--0--0--k where o represents an unnecessary vertex and k represents one I need, if I deleted the middle o there would be no way to construct the MST between my k vertices. - rxmnnxfpvg Oct 7, 2011 at 9:32

1 So you interested in the minimum spanning tree, which doesn't necessarily span all vertices, only the vertices in k ? - aioobe Oct 7, 2011 at 9:35

1 Exactly. The MST that includes all of k at least, and then as little else as possible.

- rxmnnxfpvg Oct 7, 2011 at 9:36

2 Hi could you solve your problem? If possible can you help with the pseudo code/code? I have similar problem but the graph is unweighted. - phoenix Mar 14, 2015 at 12:13

1 The question is unclear about whether k is a number or a set. Will you please clarify? - Palec Dec 31, 2015 at 10:34

There's a lot of confusion going on here. Based on what the OP says:

I'm not limiting the size of the spanning tree to k vertices; rather I know exactly which k vertices must be included in the MST.

This is the Steiner tree problem on graphs. This is not the k-MST problem. The Steiner tree problem is defined as such:

Given a weighted graph $G=(V, E)$, a subset $S \subseteq V$ of the vertices, and a root r $\in V$, we want to find a minimum weight tree which connects all the vertices in S to r. 1

As others have mentionned, this problem is NP-hard. Therefore, you can use an approximation algorithm.

Early/Simple Approximation Algorithms

Two famous methods are Takahashi's method and Kruskal's method (both of which
Join Stack Overflow to find the best answer to your technical question, help others answer theirs.

- Kruskal JB: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In Proceedings of the American Mathematical Society, Volume 7. ; 1956:48-50.
- Rayward-Smith VJ, Clare A: On finding Steiner vertices. Networks 1986, 16:283294.

Shortest path approximation by Takahashi (with modification by Rayward-Smith)

INPUT: a graph $G=(V, E)$, set of terminals $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$, number of repeats r
OUTPUT: a Steiner tree constructed from G
for r timesdo
choose a random terminal $s_{1} \in S$
construct a sub-graph $G^{\prime}=\left(s_{1},\{ \}\right)$
$t:=1$
while $t<=|S|$ do
determine terminal $s_{t+1} \notin G$, which is closest to any node in G add s_{t+1} and shortest path P joining s_{t+1} with G^{\prime} to G
$t:=t+1$
end while
construct a minimum spanning tree T_{r} induced from the nodes and edges in G^{\prime}
remove non-terminals of degree 1 from T_{r}
end for
$\hat{r}:=\arg \min _{r}\left|T_{r}\right|$
return T_{r}

Kruskal's approximation algorithm (with modification by Rayward-Smith)

INPUT: a graph $G=(V, E)$ with a terminal set $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$
OUTPUT: a Steiner tree constructed from G
construct a forest F of k sub-graphs f_{1}, \ldots, f_{k} consisting of one terminal each.
while does not exist a $f_{i} \in F$ such that all terminals $s_{1}, \ldots, s_{k} \in f_{i}$ do
For all $i \neq j$: determine the shortest path between all nodes in f_{i} to all those in f_{j} find the minimum length path P among all computed paths from the last step construct $f_{n}=f_{i} \cup f_{j} \cup P$ and add it to forest F

Join Stack Overflow to find the best answer to your technical question, help others answer theirs.

Modern/More Advanced Approximation Algorithms

In biology, more recent approaches have treated the problem using the cavity method, which has led to a "modified belief propagation" method that has shown good accuracy on large data sets:

- Bayati, M., Borgs, C., Braunstein, A., Chayes, J., Ramezanpour, A., Zecchina, R.: Statistical mechanics of steiner trees. Phys. Rev. Lett. 101(3), 037208 (2008) 15.
- For an application: Steiner tree methods for optimal sub-network identification: an empirical study. BMC Bioinformatics. BMC Bioinformatics 2013 30;14:144. Epub 2013 Apr 30.

In the context of search engine problems, approaches have focused on efficiency for very large data sets that can be pre-processed to some degree.

- G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword Searching and Browsing in Databases using BANKS. In ICDE, pages 431-440.
- G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum. STAR: Steiner-tree approximation in relationship graphs. In ICDE'09, pages 868-879, 2009

Share Improve this answer Follow
answered Jan 28, 2016 at 1:45
user2398029 6,749 $8 \quad 4981$

Thank you so much for this. This post led me to a nice R implementation in the SteinerNet package - Jeff Bezos Apr 18, 2020 at 3:58

The problem you stated is a famous NP-hard problem, called Steiner tree in graphs. There are no known solutions in polynomial time and many believe no such solutions exist.

Share Improve this answer
Follow
edited Dec 31, 2015 at 10:11

answered Jan 24, 2012 at 2:56

Join Stack Overflow to find the best answer to your technical question, help others answer theirs.
@Palec Actually, that is wrong. "I'm not limiting the size of the spanning tree to k vertices; rather I know exactly which k vertices must be included in the MST." This problem is the Steiner tree problem. - user2398029 Jan 28, 2016 at 1:26

3 Also, -1 to @meh because the fact that the problem is NP-hard doesn't mean we can't get useful solutions with approximation algorithms. This answer does not help the OP in solving his problem. - user2398029 Jan 28, 2016 at 1:54

Run Prim's algorithm on the restricted graph $\left(k, E^{\prime}\right)$ where $E^{\prime}=\{(x, y) \in V: x \in k$ and $y \in$ $k\})$. Constructing that graph takes $\mathrm{O}(|E|)$.

1

Share Improve this answer Follow
answered Oct 7, 2011 at 9:24
Fred Foo 357k $78 \quad 744836$

This might work alright some of the time, but it's not even guaranteed that the E^{\prime} is connected -- and even if it is, it might be possible to save arbitrarily much distance by introducing a Steiner point (i.e., a vertex not in k). (Less than "arbitrarily much" if the distances obey the Triangle Inequality, but nothing says they have to.) - j_random_hacker Dec 21, 2015 at 14:17
@j_random_hacker interested in posting an alternative solution? - user2398029 Dec 25, 2015 at 5:46
@user2398029: I upvoted meh's answer (and I don't know why "Bill the Lizard" deleted adi's much earlier answer saying mostly the same thing). Basically this is an NP-hard problem to solve optimally; if you google "Steiner tree approximation" you can probably get some OK algorithms. - j_random_hacker Dec 25, 2015 at 14:30
@user2398029: It might be helpful to look at chapter 3 of this link from adi's answer: cc.gatech.edu/fac/Vijay.Vazirani/book.pdf. (I (re)post this here since I can see deleted posts, but I'm not sure what the rep cutoff is for that.) - j_random_hacker Dec 25, 2015 at 14:33

Join Stack Overflow to find the best answer to your technical question, help others answer theirs.

